QUATERNION CR-SUBMANIFOLDS OF A QUATERNION KAEHLER MANIFOLD

BASSIL J. PAPANTONIOU and M. HASAN SHAHID

(Received 7 August 2000)

Abstract

We study the quaternion CR-submanifolds of a quaternion Kaehler manifold. More specifically we study the properties of the canonical structures and the geometry of the canonical foliations by using the Bott connection and the index of a quaternion CR-submanifold.

2000 Mathematics Subject Classification. 53C20, 53C21, 53C25.

1. Introduction. The notion of a CR-submanifold of a Kaehler manifold was introduced by Bejancu [3]. Subsequently a number of authors studied these submanifolds (see [4] for details). In [1], Barros et al. studied quaternion CR-submanifolds of a quaternion Kaehler manifold and obtained many interesting results. The aim of this paper is to continue the study of quaternion CR-submanifolds of a quaternion Kaehler manifold. The paper is organized as follows: in Section 2 we collect some basic formulas and results for later use and in Section 3 we study some properties of canonical structures, particularly its parallelism and QR-product. In Section 4 we study the geometry of the canonical foliations using the Bott connection and the index of a quaternion CRsubmanifold. Finally, as an extension of the work of Chen [5] for the Kaehler manifolds we give a complete classification of the totally umbilical quaternion CR-submanifolds of a quaternion Kaehler manifold.
2. Preliminaries. Let \bar{M} be a quaternion Kaehler manifold with metric tensor g and quaternion structure V [7]. We will denote by $\psi_{1}=I, \psi_{2}=J$, and $\psi_{3}=K$ a local basis of almost Hermitian structures for V.

Let X be a unit vector tangent to the quaternion Kaehler manifold \bar{M}. Then the vectors $X, I X, J X, K X$ form an orthonormal frame. Let $Q(X)$ be the quaternion section determined by X. Any plane in a quaternion section is called a quaternion plane and the sectional curvature of a quaternion plane is called a quaternion sectional curvature. A quaternion Kaehler manifold is called a quaternion space form, which is denoted by $\bar{M}(c)$, if its quaternion sectional curvature is equal to a constant c at any point of the manifold. The curvature tensor \bar{R} of $\bar{M}(c)$ is given by, [7],

$$
\begin{align*}
\bar{R}(X, Y) Z=\frac{c}{4}[& g(Y, Z) X-g(X, Z) Y+\sum_{r=1}^{3} g\left(\psi_{r} Y, Z\right) \psi_{r} X \tag{2.1}\\
& \left.-g\left(\psi_{r} X, Z\right) \psi_{r} Y+2 g\left(X, \psi_{r} Y\right) \psi_{r} Z\right]
\end{align*}
$$

where $\psi_{1}=I, \psi_{2}=J, \psi_{3}=K$.

Let M be a Riemannian manifold isometrically immersed in a quaternion Kaehler manifold \bar{M}. We also denote by g the metric tensor induced on M. If ∇ is the covariant differentiation induced on M, the Gauss and Weingarten formulas are given by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \quad \bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\frac{1}{X}} N, \tag{2.2}
\end{equation*}
$$

respectively, for any X, Y tangent to M and N normal to M. Here h and ∇^{\perp} are the second fundamental form associated with M, and the connection of the normal bundle, respectively. The second fundamental tensor A_{N} is related to h by

$$
\begin{equation*}
g\left(A_{N} X, Y\right)=g(h(X, Y), N) . \tag{2.3}
\end{equation*}
$$

A differentiable distribution D_{x} on M such that $\psi_{r}\left(D_{x}\right) \subseteq D_{x}$ for all $r=1,2,3$ is called a quaternion distribution. In other words, D_{x} is a quaternion distribution if D_{x} is contained into itself by its quaternion structure.

It is known [1] that a submanifold M of a quaternion Kaehler manifold \bar{M} is called a quaternion CR-submanifold if it admits a quaternion distribution D_{x} such that its orthogonal complementary distribution D_{χ}^{\perp}, is totally real, that is, $\psi_{r}\left(D_{\chi}^{\perp}\right) \subseteq T_{\chi}^{\perp} M$ for all $x \in M$ and $r=1,2,3$, where $T_{x}^{\perp} M$ denotes the normal space of M at x.

A submanifold M of a quaternion Kaehler manifold \bar{M} is called a quaternion (resp., totally real) submanifold if $\operatorname{dim} D_{x}^{\perp}=0$ (resp., $\operatorname{dim} D_{x}=0$). A quaternion CR-submanifold is said to be proper if it is neither quaternion nor totally real.

