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Abstract. We study the quaternion CR-submanifolds of a quaternion Kaehler manifold.
More specifically we study the properties of the canonical structures and the geometry
of the canonical foliations by using the Bott connection and the index of a quaternion
CR-submanifold.
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1. Introduction. The notion of a CR-submanifold of a Kaehler manifold was intro-

duced by Bejancu [3]. Subsequently a number of authors studied these submanifolds

(see [4] for details). In [1], Barros et al. studied quaternion CR-submanifolds of a quater-

nion Kaehler manifold and obtained many interesting results. The aim of this paper

is to continue the study of quaternion CR-submanifolds of a quaternion Kaehler man-

ifold. The paper is organized as follows: in Section 2 we collect some basic formulas

and results for later use and in Section 3 we study some properties of canonical struc-

tures, particularly its parallelism and QR-product. In Section 4 we study the geometry

of the canonical foliations using the Bott connection and the index of a quaternion CR-

submanifold. Finally, as an extension of the work of Chen [5] for the Kaehler manifolds

we give a complete classification of the totally umbilical quaternion CR-submanifolds

of a quaternion Kaehler manifold.

2. Preliminaries. Let M̄ be a quaternion Kaehler manifold with metric tensor g and

quaternion structure V [7]. We will denote by ψ1 = I, ψ2 = J, and ψ3 =K a local basis

of almost Hermitian structures for V .

Let X be a unit vector tangent to the quaternion Kaehler manifold M̄ . Then the

vectors X, IX, JX, KX form an orthonormal frame. Let Q(X) be the quaternion sec-

tion determined by X. Any plane in a quaternion section is called a quaternion plane

and the sectional curvature of a quaternion plane is called a quaternion sectional cur-

vature. A quaternion Kaehler manifold is called a quaternion space form, which is

denoted by M̄(c), if its quaternion sectional curvature is equal to a constant c at any

point of the manifold. The curvature tensor R̄ of M̄(c) is given by, [7],

R̄(X,Y)Z = c
4

[
g(Y ,Z)X−g(X,Z)Y +

3∑
r=1

g
(
ψrY ,Z

)
ψrX

−g(ψrX,Z)ψrY +2g
(
X,ψrY

)
ψrZ

]
,

(2.1)

where ψ1 = I, ψ2 = J, ψ3 =K.
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Let M be a Riemannian manifold isometrically immersed in a quaternion Kaehler

manifold M̄ . We also denote by g the metric tensor induced onM . If∇ is the covariant

differentiation induced on M , the Gauss and Weingarten formulas are given by

∇̄XY =∇XY +h(X,Y), ∇̄XN =−ANX+∇⊥XN, (2.2)

respectively, for any X,Y tangent toM and N normal toM. Here h and∇⊥ are the sec-

ond fundamental form associated with M , and the connection of the normal bundle,

respectively. The second fundamental tensor AN is related to h by

g
(
ANX,Y

)= g(h(X,Y),N). (2.3)

A differentiable distribution Dx on M such that ψr(Dx) ⊆ Dx for all r = 1,2,3 is

called a quaternion distribution. In other words, Dx is a quaternion distribution if Dx
is contained into itself by its quaternion structure.

It is known [1] that a submanifold M of a quaternion Kaehler manifold M̄ is called

a quaternion CR-submanifold if it admits a quaternion distribution Dx such that its

orthogonal complementary distribution D⊥x , is totally real, that is, ψr(D⊥x )⊆ T⊥x M for

all x ∈M and r = 1,2,3, where T⊥x M denotes the normal space of M at x.

A submanifold M of a quaternion Kaehler manifold M̄ is called a quaternion (resp.,

totally real) submanifold if dimD⊥x=0 (resp., dimDx=0). A quaternion CR-submanifold

is said to be proper if it is neither quaternion nor totally real.

