QUATERNION CR-SUBMANIFOLDS OF A QUATERNION KAEHLER MANIFOLD

BASSIL J. PAPANTONIOU and M. HASAN SHAHID

(Received 7 August 2000)

ABSTRACT. We study the quaternion CR-submanifolds of a quaternion Kaehler manifold. More specifically we study the properties of the canonical structures and the geometry of the canonical foliations by using the Bott connection and the index of a quaternion CR-submanifold.

2000 Mathematics Subject Classification. 53C20, 53C21, 53C25.

1. Introduction. The notion of a CR-submanifold of a Kaehler manifold was introduced by Bejancu [3]. Subsequently a number of authors studied these submanifolds (see [4] for details). In [1], Barros et al. studied quaternion CR-submanifolds of a quaternion Kaehler manifold and obtained many interesting results. The aim of this paper is to continue the study of quaternion CR-submanifolds of a quaternion Kaehler manifold. The paper is organized as follows: in Section 2 we collect some basic formulas and results for later use and in Section 3 we study some properties of canonical structures, particularly its parallelism and QR-product. In Section 4 we study the geometry of the canonical foliations using the Bott connection and the index of a quaternion CR-submanifold. Finally, as an extension of the work of Chen [5] for the Kaehler manifolds we give a complete classification of the totally umbilical quaternion CR-submanifolds of a quaternion Kaehler manifold.

2. Preliminaries. Let \overline{M} be a quaternion Kaehler manifold with metric tensor g and quaternion structure V [7]. We will denote by $\psi_1 = I$, $\psi_2 = J$, and $\psi_3 = K$ a local basis of almost Hermitian structures for V.

Let *X* be a unit vector tangent to the quaternion Kaehler manifold \overline{M} . Then the vectors *X*, *IX*, *JX*, *KX* form an orthonormal frame. Let Q(X) be the quaternion section determined by *X*. Any plane in a quaternion section is called a quaternion plane and the sectional curvature of a quaternion plane is called a quaternion sectional curvature. A quaternion Kaehler manifold is called a quaternion space form, which is denoted by $\overline{M}(c)$, if its quaternion sectional curvature is equal to a constant *c* at any point of the manifold. The curvature tensor \overline{R} of $\overline{M}(c)$ is given by, [7],

$$\bar{R}(X,Y)Z = \frac{c}{4} \bigg[g(Y,Z)X - g(X,Z)Y + \sum_{r=1}^{3} g(\psi_r Y,Z)\psi_r X - g(\psi_r X,Z)\psi_r Y + 2g(X,\psi_r Y)\psi_r Z \bigg],$$
(2.1)

where $\psi_1 = I$, $\psi_2 = J$, $\psi_3 = K$.

Let *M* be a Riemannian manifold isometrically immersed in a quaternion Kaehler manifold \overline{M} . We also denote by *g* the metric tensor induced on *M*. If ∇ is the covariant differentiation induced on *M*, the Gauss and Weingarten formulas are given by

$$\bar{\nabla}_X Y = \nabla_X Y + h(X, Y), \qquad \bar{\nabla}_X N = -A_N X + \nabla_X^{\perp} N, \qquad (2.2)$$

respectively, for any *X*, *Y* tangent to *M* and *N* normal to *M*. Here *h* and ∇^{\perp} are the second fundamental form associated with *M*, and the connection of the normal bundle, respectively. The second fundamental tensor *A*_{*N*} is related to *h* by

$$g(A_N X, Y) = g(h(X, Y), N).$$
(2.3)

A differentiable distribution D_x on M such that $\psi_r(D_x) \subseteq D_x$ for all r = 1, 2, 3 is called a quaternion distribution. In other words, D_x is a quaternion distribution if D_x is contained into itself by its quaternion structure.

It is known [1] that a submanifold M of a quaternion Kaehler manifold \overline{M} is called a quaternion CR-submanifold if it admits a quaternion distribution D_x such that its orthogonal complementary distribution D_x^{\perp} , is totally real, that is, $\psi_r(D_x^{\perp}) \subseteq T_x^{\perp}M$ for all $x \in M$ and r = 1, 2, 3, where $T_x^{\perp}M$ denotes the normal space of M at x.