We denote by μ the subbundle of the normal bundle $T^{\perp} M$ which is the orthogonal complement of $\psi_{1} D^{\perp} \oplus \psi_{2} D^{\perp} \oplus \psi_{3} D^{\perp}$, that is,

$$
\begin{equation*}
T^{\perp} M=\psi_{1} D^{\perp} \oplus \psi_{2} D^{\perp} \oplus \psi_{3} D^{\perp} \oplus \mu ; \quad g\left(\mu, \psi_{r} D^{\perp}\right)=0 \tag{2.4}
\end{equation*}
$$

The mean curvature vector H of M in \bar{M} is defined by $H=(1 / n)$ trace h, where n denotes the dimension of M. If we have

$$
\begin{equation*}
h(X, Y)=g(X, Y) H \tag{2.5}
\end{equation*}
$$

for any $X, Y \in T M$, then M is called a totally umbilical submanifold. In particular, if $h(X, Y)=0$ identically for all $X, Y \in T M, M$ is called a totally geodesic submanifold. Finally M is called mixed totally geodesic if $h(X, Y)=0$ for $X \in D, Y \in D^{\perp}$. For totally umbilical CR-submanifolds, equations (2.2) take the forms

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+g(X, Y) H, \quad \bar{\nabla}_{X} N=-g(H, N) X+\nabla_{X}^{1} N . \tag{2.6}
\end{equation*}
$$

The Codazzi equation for a totally umbilical CR-submanifold M, is given by

$$
\begin{equation*}
\bar{R}(X, Y ; Z, N)=g(Y, Z) g\left(\nabla_{X}^{\frac{1}{X}} H, N\right)-g(X, Z) g\left(\nabla_{Y}^{\frac{1}{Y}} H, N\right) . \tag{2.7}
\end{equation*}
$$

Definition 2.1 (see [1]). Let M be a quaternion CR-submanifold of a quaternion Kaehler manifold \bar{M}. Then M is called a QR-product, if M is locally the Riemannian product of a quaternion submanifold and a totally real submanifold of \bar{M}.

For any $X \in T M$ and $N \in T^{\perp} M$, we put

$$
\begin{align*}
& \psi_{r} X=P_{r} X+Q_{r} X \tag{2.8}\\
& \psi_{r} N=t_{r} N+f_{r} N \tag{2.9}
\end{align*}
$$

where $P_{r} X, t_{r} N$ (resp., $Q_{r} X, f_{r} N$) are the tangential (resp., the normal) components of $\psi_{r} X$ and $\psi_{r} N$ for $r=1,2,3$.

For the second fundamental form h, the covariant differentiation is defined by

$$
\begin{equation*}
\left(\bar{\nabla}_{X} h\right)(Y, Z)=\nabla_{X}^{\perp} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right) \tag{2.10}
\end{equation*}
$$

and the Gauss-Codazzi equations are given by

$$
\begin{gather*}
R(X, Y, Z, W)=\bar{R}(X, Y, Z, W)+g(h(X, W), h(Y, Z))-g(h(X, Z), h(Y, W)), \tag{2.11}\\
{[R(X, Y) Z]^{\perp}=\left(\bar{\nabla}_{X} h\right)(Y, Z)-\left(\bar{\nabla}_{Y} h\right)(X, Z), \quad \forall X, Y, Z, W \text { tangent to } \bar{M}} \tag{2.12}
\end{gather*}
$$

where R is the curvature tensor associated with ∇ and \perp in (2.12) denotes the normal component.

We collect from Barros et al. [1] the following results which we shall need in the sequel.

LEMMA 2.2. Every quaternion submanifold of a quaternion Kaehler manifold is totally geodesic.

LEMMA 2.3. The quaternion distribution D of a quaternion $C R$-submanifold M in a quaternion Kaehler manifold \bar{M} is integrable if and only if $h(D, D)=0$.

LEMMA 2.4. Let M be a quaternion CR-submanifold of a quaternion Kaehler manifold \bar{M}. Then the leaf M^{\perp} of D^{\perp} is totally geodesic in M if and only if $g\left(h\left(D, D^{\perp}\right), \psi_{r} D^{\perp}\right)=0$, $r=1,2,3$.