We denote by µ the subbundle of the normal bundle T⊥M which is the orthogonal

complement of ψ1D⊥⊕ψ2D⊥⊕ψ3D⊥, that is,

T⊥M =ψ1D⊥⊕ψ2D⊥⊕ψ3D⊥⊕µ; g
(
µ,ψrD⊥

)= 0. (2.4)

The mean curvature vector H of M in M̄ is defined by H = (1/n)traceh, where n
denotes the dimension of M . If we have

h(X,Y)= g(X,Y)H (2.5)

for any X,Y ∈ TM , then M is called a totally umbilical submanifold. In particular, if

h(X,Y) = 0 identically for all X,Y ∈ TM , M is called a totally geodesic submanifold.

Finally M is called mixed totally geodesic if h(X,Y)= 0 for X ∈D, Y ∈D⊥. For totally

umbilical CR-submanifolds, equations (2.2) take the forms

∇̄XY =∇XY +g(X,Y)H, ∇̄XN =−g(H,N)X+∇⊥XN. (2.6)

The Codazzi equation for a totally umbilical CR-submanifold M , is given by

R̄(X,Y ;Z,N)= g(Y ,Z)g(∇⊥XH,N)−g(X,Z)g(∇⊥YH,N). (2.7)

Definition 2.1 (see [1]). Let M be a quaternion CR-submanifold of a quaternion

Kaehler manifold M̄ . Then M is called a QR-product, if M is locally the Riemannian

product of a quaternion submanifold and a totally real submanifold of M̄ .
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For any X ∈ TM and N ∈ T⊥M , we put

ψrX = PrX+QrX, (2.8)

ψrN = trN+frN, (2.9)

where PrX, trN (resp., QrX, frN) are the tangential (resp., the normal) components

of ψrX and ψrN for r = 1,2,3.

For the second fundamental form h, the covariant differentiation is defined by

(∇̄Xh)(Y ,Z)=∇⊥Xh(Y ,Z)−h(∇XY ,Z)−h(Y ,∇XZ) (2.10)

and the Gauss-Codazzi equations are given by

R(X,Y ,Z,W)= R̄(X,Y ,Z,W)+g(h(X,W),h(Y ,Z))−g(h(X,Z),h(Y ,W)), (2.11)[
R(X,Y)Z

]⊥ = (∇̄Xh)(Y ,Z)−(∇̄Yh)(X,Z), ∀X,Y ,Z,W tangent to M̄, (2.12)

where R is the curvature tensor associated with ∇ and ⊥ in (2.12) denotes the normal

component.

We collect from Barros et al. [1] the following results which we shall need in the

sequel.

Lemma 2.2. Every quaternion submanifold of a quaternion Kaehler manifold is

totally geodesic.

Lemma 2.3. The quaternion distribution D of a quaternion CR-submanifold M in a

quaternion Kaehler manifold M̄ is integrable if and only if h(D,D)= 0.

Lemma 2.4. LetM be a quaternion CR-submanifold of a quaternion Kaehler manifold

M̄ . Then the leafM⊥ ofD⊥ is totally geodesic inM if and only if g(h(D,D⊥),ψrD⊥)= 0,

r = 1,2,3.

Lemma 2.5. LetM be a quaternion CR-submanifold of a quaternion Kaehler manifold

M̄ . Then

AψrWZ =AψrZW for any W,Z ∈D⊥. (2.13)

3. Canonical parallel structures and QR-product. Let Pr ,fr ,Qr , and tr be the endo-

morphisms and the vector-bundle-valued 1-forms defined in (2.8), respectively. We

define the covariant differentiation of Pr ,Qr ,tr , and fr as follows:

(∇̄XPr )(Y)=∇X(PrY )−Pr∇XY , (∇̄XQr )(Y)=∇⊥X(QrY )−Qr∇XY ,(∇̄Xtr )(N)=∇X(trN)−tr∇⊥XN, (∇̄Xfr )(N)=∇⊥X(frN)−fr∇⊥XN, (3.1)

for any vector fields X,Y ∈ TM and N ∈ T⊥M .