A submanifold M of a quaternion Kaehler manifold \overline{M} is called a quaternion (resp., totally real) submanifold if dim $D_x^{\perp} = 0$ (resp., dim $D_x = 0$). A quaternion CR-submanifold is said to be proper if it is neither quaternion nor totally real.

We denote by μ the subbundle of the normal bundle $T^{\perp}M$ which is the orthogonal complement of $\psi_1 D^{\perp} \oplus \psi_2 D^{\perp} \oplus \psi_3 D^{\perp}$, that is,

$$T^{\perp}M = \psi_1 D^{\perp} \oplus \psi_2 D^{\perp} \oplus \psi_3 D^{\perp} \oplus \mu; \quad g(\mu, \psi_r D^{\perp}) = 0.$$
(2.4)

The mean curvature vector *H* of *M* in \overline{M} is defined by $H = (1/n) \operatorname{trace} h$, where *n* denotes the dimension of *M*. If we have

$$h(X,Y) = g(X,Y)H \tag{2.5}$$

for any $X, Y \in TM$, then M is called a totally umbilical submanifold. In particular, if h(X, Y) = 0 identically for all $X, Y \in TM$, M is called a totally geodesic submanifold. Finally M is called mixed totally geodesic if h(X, Y) = 0 for $X \in D$, $Y \in D^{\perp}$. For totally umbilical CR-submanifolds, equations (2.2) take the forms

$$\bar{\nabla}_X Y = \nabla_X Y + g(X, Y)H, \qquad \bar{\nabla}_X N = -g(H, N)X + \nabla_X^{\perp} N.$$
(2.6)

The Codazzi equation for a totally umbilical CR-submanifold *M*, is given by

$$\bar{R}(X,Y;Z,N) = g(Y,Z)g(\nabla_X^{\perp}H,N) - g(X,Z)g(\nabla_Y^{\perp}H,N).$$
(2.7)

DEFINITION 2.1 (see [1]). Let M be a quaternion CR-submanifold of a quaternion Kaehler manifold \tilde{M} . Then M is called a QR-product, if M is locally the Riemannian product of a quaternion submanifold and a totally real submanifold of \tilde{M} .

For any $X \in TM$ and $N \in T^{\perp}M$, we put

$$\psi_r X = P_r X + Q_r X, \tag{2.8}$$

$$\psi_r N = t_r N + f_r N, \qquad (2.9)$$

where $P_r X$, $t_r N$ (resp., $Q_r X$, $f_r N$) are the tangential (resp., the normal) components of $\psi_r X$ and $\psi_r N$ for r = 1, 2, 3.

For the second fundamental form *h*, the covariant differentiation is defined by

$$(\bar{\nabla}_X h)(Y,Z) = \nabla_X^{\perp} h(Y,Z) - h(\nabla_X Y,Z) - h(Y,\nabla_X Z)$$
(2.10)

and the Gauss-Codazzi equations are given by

$$R(X,Y,Z,W) = \bar{R}(X,Y,Z,W) + g(h(X,W),h(Y,Z)) - g(h(X,Z),h(Y,W)), \quad (2.11)$$

$$[R(X,Y)Z]^{\perp} = (\bar{\nabla}_X h)(Y,Z) - (\bar{\nabla}_Y h)(X,Z), \quad \forall X,Y,Z,W \text{ tangent to } \bar{M}, \qquad (2.12)$$

where *R* is the curvature tensor associated with ∇ and \perp in (2.12) denotes the normal component.

We collect from Barros et al. [1] the following results which we shall need in the sequel.

LEMMA 2.2. Every quaternion submanifold of a quaternion Kaehler manifold is totally geodesic.

LEMMA 2.3. The quaternion distribution D of a quaternion CR-submanifold M in a quaternion Kaehler manifold \overline{M} is integrable if and only if h(D,D) = 0.

LEMMA 2.4. Let M be a quaternion CR-submanifold of a quaternion Kaehler manifold \overline{M} . Then the leaf M^{\perp} of D^{\perp} is totally geodesic in M if and only if $g(h(D,D^{\perp}), \psi_r D^{\perp}) = 0$, r = 1, 2, 3.