LEMMA 2.5. Let M be a quaternion CR-submanifold of a quaternion Kaehler manifold \bar{M}. Then

$$
\begin{equation*}
A_{\psi_{r} W} Z=A_{\psi_{r} Z} W \quad \text { for any } W, Z \in D^{\perp} \tag{2.13}
\end{equation*}
$$

3. Canonical parallel structures and QR-product. Let P_{r}, f_{r}, Q_{r}, and t_{r} be the endomorphisms and the vector-bundle-valued 1 -forms defined in (2.8), respectively. We define the covariant differentiation of P_{r}, Q_{r}, t_{r}, and f_{r} as follows:

$$
\begin{array}{ll}
\left(\bar{\nabla}_{X} P_{r}\right)(Y)=\nabla_{X}\left(P_{r} Y\right)-P_{r} \nabla_{X} Y, & \\
\left(\bar{\nabla}_{X} Q_{r}\right)(Y)=\nabla_{X}^{\perp}\left(Q_{r} Y\right)-Q_{r} \nabla_{X} Y, \tag{3.1}\\
\left(\bar{\nabla}_{X} t_{r}\right)(N)=\nabla_{X}\left(t_{r} N\right)-t_{r} \nabla_{X}^{\perp} N, & \\
\left(\bar{\nabla}_{X} f_{r}\right)(N)=\nabla_{X}^{\perp}\left(f_{r} N\right)-f_{r} \nabla_{X}^{\perp} N,
\end{array}
$$

for any vector fields $X, Y \in T M$ and $N \in T^{\perp} M$.
The endomorphisms P_{r} (resp., the endomorphisms f_{r}, the 1-forms Q_{r} and t_{r}) are parallel if $\bar{\nabla} P_{r}=0\left(\right.$ resp., $\bar{\nabla} f_{r}=0, \bar{\nabla} Q_{r}=0$, and $\left.\bar{\nabla} t_{r}=0\right)$.

Now using the definition of a quaternion Kaehler manifold and taking account of (2.2), (2.8), we can easily obtain the following:

$$
\begin{align*}
\left(\bar{\nabla}_{X} P_{r}\right)(Y) & =A_{Q_{r} Y} X+t_{r} h(X, Y), \tag{3.2}\\
\left(\bar{\nabla}_{X} Q_{r}\right)(Y) & =f_{r} h(X, Y)-h\left(X, P_{r} Y\right), \tag{3.3}\\
\left(\bar{\nabla}_{X} t_{r}\right)(N) & =A_{f_{r} N} X-P_{r} A_{N} X, \tag{3.4}\\
\left(\bar{\nabla}_{X} f_{r}\right)(N) & =-h\left(X, t_{r} N\right), \tag{3.5}
\end{align*}
$$

for any $X, Y \in T M$ and $N \in T^{\perp} M$.
Remark 3.1. Since the second fundamental form is symmetric, it follows from (3.2) that P_{r} is parallel if and only if

$$
\begin{equation*}
A_{\psi_{r} U} V=A_{\psi_{r} V} U, \quad \forall U, V \in T M \tag{3.6}
\end{equation*}
$$

Now if we set $V=X \in D$ in (3.6), we find that $A_{\psi_{r} U} X=0$ for all $U \in T M$, which is equivalent to $g\left(h(X, Y), \psi_{r} U\right)=0$ for any $X \in D$, and $Y, U \in T M$. In particular $g\left(h(X, Y), \psi_{r} Z\right)=0$ for any $X \in D$ and $Y, Z \in D^{\perp}$.

Thus, using Lemma 2.4 we obtain the following lemma.
Lemma 3.2. Let M be a quaternion CR-submanifold of a quaternion Kaehler manifold \bar{M}. If P_{r} is parallel then the leaf M^{\perp} of D^{\perp} is totally geodesic in M.

Now we state and prove the following proposition.
Proposition 3.3. Let M be a quaternion CR-submanifold of a quaternion Kaehler manifold \bar{M}. Then Q_{r} is parallel if and only if t_{r} is parallel.

Proof. Suppose t_{r} is parallel. Then from (3.4) we have

$$
\begin{equation*}
A_{f_{r} N} U=P_{r} A_{N} U, \quad \text { for any } U \in T M \tag{3.7}
\end{equation*}
$$

Thus for any vector fields $U, V \in T M$ and $N \in T^{\perp} M$, we get

$$
\begin{equation*}
g\left(A_{f_{r} N} U, V\right)=g\left(P_{r} A_{N} U, V\right) \tag{3.8}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
f_{r} h(U, V)-h\left(U, P_{r} V\right)=0 \tag{3.9}
\end{equation*}
$$

that is, $\bar{\nabla} Q_{r}=0$.
The proof of the converse statement is similar.
Lemma 3.4. Let M be a $Q R$-product of a quaternion Kaehler manifold \bar{M}. Then
(a) $\nabla_{Z} X \in D$,
(b) $\nabla_{X} Z \in D^{\perp}$,
for all $X \in D$ and $Z \in D^{\perp}$.