The endomorphisms Pr (resp., the endomorphisms fr , the 1-forms Qr and tr ) are

parallel if ∇̄Pr = 0 (resp., ∇̄fr = 0, ∇̄Qr = 0, and ∇̄tr = 0).
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Now using the definition of a quaternion Kaehler manifold and taking account of

(2.2), (2.8), we can easily obtain the following:

(∇̄XPr )(Y)=AQrYX+trh(X,Y), (3.2)(∇̄XQr )(Y)= frh(X,Y)−h(X,PrY ), (3.3)(∇̄Xtr )(N)=AfrNX−PrANX, (3.4)(∇̄Xfr )(N)=−h(X,trN), (3.5)

for any X,Y ∈ TM and N ∈ T⊥M .

Remark 3.1. Since the second fundamental form is symmetric, it follows from (3.2)

that Pr is parallel if and only if

AψrUV =AψrVU, ∀U,V ∈ TM. (3.6)

Now if we set V = X ∈ D in (3.6), we find that AψrUX = 0 for all U ∈ TM , which

is equivalent to g(h(X,Y),ψrU) = 0 for any X ∈ D, and Y ,U ∈ TM . In particular

g(h(X,Y),ψrZ)= 0 for any X ∈D and Y ,Z ∈D⊥.

Thus, using Lemma 2.4 we obtain the following lemma.

Lemma 3.2. LetM be a quaternion CR-submanifold of a quaternion Kaehler manifold

M̄ . If Pr is parallel then the leaf M⊥ of D⊥ is totally geodesic in M .

Now we state and prove the following proposition.

Proposition 3.3. Let M be a quaternion CR-submanifold of a quaternion Kaehler

manifold M̄ . Then Qr is parallel if and only if tr is parallel.

Proof. Suppose tr is parallel. Then from (3.4) we have

AfrNU = PrANU, for any U ∈ TM. (3.7)

Thus for any vector fields U,V ∈ TM and N ∈ T⊥M , we get

g
(
AfrNU,V

)= g(PrANU,V), (3.8)

or equivalently

frh(U,V)−h
(
U,PrV

)= 0, (3.9)

that is, ∇̄Qr = 0.

The proof of the converse statement is similar.

Lemma 3.4. Let M be a QR-product of a quaternion Kaehler manifold M̄ . Then

(a) ∇ZX ∈D,

(b) ∇XZ ∈D⊥,

for all X ∈D and Z ∈D⊥.



QUATERNION CR-SUBMANIFOLDS OF A QUATERNION . . . 31

Proof. By using (2.2) and the definition of a quaternion Kaehler manifold, we find

ψr∇ZX =∇ZψrX+h
(
Z,ψrX

)−ψr(X,Z) for X ∈D, Z ∈D⊥. (3.10)

The above equation yields

g
(
ψr∇ZX,ψrW

)= g(∇ZψrX,ψrW)+g(h(Z,ψrX),ψrW),
g
(∇ZX,W)= g(h(Z,ψrX),ψrW) for X ∈D, W,Z ∈D⊥. (3.11)

SinceM is a QR-product the leafM⊥ ofD⊥ is totally geodesic. Thus using Lemma 2.4

we get (a).

Next for X ∈D, Z ∈D⊥ we have

∇̄XψrZ =ψr ∇̄XZ (3.12)

which, by virtue of (2.2), gives

ψr∇XZ =−AψrZX+∇⊥XψrZ−ψrh(X,Z). (3.13)

Taking inner products with Y ∈D and using the fact that the leaf M⊥ of D⊥ is totally

geodesic, we find

g
(
ψr∇XZ,Y

)=−g(AψrZX,Y )=−g(h(X,Y),ψrZ) for X,Y ∈D, Z ∈D⊥. (3.14)

On the other hand, for X ∈D and W,Z ∈D⊥ and the use of Lemma 2.5, (3.13) gives

g
(
ψr∇XZ,W

)=−g(ψrh(X,Z),W)−g(h(X,W),ψrZ)
= g(AψrWZ,X)−g(AψrZW,X)
= g(AψrWZ−AψrZW,X)
= 0.

(3.15)

Thus from (3.14) and (3.15) we see that ψr∇XZ is normal to M . So ∇XZ ∈D⊥ for all

X ∈D and Z ∈D⊥.