LEMMA 2.5. Let M be a quaternion CR-submanifold of a quaternion Kaehler manifold \overline{M} . Then

$$A_{\psi_{\mathcal{T}}W}Z = A_{\psi_{\mathcal{T}}Z}W \quad \text{for any } W, Z \in D^{\perp}.$$

$$(2.13)$$

3. Canonical parallel structures and QR-product. Let P_r , f_r , Q_r , and t_r be the endomorphisms and the vector-bundle-valued 1-forms defined in (2.8), respectively. We define the covariant differentiation of P_r , Q_r , t_r , and f_r as follows:

$$(\bar{\nabla}_X P_r)(Y) = \nabla_X (P_r Y) - P_r \nabla_X Y, \qquad (\bar{\nabla}_X Q_r)(Y) = \nabla_X^{\perp} (Q_r Y) - Q_r \nabla_X Y, (\bar{\nabla}_X t_r)(N) = \nabla_X (t_r N) - t_r \nabla_X^{\perp} N, \qquad (\bar{\nabla}_X f_r)(N) = \nabla_X^{\perp} (f_r N) - f_r \nabla_X^{\perp} N,$$

$$(3.1)$$

for any vector fields $X, Y \in TM$ and $N \in T^{\perp}M$.

The endomorphisms P_r (resp., the endomorphisms f_r , the 1-forms Q_r and t_r) are parallel if $\bar{\nabla}P_r = 0$ (resp., $\bar{\nabla}f_r = 0$, $\bar{\nabla}Q_r = 0$, and $\bar{\nabla}t_r = 0$).

Now using the definition of a quaternion Kaehler manifold and taking account of (2.2), (2.8), we can easily obtain the following:

$$\left(\bar{\nabla}_X P_r\right)(Y) = A_{O_r Y} X + t_r h(X, Y), \tag{3.2}$$

$$(\bar{\nabla}_X Q_r)(Y) = f_r h(X, Y) - h(X, P_r Y), \qquad (3.3)$$

$$(\bar{\nabla}_X t_r)(N) = A_{f_r N} X - P_r A_N X, \qquad (3.4)$$

$$(\bar{\nabla}_X f_r)(N) = -h(X, t_r N), \tag{3.5}$$

for any $X, Y \in TM$ and $N \in T^{\perp}M$.

REMARK 3.1. Since the second fundamental form is symmetric, it follows from (3.2) that P_r is parallel if and only if

$$A_{\psi_r U}V = A_{\psi_r V}U, \quad \forall U, V \in TM.$$
(3.6)

Now if we set $V = X \in D$ in (3.6), we find that $A_{\psi_r U}X = 0$ for all $U \in TM$, which is equivalent to $g(h(X,Y), \psi_r U) = 0$ for any $X \in D$, and $Y, U \in TM$. In particular $g(h(X,Y), \psi_r Z) = 0$ for any $X \in D$ and $Y, Z \in D^{\perp}$.

Thus, using Lemma 2.4 we obtain the following lemma.

LEMMA 3.2. Let *M* be a quaternion CR-submanifold of a quaternion Kaehler manifold \overline{M} . If P_r is parallel then the leaf M^{\perp} of D^{\perp} is totally geodesic in *M*.

Now we state and prove the following proposition.

PROPOSITION 3.3. Let M be a quaternion CR-submanifold of a quaternion Kaehler manifold \overline{M} . Then Q_r is parallel if and only if t_r is parallel.

PROOF. Suppose t_r is parallel. Then from (3.4) we have

$$A_{f_rN}U = P_r A_N U, \quad \text{for any } U \in TM.$$
(3.7)

Thus for any vector fields $U, V \in TM$ and $N \in T^{\perp}M$, we get

$$g(A_{f_rN}U,V) = g(P_rA_NU,V), \qquad (3.8)$$

or equivalently

$$f_r h(U,V) - h(U,P_r V) = 0, (3.9)$$

that is, $\bar{\nabla}Q_r = 0$.