Proof. By using (2.2) and the definition of a quaternion Kaehler manifold, we find

$$
\begin{equation*}
\psi_{r} \nabla_{Z} X=\nabla_{Z} \psi_{r} X+h\left(Z, \psi_{r} X\right)-\psi_{r}(X, Z) \quad \text { for } X \in D, Z \in D^{\perp} \tag{3.10}
\end{equation*}
$$

The above equation yields

$$
\begin{align*}
g\left(\psi_{r} \nabla_{Z} X, \psi_{r} W\right) & =g\left(\nabla_{Z} \psi_{r} X, \psi_{r} W\right)+g\left(h\left(Z, \psi_{r} X\right), \psi_{r} W\right), \\
g\left(\nabla_{Z} X, W\right) & =g\left(h\left(Z, \psi_{r} X\right), \psi_{r} W\right) \quad \text { for } X \in D, W, Z \in D^{\perp} . \tag{3.11}
\end{align*}
$$

Since M is a QR-product the leaf M^{\perp} of D^{\perp} is totally geodesic. Thus using Lemma 2.4 we get (a).

Next for $X \in D, Z \in D^{\perp}$ we have

$$
\begin{equation*}
\bar{\nabla}_{X} \psi_{r} Z=\psi_{r} \bar{\nabla}_{X} Z \tag{3.12}
\end{equation*}
$$

which, by virtue of (2.2), gives

$$
\begin{equation*}
\psi_{r} \nabla_{X} Z=-A_{\psi_{r} Z} X+\nabla_{X}^{\frac{1}{X}} \psi_{r} Z-\psi_{r} h(X, Z) . \tag{3.13}
\end{equation*}
$$

Taking inner products with $Y \in D$ and using the fact that the leaf M^{\perp} of D^{\perp} is totally geodesic, we find

$$
\begin{equation*}
g\left(\psi_{r} \nabla_{X} Z, Y\right)=-g\left(A_{\psi_{r} Z} X, Y\right)=-g\left(h(X, Y), \psi_{r} Z\right) \quad \text { for } X, Y \in D, Z \in D^{\perp} . \tag{3.14}
\end{equation*}
$$

On the other hand, for $X \in D$ and $W, Z \in D^{\perp}$ and the use of Lemma 2.5, (3.13) gives

$$
\begin{align*}
g\left(\psi_{r} \nabla_{X} Z, W\right) & =-g\left(\psi_{r} h(X, Z), W\right)-g\left(h(X, W), \psi_{r} Z\right) \\
& =g\left(A_{\psi_{r} W} Z, X\right)-g\left(A_{\psi_{r} Z} W, X\right) \tag{3.15}\\
& =g\left(A_{\psi_{r} W} Z-A_{\psi_{r} Z} W, X\right) \\
& =0 .
\end{align*}
$$

Thus from (3.14) and (3.15) we see that $\psi_{r} \nabla_{X} Z$ is normal to M. So $\nabla_{X} Z \in D^{\perp}$ for all $X \in D$ and $Z \in D^{\perp}$.

Theorem 3.5. Let M be a quaternion CR-submanifold of a quaternion Kaehler manifold \bar{M}. Then M is a $Q R$-product if and only if P_{r} is parallel.

Proof. Suppose P_{r} is parallel, then from (3.2), we have

$$
\begin{equation*}
A_{Q_{r} Y} X+t_{r} h(X, Y)=0 \quad \forall X, Y \in T M . \tag{3.16}
\end{equation*}
$$

If $Y \in D$, then $Q_{r} Y=0$. Hence (3.16) is reduced to $t_{r} h(X, Y)=0$ for all $X \in T M, Y \in D$. Therefore by virtue of [1, Lemma 5.1, page 403], we get $h\left(D, D^{\perp}\right)=0$ or $h(D, D)=0$. So the quaternion distribution D is integrable by virtue of Lemma 2.3. Thus it follows that each leaf M^{\perp} is totally geodesic in \bar{M} and in particular M^{\perp} is totally geodesic in M by virtue of Lemma 2.2.

Again from (3.2), we have

$$
\begin{equation*}
A_{\psi_{r} W} Z+t_{r} h(W, Z)=0 \quad \forall W, Z \in D^{\perp} \tag{3.17}
\end{equation*}
$$

So for $X \in D$, we have

$$
\begin{equation*}
g\left(A_{\psi_{r} W} Z, X\right)+g\left(t_{r} h(W, Z), X\right)=0 \tag{3.18}
\end{equation*}
$$

which means

$$
\begin{equation*}
g\left(h(X, Z), Q_{r} W\right)-g\left(h(W, Z), Q_{r} X\right)=0, \tag{3.19}
\end{equation*}
$$

that is,

$$
\begin{equation*}
g\left(h(X, Z), Q_{r} W\right)=0 \tag{3.20}
\end{equation*}
$$

or

$$
\begin{equation*}
g\left(h\left(D, D^{\perp}\right), Q_{r} D^{\perp}\right)=0 . \tag{3.21}
\end{equation*}
$$

Thus using Lemma 2.4, it follows that the leaf M^{\perp} of D^{\perp} is totally geodesic. Hence M is a QR-product.