Theorem 3.5. Let M be a quaternion CR-submanifold of a quaternion Kaehler

manifold M̄ . Then M is a QR-product if and only if Pr is parallel.

Proof. Suppose Pr is parallel, then from (3.2), we have

AQrYX+trh(X,Y)= 0 ∀X,Y ∈ TM. (3.16)

If Y ∈D, thenQrY = 0. Hence (3.16) is reduced to trh(X,Y)= 0 for allX ∈ TM , Y ∈D.

Therefore by virtue of [1, Lemma 5.1, page 403], we get h(D,D⊥) = 0 or h(D,D) = 0.

So the quaternion distribution D is integrable by virtue of Lemma 2.3. Thus it follows

that each leaf M⊥ is totally geodesic in M̄ and in particular M⊥ is totally geodesic in

M by virtue of Lemma 2.2.
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Again from (3.2), we have

AψrWZ+trh(W,Z)= 0 ∀W,Z ∈D⊥. (3.17)

So for X ∈D, we have

g
(
AψrWZ,X

)+g(trh(W,Z),X)= 0 (3.18)

which means

g
(
h(X,Z),QrW

)−g(h(W,Z),QrX)= 0, (3.19)

that is,

g
(
h(X,Z),QrW

)= 0 (3.20)

or

g
(
h
(
D,D⊥

)
,QrD⊥

)= 0. (3.21)

Thus using Lemma 2.4, it follows that the leaf M⊥ of D⊥ is totally geodesic. Hence M
is a QR-product.

Conversely, let M be a QR-product. First we show that ∇UX ∈D for any X ∈D and

U tangent to M . Since M is a QR-product, that is, locally a Riemannian product of a

quaternion submanifold and a totally real submanifold, it is sufficient to show that

∇ZX ∈D for any X ∈D, Z ∈D⊥ but this was proved in Lemma 3.4(a). Using this fact,

we have

∇UψrX+h
(
U,ψrX

)=ψr∇UX+ψrh(X,U) for any X ∈D, U tangent to M, (3.22)

which yields

ψrh(U,X)= h
(
U,ψrX

)
, ∇UψrX =ψr∇UX. (3.23)

Thus (∇̄UPr )(X)=∇UPrX−Pr∇UX = 0, for any X ∈D, and U tangent to M .

Similarly, by using Lemma 3.4(b), it follows that ∇UZ ∈D⊥ for any Z ∈D⊥, and U
tangent to M . But since M is a QR-product, it follows that ∇XZ ∈ D⊥ for U = X ∈ D
and Z ∈D⊥.

Thus, we have (∇̄UPr )(Z) = 0 for any Z ∈D⊥, U tangent to M . Therefore ∇̄Pr = 0,

which completes the proof.

Corollary 3.6. Let M be a QR-product of a quaternion Kaehler manifold M̄ . Then

M is mixed totally geodesic, that is, h(D,D⊥)= 0.

Remark 3.7. If M is a proper QR-product of a quaternion space form M̄(c), then

the ambient manifold M̄ is necessarily a space of zero curvature. Hence there does

not exist a proper QR-product of a quaternion space form M̄(c) with c ��= 0.

4. Canonical foliations and index of a quaternion CR-submanifold

Definition 4.1 (see [8]). Let D be a distribution on the Riemannian manifold M ,

D⊥ the orthogonal distribution, Π⊥ : TM → D⊥ the projection and ∇ the Levi-Civita
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connection. Then the second fundamental form of the plane field D, is defined by

S∇(X,Y)= 1
2
Π⊥
(∇XY +∇YX). (4.1)

The distribution D is called a totally geodesic plane field, if the geodesics tangent to

it at one point remain tangent for all their length.

Thus we say that the distribution D is a totally geodesic plane field if

S∇(X,Y)=Π⊥
(∇XY +∇YX)= 0 ∀X,Y ∈D. (4.2)

A geometric definition of this notion is given in [9].

