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Abstract. The purpose of this paper is to investigate several types of separation axioms
in intuitionistic topological spaces, developed by Çoker (2000). After giving some char-
acterizations of T1 and T2 separation axioms in intuitionistic topological spaces, we give
interrelations between several types of separation axioms and some counterexamples.
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1. Introduction. After the introduction of the concept of a fuzzy set by Zadeh [15],

Atanassov [1, 2] has introduced the concept of intuitionistic fuzzy set. Later Çoker

et al. [4, 5, 8] have defined intuitionistic fuzzy topological spaces, intuitionistic sets,

and intuitionistic topological spaces in [6, 9, 12].

2. Preliminaries. First we present the fundamental definitions (see Çoker [4]).

Definition 2.1 (see [4]). Let X be a nonempty fixed set. An intuitionistic fuzzy

set (IS for short) A is an object having the form A= 〈X,A1,A2〉, where A1 and A2 are

subsets of X satisfying A1∩A2 = ∅. The set A1 is called the set of members of A,

while A2 is called the set of nonmembers of A.

Definition 2.2 (see [4]). Let X be a nonempty set and let the IS’s A and B be in the

form A = 〈X,A1,A2〉, B = 〈X,B1,B2〉, respectively. Furthermore, let {Ai : i ∈ J} be an

arbitrary family of IS’s in X, where Ai = 〈X,A(1)i ,A(2)i 〉. Then

(a) A⊆ B if and only if A1 ⊆ B1 and A2 ⊇ B2;

(b) A= B if and only if A⊆ B and B ⊆A;

(c) Ā= 〈X,A2,A1〉;
(d) ∪Ai = 〈X,∪A(1)i ,∩A(2)i 〉;
(e) ∩Ai = 〈X,∩A(1)i ,∪A(2)i 〉;
(f) [ ]A= 〈X,A1,Ac1〉;
(g) 〈〉A= 〈X,Ac2,A2〉;
(h) ∅∼ = 〈X,∅,X〉; X∼ = 〈X,X,∅〉.

Let X be a nonempty set, p ∈ X a fixed element in X, and let A = 〈X,A1,A2〉 be an

IS. The IS p
∼

defined by p
∼
= 〈X,{p},{p}c〉 is called an intuitionistic point (IP for short)

in X. The IS p
≈
= 〈∅,{p}c〉 is called a vanishing intuitionistic point (VIP for short) in

X. The IS p
∼

is said to be contained in A(p
∼
∈ A for short) if and only if p ∈ A1, and

similarly, p
≈

is said to be contained in A(p
≈
∈ A for short) if and only if p �∈ A2. For a

http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com


622 S. BAYHAN AND D. ÇOKER

given IS A in X, we may write

A= (∪{p
∼

: p
∼
∈A})∪(∪{p

≈
: p
≈
∈A}), (2.1)

(cf. [9]) and whenever A is not a proper IS (i.e., if A is not of the form A= 〈X,A1,A2〉,
where A1 ∪A2 ≠ X), then A = ∪{p

∼
: p
∼
∈ A} follows. In general, any IS A in X can

be written in the form A = A∪A≈ , where A∼ = ∪{p∼ : p
∼
∈ A} and A≈ = ∪{p≈ : p

≈
∈ A}.

Furthermore it is easy to show that, if A = 〈X,A1,A2〉, then A∼ = 〈X,A1,Ac1〉 and A≈ =
〈X,∅,A2〉 (cf. [4, 7]).

Definition 2.3 (see [4]). Let X and Y be two nonempty sets and f : X → Y a

function, B = 〈Y ,B1,B2〉 an IS in Y and A = 〈X,A1,A2〉 an IS in X. Then the preimage

of B under f , denoted by f−1(B), is the IS in X defined by f−1(B) = 〈X,f−1(B1),
f−1(B2)〉, and the image of A under f , denoted by f(A), is the IS in Y defined by

f(A)= 〈Y ,f(A1), f−(A2)〉 where f−(A2)= (f (Ac2))c .