Conversely, let M be a QR-product. First we show that $\nabla_{U} X \in D$ for any $X \in D$ and U tangent to M. Since M is a QR-product, that is, locally a Riemannian product of a quaternion submanifold and a totally real submanifold, it is sufficient to show that $\nabla_{Z} X \in D$ for any $X \in D, Z \in D^{\perp}$ but this was proved in Lemma 3.4(a). Using this fact, we have

$$
\nabla_{U} \psi_{r} X+h\left(U, \psi_{r} X\right)=\psi_{r} \nabla_{U} X+\psi_{r} h(X, U) \quad \text { for any } X \in D, U \text { tangent to } M \text {, (3.22) }
$$

which yields

$$
\begin{equation*}
\psi_{r} h(U, X)=h\left(U, \psi_{r} X\right), \quad \nabla_{U} \psi_{r} X=\psi_{r} \nabla_{U} X \tag{3.23}
\end{equation*}
$$

Thus $\left(\bar{\nabla}_{U} P_{r}\right)(X)=\nabla_{U} P_{r} X-P_{r} \nabla_{U} X=0$, for any $X \in D$, and U tangent to M.
Similarly, by using Lemma 3.4(b), it follows that $\nabla_{U} Z \in D^{\perp}$ for any $Z \in D^{\perp}$, and U tangent to M. But since M is a QR-product, it follows that $\nabla_{X} Z \in D^{\perp}$ for $U=X \in D$ and $Z \in D^{\perp}$.
Thus, we have $\left(\bar{\nabla}_{U} P_{r}\right)(Z)=0$ for any $Z \in D^{\perp}, U$ tangent to M. Therefore $\bar{\nabla} P_{r}=0$, which completes the proof.
Corollary 3.6. Let M be a $Q R$-product of a quaternion Kaehler manifold \bar{M}. Then M is mixed totally geodesic, that is, $h\left(D, D^{\perp}\right)=0$.

Remark 3.7. If M is a proper QR -product of a quaternion space form $\bar{M}(c)$, then the ambient manifold \bar{M} is necessarily a space of zero curvature. Hence there does not exist a proper QR-product of a quaternion space form $\bar{M}(c)$ with $c \neq 0$.

4. Canonical foliations and index of a quaternion CR-submanifold

Definition 4.1 (see [8]). Let D be a distribution on the Riemannian manifold M, D^{\perp} the orthogonal distribution, $\Pi^{\perp}: T M \rightarrow D^{\perp}$ the projection and ∇ the Levi-Civita
connection. Then the second fundamental form of the plane field D, is defined by

$$
\begin{equation*}
S_{\nabla}(X, Y)=\frac{1}{2} \Pi^{\perp}\left(\nabla_{X} Y+\nabla_{Y} X\right) \tag{4.1}
\end{equation*}
$$

The distribution D is called a totally geodesic plane field, if the geodesics tangent to it at one point remain tangent for all their length.

Thus we say that the distribution D is a totally geodesic plane field if

$$
\begin{equation*}
S_{\nabla}(X, Y)=\Pi^{\perp}\left(\nabla_{X} Y+\nabla_{Y} X\right)=0 \quad \forall X, Y \in D . \tag{4.2}
\end{equation*}
$$

A geometric definition of this notion is given in [9].
A foliation f on a Riemannian manifold M is called a Riemannian foliation, if the Bott connection $\stackrel{\circ}{\nabla}_{X} Y=\Pi[X, Y]$ in the normal bundle of f preserves the Riemannian metric. Also f is a Riemannian foliation if and only if the second fundamental form S_{∇} of the plane field D vanishes (see [9, page 157]).

Theorem 4.2. Let M be a quaternion CR-submanifold of a quaternion Kaehler manifold \bar{M} such that D_{M}^{\perp} is a totally real foliation of M. Then the Bott connection of D_{M}^{\perp} preserves the volume form ψ of D_{M}, that is, $\nabla_{Z} \psi=0$, for all $Z \in D_{M}^{\perp}$.