The proof of the converse statement is similar.

LEMMA 3.4. Let M be a QR-product of a quaternion Kaehler manifold \tilde{M} . Then (a) $\nabla_Z X \in D$.

(a) $\nabla_Z X \subset D$, (b) $\nabla_X Z \in D^{\perp}$, for all $X \in D$ and $Z \in D^{\perp}$. **PROOF.** By using (2.2) and the definition of a quaternion Kaehler manifold, we find

$$\psi_r \nabla_Z X = \nabla_Z \psi_r X + h(Z, \psi_r X) - \psi_r(X, Z) \quad \text{for } X \in D, \ Z \in D^{\perp}.$$
(3.10)

The above equation yields

$$g(\psi_r \nabla_Z X, \psi_r W) = g(\nabla_Z \psi_r X, \psi_r W) + g(h(Z, \psi_r X), \psi_r W),$$

$$g(\nabla_Z X, W) = g(h(Z, \psi_r X), \psi_r W) \quad \text{for } X \in D, \ W, Z \in D^{\perp}.$$
(3.11)

Since *M* is a QR-product the leaf M^{\perp} of D^{\perp} is totally geodesic. Thus using Lemma 2.4 we get (a).

Next for $X \in D$, $Z \in D^{\perp}$ we have

$$\bar{\nabla}_X \psi_r Z = \psi_r \bar{\nabla}_X Z \tag{3.12}$$

which, by virtue of (2.2), gives

$$\psi_r \nabla_X Z = -A_{\psi_r Z} X + \nabla_X^\perp \psi_r Z - \psi_r h(X, Z). \tag{3.13}$$

Taking inner products with $Y \in D$ and using the fact that the leaf M^{\perp} of D^{\perp} is totally geodesic, we find

$$g(\psi_r \nabla_X Z, Y) = -g(A_{\psi_r Z} X, Y) = -g(h(X, Y), \psi_r Z) \quad \text{for } X, Y \in D, \ Z \in D^{\perp}.$$
(3.14)

On the other hand, for $X \in D$ and $W, Z \in D^{\perp}$ and the use of Lemma 2.5, (3.13) gives

$$g(\psi_r \nabla_X Z, W) = -g(\psi_r h(X, Z), W) - g(h(X, W), \psi_r Z)$$

= $g(A_{\psi_r W} Z, X) - g(A_{\psi_r Z} W, X)$
= $g(A_{\psi_r W} Z - A_{\psi_r Z} W, X)$
= 0. (3.15)

Thus from (3.14) and (3.15) we see that $\psi_r \nabla_X Z$ is normal to M. So $\nabla_X Z \in D^{\perp}$ for all $X \in D$ and $Z \in D^{\perp}$.

THEOREM 3.5. Let M be a quaternion CR-submanifold of a quaternion Kaehler manifold \overline{M} . Then M is a QR-product if and only if P_r is parallel.

PROOF. Suppose P_r is parallel, then from (3.2), we have

$$A_{Q_rY}X + t_r h(X,Y) = 0 \quad \forall X,Y \in TM.$$

$$(3.16)$$

If $Y \in D$, then $Q_r Y = 0$. Hence (3.16) is reduced to $t_r h(X, Y) = 0$ for all $X \in TM, Y \in D$. Therefore by virtue of [1, Lemma 5.1, page 403], we get $h(D, D^{\perp}) = 0$ or h(D, D) = 0. So the quaternion distribution D is integrable by virtue of Lemma 2.3. Thus it follows that each leaf M^{\perp} is totally geodesic in \overline{M} and in particular M^{\perp} is totally geodesic in M by virtue of Lemma 2.2. Again from (3.2), we have

$$A_{\psi_r W} Z + t_r h(W, Z) = 0 \quad \forall W, Z \in D^{\perp}.$$

$$(3.17)$$

So for $X \in D$, we have

$$g(A_{\psi_r W}Z, X) + g(t_r h(W, Z), X) = 0$$
(3.18)

which means

$$g(h(X,Z),Q_rW) - g(h(W,Z),Q_rX) = 0, \qquad (3.19)$$

that is,

$$g(h(X,Z),Q_rW) = 0$$
 (3.20)

or

$$g(h(D,D^{\perp}),Q_{r}D^{\perp}) = 0.$$
 (3.21)

Thus using Lemma 2.4, it follows that the leaf M^{\perp} of D^{\perp} is totally geodesic. Hence M is a QR-product.