A foliation f on a Riemannian manifold M is called a Riemannian foliation, if the

Bott connection
◦∇XY =Π[X,Y] in the normal bundle of f preserves the Riemannian

metric. Also f is a Riemannian foliation if and only if the second fundamental form

S∇ of the plane field D vanishes (see [9, page 157]).

Theorem 4.2. LetM be a quaternion CR-submanifold of a quaternion Kaehler mani-

fold M̄ such that D⊥M is a totally real foliation of M . Then the Bott connection of D⊥M
preserves the volume form ψ of DM , that is,

◦∇Zψ= 0, for all Z ∈D⊥M .

Proof. For any X,Y ∈D and Z ∈D⊥, we have

g
(( ◦∇Zψr)(X),Y)= g( ◦∇ZψrX,Y)−g(ψr ◦∇ZX,Y)

= g([Z,ψrX],Y )+g([Z,X],ψrY )
= g(∇̄ZψrX,Y )−g(∇̄ψrXZ,Y )
+g(∇̄ZX,ψrY )−g(∇̄XZ,ψrY )

= g(X,ψr ∇̄ZY )+g(∇̄ψrXY ,Z)
−g(X,∇̄ZψrY )+g(∇̄XψrY ,Z)

= g(∇̄ψrXY ,Z)+g(∇̄XψrY ,Z)
= g(∇̄ψrXY ,Z)+g(∇̄XψrZ,Y )
= g(∇̄ψrXY ,Z)−g(AψrZX,Y ).

(4.3)

Also,

g
(∇XX,Z)= g(∇̄XX,Z)

= g(ψr ∇̄XX,ψrZ)
= g(∇̄XψrX,ψrZ)
=−g(∇̄XψrZ,ψrX)
= g(AψrZX,ψrX).

(4.4)

If D⊥M is Riemannian then DM is a totally geodesic plane field and so (4.4) gives

g(AψrZX,ψrX)= 0.
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Therefore g(AψrZ(X+Y),ψr (X+Y))= 0, and hence we obtain

g
(
AψrZX,ψrY

)+g(AψrZY ,ψrX)= 0. (4.5)

Thus using (4.3) and (4.5), we have

g
(( ◦∇Zψr )(X),ψrY )= g(∇̄ψrXψrY ,Z)−g(AψrZX,ψrY )

= g(∇̄ψrXψrY ,Z)+g(AψrZY ,ψrX)
= 0.

(4.6)

Moreover, it is known that DM is a minimal distribution [2], which implies that

(dψ)
(
Z,X1, . . . ,X4n

)= 0 for Z ∈D⊥, X1, . . . ,X4n ∈D. (4.7)

Hence

( ◦∇Zψ)(X1, . . . ,X4n
)= Zψ(X1, . . . ,X4n

)− 4n∑
a=1

ψ
(
X1, . . . ,Π

[
Z,Xa

]
, . . . ,X4n

)
= (dψ)(Z,X1, . . . ,X4n

)= 0,

(4.8)

which completes the proof.

Now, let M be a compact totally geodesic quaternion CR-submanifold of a quater-

nion Kaehler manifold M̄ . Let N be a normal vector field and denote by ν′′(N) the

second normal variation of M induced by N . Then we have (see [6, Chapter 1]),

ν′′(N)=
∫
M

{∥∥∇⊥N∥∥2−
n∑
i=1

R̄
(
Xi,N,N,Xi

)−∥∥AN∥∥2

}
dV, (4.9)

where N ∈ T⊥M , dV denotes the volume element of M and {Xi} is an orthonormal

frame in TM . Applying the Stokes theorem to the integral of the first term of (4.9), we

have

I(N,N)=: ν′′(N)=
∫
M
g(LN,N)∗1, (4.10)

where L is a selfadjoint, strongly elliptic linear differential operator of the second

order. The differential operator L is called the Jacobi operator of M in M̄ and has dis-

crete eigenvalues λ1 < λ2 < ··· . We put Eλ = {N ∈ T⊥M : L(N)= λN}. The dimension

of the space Eλ, dim(Eλ), is called the index of M in M̄ . For two normal vector fields

N1,N2 to a minimal submanifold M in M̄ , their index form is defined by

I
(
N1,N2

)=
∫
M
g
(
LN1,N2

)∗1. (4.11)

It is easy to see that the index form I is a symmetric bilinear form; I : T⊥M×T⊥M → R.