Proof. For any $X, Y \in D$ and $Z \in D^{\perp}$, we have

$$
\begin{align*}
g\left(\left(\stackrel{\circ}{\nabla}_{Z} \psi_{r}\right)(X), Y\right)= & g\left(\stackrel{\circ}{\nabla}_{Z} \psi_{r} X, Y\right)-g\left(\psi_{r} \stackrel{\circ}{\nabla}_{Z} X, Y\right) \\
= & g\left(\left[Z, \psi_{r} X\right], Y\right)+g\left([Z, X], \psi_{r} Y\right) \\
= & g\left(\bar{\nabla}_{Z} \psi_{r} X, Y\right)-g\left(\bar{\nabla}_{\psi_{r} X} Z, Y\right) \\
& +g\left(\bar{\nabla}_{Z} X, \psi_{r} Y\right)-g\left(\bar{\nabla}_{X} Z, \psi_{r} Y\right) \\
= & g\left(X, \psi_{r} \bar{\nabla}_{Z} Y\right)+g\left(\bar{\nabla}_{\psi_{r} X} Y, Z\right) \tag{4.3}\\
& -g\left(X, \bar{\nabla}_{Z} \psi_{r} Y\right)+g\left(\bar{\nabla}_{X} \psi_{r} Y, Z\right) \\
= & g\left(\bar{\nabla}_{\psi_{r} X} Y, Z\right)+g\left(\bar{\nabla}_{X} \psi_{r} Y, Z\right) \\
= & g\left(\bar{\nabla}_{\psi_{r} X} Y, Z\right)+g\left(\bar{\nabla}_{X} \psi_{r} Z, Y\right) \\
= & g\left(\bar{\nabla}_{\psi_{r} X} Y, Z\right)-g\left(A_{\psi_{r} Z} X, Y\right) .
\end{align*}
$$

Also,

$$
\begin{align*}
g\left(\nabla_{X} X, Z\right) & =g\left(\bar{\nabla}_{X} X, Z\right) \\
& =g\left(\psi_{r} \bar{\nabla}_{X} X, \psi_{r} Z\right) \\
& =g\left(\bar{\nabla}_{X} \psi_{r} X, \psi_{r} Z\right) \tag{4.4}\\
& =-g\left(\bar{\nabla}_{X} \psi_{r} Z, \psi_{r} X\right) \\
& =g\left(A_{\psi_{r} Z} X, \psi_{r} X\right) .
\end{align*}
$$

If D_{M}^{\perp} is Riemannian then D_{M} is a totally geodesic plane field and so (4.4) gives $g\left(A_{\psi_{r} Z} X, \psi_{r} X\right)=0$.

Therefore $g\left(A_{\psi_{r} Z}(X+Y), \psi_{r}(X+Y)\right)=0$, and hence we obtain

$$
\begin{equation*}
g\left(A_{\psi_{r} Z} X, \psi_{r} Y\right)+g\left(A_{\psi_{r} Z} Y, \psi_{r} X\right)=0 . \tag{4.5}
\end{equation*}
$$

Thus using (4.3) and (4.5), we have

$$
\begin{align*}
g\left(\left(\dot{\nabla}_{Z} \psi_{r}\right)(X), \psi_{r} Y\right) & =g\left(\bar{\nabla}_{\psi_{r} X} \psi_{r} Y, Z\right)-g\left(A_{\psi_{r} Z} X, \psi_{r} Y\right) \\
& =g\left(\bar{\nabla}_{\psi_{r} X} \psi_{r} Y, Z\right)+g\left(A_{\psi_{r} Z} Y, \psi_{r} X\right) \tag{4.6}\\
& =0 .
\end{align*}
$$

Moreover, it is known that D_{M} is a minimal distribution [2], which implies that

$$
\begin{equation*}
(d \psi)\left(Z, X_{1}, \ldots, X_{4 n}\right)=0 \text { for } Z \in D^{\perp}, X_{1}, \ldots, X_{4 n} \in D \tag{4.7}
\end{equation*}
$$

Hence

$$
\begin{align*}
\left(\stackrel{\circ}{\nabla}_{Z} \psi\right)\left(X_{1}, \ldots, X_{4 n}\right) & =Z \psi\left(X_{1}, \ldots, X_{4 n}\right)-\sum_{a=1}^{4 n} \psi\left(X_{1}, \ldots, \Pi\left[Z, X_{a}\right], \ldots, X_{4 n}\right) \tag{4.8}\\
& =(d \psi)\left(Z, X_{1}, \ldots, X_{4 n}\right)=0,
\end{align*}
$$

which completes the proof.
Now, let M be a compact totally geodesic quaternion CR-submanifold of a quaternion Kaehler manifold \bar{M}. Let N be a normal vector field and denote by $v^{\prime \prime}(N)$ the second normal variation of M induced by N. Then we have (see [6, Chapter 1]),

$$
\begin{equation*}
v^{\prime \prime}(N)=\int_{M}\left\{\left\|\nabla^{\perp} N\right\|^{2}-\sum_{i=1}^{n} \bar{R}\left(X_{i}, N, N, X_{i}\right)-\left\|A_{N}\right\|^{2}\right\} d V, \tag{4.9}
\end{equation*}
$$