Conversely, let *M* be a QR-product. First we show that $\nabla_U X \in D$ for any $X \in D$ and *U* tangent to *M*. Since *M* is a QR-product, that is, locally a Riemannian product of a quaternion submanifold and a totally real submanifold, it is sufficient to show that $\nabla_Z X \in D$ for any $X \in D$, $Z \in D^{\perp}$ but this was proved in Lemma 3.4(a). Using this fact, we have

$$\nabla_U \psi_r X + h(U, \psi_r X) = \psi_r \nabla_U X + \psi_r h(X, U)$$
 for any $X \in D$, U tangent to M, (3.22)

which yields

$$\psi_r h(U,X) = h(U,\psi_r X), \quad \nabla_U \psi_r X = \psi_r \nabla_U X.$$
 (3.23)

Thus $(\bar{\nabla}_U P_r)(X) = \nabla_U P_r X - P_r \nabla_U X = 0$, for any $X \in D$, and U tangent to M.

Similarly, by using Lemma 3.4(b), it follows that $\nabla_U Z \in D^{\perp}$ for any $Z \in D^{\perp}$, and U tangent to M. But since M is a QR-product, it follows that $\nabla_X Z \in D^{\perp}$ for $U = X \in D$ and $Z \in D^{\perp}$.

Thus, we have $(\bar{\nabla}_U P_r)(Z) = 0$ for any $Z \in D^{\perp}$, U tangent to M. Therefore $\bar{\nabla} P_r = 0$, which completes the proof.

COROLLARY 3.6. Let M be a QR-product of a quaternion Kaehler manifold \overline{M} . Then M is mixed totally geodesic, that is, $h(D,D^{\perp}) = 0$.

REMARK 3.7. If *M* is a proper QR-product of a quaternion space form $\overline{M}(c)$, then the ambient manifold \overline{M} is necessarily a space of zero curvature. Hence there does not exist a proper QR-product of a quaternion space form $\overline{M}(c)$ with $c \neq 0$.

4. Canonical foliations and index of a quaternion CR-submanifold

DEFINITION 4.1 (see [8]). Let *D* be a distribution on the Riemannian manifold *M*, D^{\perp} the orthogonal distribution, $\Pi^{\perp} : TM \to D^{\perp}$ the projection and ∇ the Levi-Civita

connection. Then the second fundamental form of the plane field *D*, is defined by

$$S_{\nabla}(X,Y) = \frac{1}{2}\Pi^{\perp} (\nabla_X Y + \nabla_Y X).$$
(4.1)

The distribution *D* is called a totally geodesic plane field, if the geodesics tangent to it at one point remain tangent for all their length.

Thus we say that the distribution *D* is a totally geodesic plane field if

$$S_{\nabla}(X,Y) = \Pi^{\perp} (\nabla_X Y + \nabla_Y X) = 0 \quad \forall X,Y \in D.$$

$$(4.2)$$

A geometric definition of this notion is given in [9].

A foliation f on a Riemannian manifold M is called a Riemannian foliation, if the Bott connection $\mathring{\nabla}_X Y = \Pi[X, Y]$ in the normal bundle of f preserves the Riemannian metric. Also f is a Riemannian foliation if and only if the second fundamental form S_{∇} of the plane field D vanishes (see [9, page 157]).

THEOREM 4.2. Let M be a quaternion CR-submanifold of a quaternion Kaehler manifold \tilde{M} such that $D_{\tilde{M}}^{\perp}$ is a totally real foliation of M. Then the Bott connection of $D_{\tilde{M}}^{\perp}$ preserves the volume form ψ of D_M , that is, $\mathring{\nabla}_Z \psi = 0$, for all $Z \in D_{\tilde{M}}^{\perp}$.