Now we prove the following theorem.

Theorem 4.3. LetM be a compact n-dimensional minimal quaternion CR-submani-

fold of a quaternion Kaehler manifold M̄ . IfM has nonpositive holomorphic bisectional

curvature, then the index form satisfies

I(N,N)+I(ψrN,ψrN)≥ 0 for any N ∈ µ. (4.12)
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Proof. By using the Weingarten equation we have that for all X,Y ∈D⊥,

g
(∇⊥XN,ψrY )= g(∇̄XN,ψrY )

=−g(ψr ∇̄XN,Y )
=−g(∇̄XψrN,Y )
= g(AψrNX,Y )

(4.13)

which implies that

∥∥∇⊥N∥∥2 ≥
∥∥AψrN∥∥2,

∥∥∇⊥ψrN∥∥2 ≥
∥∥AN∥∥2

for any N ∈ µ, (4.14)

where µ is defined in (2.4). Thus by using (4.9), (4.10), (4.13), and (4.14) we get

I(N,N)+I(ψrN,ψrN)≥−
∫
M

n∑
i=1

{
R̄
(
N,ei,ei,N

)+ R̄(ψrN,ei,ei,ψrN)}∗1 (4.15)

from which the proof follows, since M has nonpositive holomorphic bisectional cur-

vature.

Finally, we prove a classification theorem for the totally umbilical quaternion CR-

submanifolds of a quaternion Kaehler manifold.

Theorem 4.4. Let M be a compact totally umbilical quaternion CR-submanifold of

a quaternion Kaehler manifold M̄ . Then

(a) M is a totally geodesic submanifold, or,

(b) M is locally the Riemannian product of a quaternion submanifold and a totally

real submanifold, or,

(c) M is a totally real submanifold, or,

(d) the totally real distribution is one dimensional, that is, dimD⊥ = 1,

(e) ∇⊥XH ∈ µ, for X ∈D.

Proof. We take X,W ∈ D⊥ and using (2.6) with the fact that M̄ is a quaternion

Kaehler manifold, we have

ψr∇XW +g(X,W)ψrH =−AψrWX+∇⊥XψrW. (4.16)

Taking inner product with X we get

g
(
H,ψrW

)‖X‖2 = g(X,W)g(H,ψrX). (4.17)

Exchanging X and W in (4.17) we have

g
(
H,ψrX

)‖W‖2 = g(X,W)g(H,ψrW). (4.18)

This together with (4.17) gives

g
(
H,ψrW

)= g(X,W)2

‖X‖2‖W‖2
g
(
H,ψrW

)
. (4.19)
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The possible solutions of (4.19) are

(i) H = 0,

(ii) H⊥ψrW ,

(iii) X‖W .

Suppose that condition (i) holds, that is,H=0. This implies thatM is totally geodesic

which proves (a). Combining (ii) with a result in [1, page 407] we get (b) of the theorem.

Now from (2.7) we have

O = R̄(IX,JX,KX,N)
= R̄(KX,N,IX,JX)
=−R̄(KX,N,X,KX)
=−R̄(X,KX,KX,N)

=−g(∇⊥XH,N)‖X‖2

(4.20)

which implies that

∇⊥XH ∈ µ ∀X ∈D (4.21)

proving (e). Next we have

∇̄XψrH =ψr ∇̄XH for X ∈D (4.22)

which, by (2.6) gives

∇⊥XψrH =−g(H,H)ψrX+ψr∇⊥XH. (4.23)

Since ∇⊥XH ∈ µ, from (4.23) we have ψrX = 0 for all X ∈ D. Hence D = {0} which

proves (c). Finally if (iii) is valid then dimD⊥ = 1, which completes the proof.
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