where $N \in T^{\perp} M, d V$ denotes the volume element of M and $\left\{X_{i}\right\}$ is an orthonormal frame in $T M$. Applying the Stokes theorem to the integral of the first term of (4.9), we have

$$
\begin{equation*}
I(N, N)=: v^{\prime \prime}(N)=\int_{M} g(L N, N) * 1, \tag{4.10}
\end{equation*}
$$

where L is a selfadjoint, strongly elliptic linear differential operator of the second order. The differential operator L is called the Jacobi operator of M in \bar{M} and has discrete eigenvalues $\lambda_{1}<\lambda_{2}<\cdots$. We put $E_{\lambda}=\left\{N \in T^{\perp} M: L(N)=\lambda N\right\}$. The dimension of the space $E_{\lambda}, \operatorname{dim}\left(E_{\lambda}\right)$, is called the index of M in \bar{M}. For two normal vector fields N_{1}, N_{2} to a minimal submanifold M in \bar{M}, their index form is defined by

$$
\begin{equation*}
I\left(N_{1}, N_{2}\right)=\int_{M} g\left(L N_{1}, N_{2}\right) * 1 . \tag{4.11}
\end{equation*}
$$

It is easy to see that the index form I is a symmetric bilinear form; $I: T^{\perp} M \times T^{\perp} M \rightarrow R$.
Now we prove the following theorem.
Theorem 4.3. Let M be a compact n-dimensional minimal quaternion $C R$-submanifold of a quaternion Kaehler manifold \bar{M}. If M has nonpositive holomorphic bisectional curvature, then the index form satisfies

$$
\begin{equation*}
I(N, N)+I\left(\psi_{r} N, \psi_{r} N\right) \geq 0 \quad \text { for any } N \in \mu . \tag{4.12}
\end{equation*}
$$

Proof. By using the Weingarten equation we have that for all $X, Y \in D^{\perp}$,

$$
\begin{align*}
g\left(\nabla_{X} N, \psi_{r} Y\right) & =g\left(\bar{\nabla}_{X} N, \psi_{r} Y\right) \\
& =-g\left(\psi_{r} \bar{\nabla}_{X} N, Y\right) \\
& =-g\left(\bar{\nabla}_{X} \psi_{r} N, Y\right) \tag{4.13}\\
& =g\left(A_{\psi_{r} N} X, Y\right)
\end{align*}
$$

which implies that

$$
\begin{equation*}
\left\|\nabla^{\perp} N\right\|^{2} \geq\left\|A_{\psi_{r} N}\right\|^{2}, \quad\left\|\nabla^{\perp} \psi_{r} N\right\|^{2} \geq\left\|A_{N}\right\|^{2} \quad \text { for any } N \in \mu, \tag{4.14}
\end{equation*}
$$

where μ is defined in (2.4). Thus by using (4.9), (4.10), (4.13), and (4.14) we get

$$
\begin{equation*}
I(N, N)+I\left(\psi_{r} N, \psi_{r} N\right) \geq-\int_{M} \sum_{i=1}^{n}\left\{\bar{R}\left(N, e_{i}, e_{i}, N\right)+\bar{R}\left(\psi_{r} N, e_{i}, e_{i}, \psi_{r} N\right)\right\} * 1 \tag{4.15}
\end{equation*}
$$

from which the proof follows, since M has nonpositive holomorphic bisectional curvature.

Finally, we prove a classification theorem for the totally umbilical quaternion CRsubmanifolds of a quaternion Kaehler manifold.

Theorem 4.4. Let M be a compact totally umbilical quaternion CR-submanifold of a quaternion Kaehler manifold \bar{M}. Then
(a) M is a totally geodesic submanifold, or,
(b) M is locally the Riemannian product of a quaternion submanifold and a totally real submanifold, or,
(c) M is a totally real submanifold, or,
(d) the totally real distribution is one dimensional, that is, $\operatorname{dim} D^{\perp}=1$,
(e) $\nabla_{X}^{\frac{1}{X}} H \in \mu$, for $X \in D$.