PROOF. For any $X, Y \in D$ and $Z \in D^{\perp}$, we have

$$g((\mathring{\nabla}_{Z}\psi_{r})(X),Y) = g(\mathring{\nabla}_{Z}\psi_{r}X,Y) - g(\psi_{r}\mathring{\nabla}_{Z}X,Y)$$

$$= g([Z,\psi_{r}X],Y) + g([Z,X],\psi_{r}Y)$$

$$= g(\bar{\nabla}_{Z}\psi_{r}X,Y) - g(\bar{\nabla}_{\psi_{r}X}Z,Y)$$

$$+ g(\bar{\nabla}_{Z}X,\psi_{r}Y) - g(\bar{\nabla}_{X}Z,\psi_{r}Y)$$

$$= g(X,\psi_{r}\bar{\nabla}_{Z}Y) + g(\bar{\nabla}_{\psi_{r}X}Y,Z)$$

$$- g(X,\bar{\nabla}_{Z}\psi_{r}Y) + g(\bar{\nabla}_{X}\psi_{r}Y,Z)$$

$$= g(\bar{\nabla}_{\psi_{r}X}Y,Z) + g(\bar{\nabla}_{X}\psi_{r}Y,Z)$$

$$= g(\bar{\nabla}_{\psi_{r}X}Y,Z) + g(\bar{\nabla}_{X}\psi_{r}Z,Y)$$

$$= g(\bar{\nabla}_{\psi_{r}X}Y,Z) - g(A_{\psi_{r}Z}X,Y).$$
(4.3)

Also,

$$g(\nabla_X X, Z) = g(\bar{\nabla}_X X, Z)$$

$$= g(\psi_r \bar{\nabla}_X X, \psi_r Z)$$

$$= g(\bar{\nabla}_X \psi_r X, \psi_r Z)$$

$$= -g(\bar{\nabla}_X \psi_r Z, \psi_r X)$$

$$= g(A_{\psi_r Z} X, \psi_r X).$$
(4.4)

If D_M^{\perp} is Riemannian then D_M is a totally geodesic plane field and so (4.4) gives $g(A_{\psi_r Z}X, \psi_r X) = 0.$

Therefore $g(A_{\psi_r Z}(X+Y), \psi_r(X+Y)) = 0$, and hence we obtain

$$g(A_{\psi_r Z}X,\psi_r Y) + g(A_{\psi_r Z}Y,\psi_r X) = 0.$$

$$(4.5)$$

Thus using (4.3) and (4.5), we have

$$g((\tilde{\nabla}_{Z}\psi_{r})(X),\psi_{r}Y) = g(\bar{\nabla}_{\psi_{r}X}\psi_{r}Y,Z) - g(A_{\psi_{r}Z}X,\psi_{r}Y)$$
$$= g(\bar{\nabla}_{\psi_{r}X}\psi_{r}Y,Z) + g(A_{\psi_{r}Z}Y,\psi_{r}X)$$
$$= 0.$$
(4.6)

Moreover, it is known that D_M is a minimal distribution [2], which implies that

$$(d\psi)(Z, X_1, \dots, X_{4n}) = 0 \text{ for } Z \in D^{\perp}, X_1, \dots, X_{4n} \in D.$$
 (4.7)

Hence

$$(\mathring{\nabla}_{Z}\psi)(X_{1},\ldots,X_{4n}) = Z\psi(X_{1},\ldots,X_{4n}) - \sum_{a=1}^{4n} \psi(X_{1},\ldots,\Pi[Z,X_{a}],\ldots,X_{4n})$$

= $(d\psi)(Z,X_{1},\ldots,X_{4n}) = 0,$ (4.8)

which completes the proof.