Proof. We take $X, W \in D^{\perp}$ and using (2.6) with the fact that \bar{M} is a quaternion Kaehler manifold, we have

$$
\begin{equation*}
\psi_{r} \nabla_{X} W+g(X, W) \psi_{r} H=-A_{\psi_{r} W} X+\nabla_{\frac{1}{X}} \psi_{r} W . \tag{4.16}
\end{equation*}
$$

Taking inner product with X we get

$$
\begin{equation*}
g\left(H, \psi_{r} W\right)\|X\|^{2}=g(X, W) g\left(H, \psi_{r} X\right) \tag{4.17}
\end{equation*}
$$

Exchanging X and W in (4.17) we have

$$
\begin{equation*}
g\left(H, \psi_{r} X\right)\|W\|^{2}=g(X, W) g\left(H, \psi_{r} W\right) . \tag{4.18}
\end{equation*}
$$

This together with (4.17) gives

$$
\begin{equation*}
g\left(H, \psi_{r} W\right)=\frac{g(X, W)^{2}}{\|X\|^{2}\|W\|^{2}} g\left(H, \psi_{r} W\right) . \tag{4.19}
\end{equation*}
$$

The possible solutions of (4.19) are
(i) $H=0$,
(ii) $H \perp \psi_{r} W$,
(iii) $X \| W$.

Suppose that condition (i) holds, that is, $H=0$. This implies that M is totally geodesic which proves (a). Combining (ii) with a result in [1, page 407] we get (b) of the theorem.

Now from (2.7) we have

$$
\begin{align*}
O & =\bar{R}(I X, J X, K X, N) \\
& =\bar{R}(K X, N, I X, J X) \\
& =-\bar{R}(K X, N, X, K X) \tag{4.20}\\
& =-\bar{R}(X, K X, K X, N) \\
& =-g\left(\nabla_{\bar{X}}^{\perp} H, N\right)\|X\|^{2}
\end{align*}
$$

which implies that

$$
\begin{equation*}
\nabla \frac{1}{X} H \in \mu \quad \forall X \in D \tag{4.21}
\end{equation*}
$$

proving (e). Next we have

$$
\begin{equation*}
\bar{\nabla}_{X} \psi_{r} H=\psi_{r} \bar{\nabla}_{X} H \quad \text { for } X \in D \tag{4.22}
\end{equation*}
$$

which, by (2.6) gives

$$
\begin{equation*}
\nabla \frac{1}{X} \psi_{r} H=-g(H, H) \psi_{r} X+\psi_{r} \nabla \frac{1}{X} H . \tag{4.23}
\end{equation*}
$$

Since $\nabla_{X}^{\frac{1}{X}} H \in \mu$, from (4.23) we have $\psi_{r} X=0$ for all $X \in D$. Hence $D=\{0\}$ which proves (c). Finally if (iii) is valid then $\operatorname{dim} D^{\perp}=1$, which completes the proof.

Acknowledgements. The authors would like to acknowledge the financial support of the Research Committee, University of Patras, Programme Karatheodori (\# 2461), and of the Greek State Scholarships Foundation (I.K.Y).

References

[1] M. Barros, B. Chen, and F. Urbano, Quaternion CR-submanifolds of quaternion manifolds, Kodai Math. J. 4 (1981), no. 3, 399-417. MR 83e:53055. Zbl 481.53046.
[2] M. Barros and F. Urbano, Topology of quaternion CR-submanifolds, Boll. Un. Mat. Ital. A (6) 2 (1983), no. 1, 103-110. MR 84h:53071. Zbl 518.53054.
[3] A. Bejancu, CR-submanifolds of a Kaehler manifold. I, Proc. Amer. Math. Soc. 69 (1978), no. 1, 135-142. MR 57\#7486. Zbl 368.53040.
[4] , Geometry of CR-submanifolds, Mathematics and its Applications (East European Series), vol. 23, D. Reidel, Dordrecht, 1986. MR 87k:53126. Zbl 605.53001.
[5] B. Chen, CR-submanifolds of a Kaehler manifold. I, J. Differential Geom. 16 (1981), no. 2, 305-322. MR 84e:53062a. Zbl 431.53048.
[6] , Geometry of Submanifolds and its Applications, Science University of Tokyo, Tokyo, 1981. MR 82m:53051. Zbl 474.53050.
[7] S. Ishihara, Quaternion Kaehlerian manifolds, J. Differential Geom. 9 (1974), 483-500. Zbl 297.53014.
[8] B. L. Reinhart, The second fundamental form of a plane field, J. Differential Geom. 12 (1977), no. 4, 619-627. MR 80a:57013. Zbl 379.53018.
\qquad , Differential Geometry of Foliations. The Fundamental Integrability Problem, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 99, Springer-Verlag, Berlin, 1983. MR 85i:53038. Zbl 506.53018.

Bassil J. Papantoniou: Department of Mathematics, University of Patras, 26100, Patras, Greece

E-mail address: bipapant@math.upatras.gr
M. Hasan Shahid: Department of Mathematics, Faculty of Natural Science, Jamia Millia Islamia, New Delhi, India

E-mail address: hasan.mt@jmi.ernet.in