Now, let *M* be a compact totally geodesic quaternion CR-submanifold of a quaternion Kaehler manifold \overline{M} . Let *N* be a normal vector field and denote by $\nu''(N)$ the second normal variation of *M* induced by *N*. Then we have (see [6, Chapter 1]),

$$\nu^{\prime\prime}(N) = \int_{M} \left\{ \left| \left| \nabla^{\perp} N \right| \right|^{2} - \sum_{i=1}^{n} \bar{R}(X_{i}, N, N, X_{i}) - \left| \left| A_{N} \right| \right|^{2} \right\} dV,$$
(4.9)

where $N \in T^{\perp}M$, dV denotes the volume element of M and $\{X_i\}$ is an orthonormal frame in TM. Applying the Stokes theorem to the integral of the first term of (4.9), we have

$$I(N,N) =: \nu''(N) = \int_{M} g(LN,N) * 1, \qquad (4.10)$$

where *L* is a selfadjoint, strongly elliptic linear differential operator of the second order. The differential operator *L* is called the Jacobi operator of *M* in \overline{M} and has discrete eigenvalues $\lambda_1 < \lambda_2 < \cdots$. We put $E_{\lambda} = \{N \in T^{\perp}M : L(N) = \lambda N\}$. The dimension of the space E_{λ} , dim (E_{λ}) , is called the index of *M* in \overline{M} . For two normal vector fields N_1, N_2 to a minimal submanifold *M* in \overline{M} , their index form is defined by

$$I(N_1, N_2) = \int_M g(LN_1, N_2) * 1.$$
(4.11)

It is easy to see that the index form *I* is a symmetric bilinear form; $I : T^{\perp}M \times T^{\perp}M \rightarrow R$. Now we prove the following theorem.

THEOREM 4.3. Let M be a compact n-dimensional minimal quaternion CR-submanifold of a quaternion Kaehler manifold \overline{M} . If M has nonpositive holomorphic bisectional curvature, then the index form satisfies

$$I(N,N) + I(\psi_r N, \psi_r N) \ge 0 \quad \text{for any } N \in \mu.$$

$$(4.12)$$

34

PROOF. By using the Weingarten equation we have that for all $X, Y \in D^{\perp}$,

$$g(\nabla_X^{\perp}N, \psi_r Y) = g(\bar{\nabla}_X N, \psi_r Y)$$

= $-g(\psi_r \bar{\nabla}_X N, Y)$
= $-g(\bar{\nabla}_X \psi_r N, Y)$
= $g(A_{\psi_r N} X, Y)$ (4.13)

which implies that

$$||\nabla^{\perp}N||^{2} \ge ||A_{\psi_{r}N}||^{2}, \qquad ||\nabla^{\perp}\psi_{r}N||^{2} \ge ||A_{N}||^{2} \quad \text{for any } N \in \mu,$$
 (4.14)

where μ is defined in (2.4). Thus by using (4.9), (4.10), (4.13), and (4.14) we get

$$I(N,N) + I(\psi_r N, \psi_r N) \ge -\int_M \sum_{i=1}^n \left\{ \bar{R}(N, e_i, e_i, N) + \bar{R}(\psi_r N, e_i, e_i, \psi_r N) \right\} * 1$$
(4.15)

from which the proof follows, since *M* has nonpositive holomorphic bisectional curvature. \Box

Finally, we prove a classification theorem for the totally umbilical quaternion CR-submanifolds of a quaternion Kaehler manifold.

THEOREM 4.4. Let M be a compact totally umbilical quaternion CR-submanifold of a quaternion Kaehler manifold \overline{M} . Then

- (a) *M* is a totally geodesic submanifold, or,
- (b) *M* is locally the Riemannian product of a quaternion submanifold and a totally real submanifold, or,
- (c) *M* is a totally real submanifold, or,
- (d) the totally real distribution is one dimensional, that is, $\dim D^{\perp} = 1$,
- (e) $\nabla_X^{\perp} H \in \mu$, for $X \in D$.

PROOF. We take $X, W \in D^{\perp}$ and using (2.6) with the fact that \overline{M} is a quaternion Kaehler manifold, we have

$$\psi_r \nabla_X W + g(X, W) \psi_r H = -A_{\psi_r W} X + \nabla_X^{\perp} \psi_r W.$$
(4.16)

Taking inner product with *X* we get

$$g(H,\psi_r W) \|X\|^2 = g(X,W)g(H,\psi_r X).$$
(4.17)

Exchanging *X* and *W* in (4.17) we have

$$g(H, \psi_r X) \|W\|^2 = g(X, W)g(H, \psi_r W).$$
(4.18)

This together with (4.17) gives

$$g(H,\psi_r W) = \frac{g(X,W)^2}{\|X\|^2 \|W\|^2} g(H,\psi_r W).$$
(4.19)

The possible solutions of (4.19) are

- (i) H = 0,
- (ii) $H \perp \psi_r W$,
- (iii) $X \parallel W$.

Suppose that condition (i) holds, that is, H = 0. This implies that M is totally geodesic which proves (a). Combining (ii) with a result in [1, page 407] we get (b) of the theorem. Now from (2.7) we have

$$O = \bar{R}(IX, JX, KX, N)$$

= $\bar{R}(KX, N, IX, JX)$
= $-\bar{R}(KX, N, X, KX)$ (4.20)
= $-\bar{R}(X, KX, KX, N)$
= $-g(\nabla_X^{\perp}H, N) ||X||^2$

which implies that

$$\nabla_X^{\perp} H \in \mu \quad \forall X \in D \tag{4.21}$$

proving (e). Next we have

$$\bar{\nabla}_X \psi_r H = \psi_r \bar{\nabla}_X H \quad \text{for } X \in D \tag{4.22}$$

which, by (2.6) gives

$$\nabla_X^{\perp} \psi_r H = -g(H,H)\psi_r X + \psi_r \nabla_X^{\perp} H.$$
(4.23)

Since $\nabla_X^{\perp} H \in \mu$, from (4.23) we have $\psi_r X = 0$ for all $X \in D$. Hence $D = \{0\}$ which proves (c). Finally if (iii) is valid then dim $D^{\perp} = 1$, which completes the proof.

ACKNOWLEDGEMENTS. The authors would like to acknowledge the financial support of the Research Committee, University of Patras, Programme Karatheodori (# 2461), and of the Greek State Scholarships Foundation (I.K.Y).

REFERENCES

- M. Barros, B. Chen, and F. Urbano, *Quaternion CR-submanifolds of quaternion manifolds*, Kodai Math. J. 4 (1981), no. 3, 399-417. MR 83e:53055. Zbl 481.53046.
- M. Barros and F. Urbano, *Topology of quaternion CR-submanifolds*, Boll. Un. Mat. Ital. A (6) 2 (1983), no. 1, 103–110. MR 84h:53071. Zbl 518.53054.
- [3] A. Bejancu, CR-submanifolds of a Kaehler manifold. I, Proc. Amer. Math. Soc. 69 (1978), no. 1, 135–142. MR 57#7486. Zbl 368.53040.
- [4] _____, *Geometry of CR-submanifolds*, Mathematics and its Applications (East European Series), vol. 23, D. Reidel, Dordrecht, 1986. MR 87k:53126. Zbl 605.53001.
- [5] B. Chen, *CR-submanifolds of a Kaehler manifold. I*, J. Differential Geom. 16 (1981), no. 2, 305–322. MR 84e:53062a. Zbl 431.53048.
- [6] _____, Geometry of Submanifolds and its Applications, Science University of Tokyo, Tokyo, 1981. MR 82m:53051. Zbl 474.53050.
- S. Ishihara, Quaternion Kaehlerian manifolds, J. Differential Geom. 9 (1974), 483–500. Zbl 297.53014.
- [8] B. L. Reinhart, *The second fundamental form of a plane field*, J. Differential Geom. 12 (1977), no. 4, 619–627. MR 80a:57013. Zbl 379.53018.

36

[9] _____, Differential Geometry of Foliations. The Fundamental Integrability Problem, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 99, Springer-Verlag, Berlin, 1983. MR 85i:53038. Zbl 506.53018.

BASSIL J. PAPANTONIOU: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PATRAS, 26100, PATRAS, GREECE

E-mail address: bipapant@math.upatras.gr

M. HASAN SHAHID: DEPARTMENT OF MATHEMATICS, FACULTY OF NATURAL SCIENCE, JAMIA MILLIA ISLAMIA, NEW DELHI, INDIA

E-mail address: hasan.mt@jmi.ernet.in