You may find the fundamental properties of preimages and images in [4].

Definition 2.4 (see [6]). An intuitionistic topology (IT for short) on a nonempty

set X is a family τ of IS’s in X containing ∅∼ , X∼ and closed under finite infima and

arbitrary suprema. In this case the pair (X,τ) is called an intuitionistic topological

space (ITS for short) and any IS in τ is known as an intuitionistic open set (IOS for

short) in X. The complement Ā of an IOS A in an ITS (X,τ) is called an intuitionistic

closed set (ICS for short) in X.

Let (X,τ) be an ITS on X. Then, we can also construct several other ITS’s on X in

the following way: τ0,1 = {[ ]G :G ∈ τ} and τ0,2 = {〈 〉G :G ∈ τ}. Furthermore,

τ1 =
{
G1 :G = 〈X,G1,G2

〉∈ τ}, τ2 =
{
Gc2 :G = 〈X,G1,G2

〉∈ τ} (2.2)

are topological spaces in X (cf. [6]).

Definition 2.5. Let A and B be two IS’s on X and Y , respectively. Then the product

intuitionistic set (PIS for short) of A and B on X×Y is defined by U×V = 〈(X,Y),A1×
B1,(Ac2×Bc2)c〉, where A= 〈X,A1,A2〉 and B = 〈Y ,B1,B2〉.

If (X,τ) and (Y ,Φ) are ITS’s, then the product topology τ ×Φ on X ×Y is the IT

generated by the base �= {A×B :A∈ τ,B ∈ Φ}. This is so, because, ifA×B, C×D ∈�,

then (A× B)∩ (C ×D) = (A∩C)× (B ∩D). Let A ∈ τ , B ∈ Φ, and A = 〈X,A1,A2〉,
B = 〈Y ,B1,B2〉. Then we have π−1

1 (A) = 〈(x,y),A1 × Y ,A2 × Y 〉 = A× Y∼ , π−1
2 (B) =

〈(X,Y),X×B1,X×B2〉 =X∼ ×B, and

π−1
1 (A)∩π−1

2 (B)= (A×Y∼
)∩(X∼ ×B

)

= 〈(X,Y),(A1×Y
)∩(X×B1

)
,
(
A2×Y

)∪(X×B2
)〉

= 〈(X,Y),A1×B1,
(
A2×Y

)∪(X×B2
)〉

= 〈(X,Y),A1×B1,
(
Ac2×Bc2

)c〉=A×B.

(2.3)



ON SEPARATION AXIOMS IN INTUITIONISTIC TOPOLOGICAL SPACES 623

The definition of “neighborhoods” of IP’s and VIP’s can be found in Coşkun and

Çoker [9] and “continuous function” between ITS’s can be found in Çoker [6].

Lemma 2.6. The projections π1 :X×Y →X, π2 :X×Y → Y , π1(x,y)= x, π2(x,y)=
y are continuous.

Proof. LetA∈ τ , thenπ−1
1 (A)=〈(x,y),π−1

1 (A1),π−1
1 (A2)〉. Thus we haveπ−1

1 (A)
= 〈(x,y),A1×Y ,A2×Y 〉 =A×Y∼ , that is, π1 is continuous.

In other words, the product topology τ×Φ on X×Y is indeed the initial topology

on X ×Y with respect to the projections π1 : X ×Y → X and π2 : X ×Y → Y . Here

the subbase {π−1
1 (A),π−1

2 (B) :A∈ τ, B ∈ Φ} generates this product topology and the

base � is given by

�= {π−1
1 (A)∩π−1

2 (B) :A∈ τ, B ∈ Φ}= {A×B :A∈ τ, B ∈ Φ}. (2.4)

Definition 2.7. Given the nonempty set X, we define the diagonal ∆x as the fol-

lowing IS in X×X:

∆x =
〈(
x1,x2

)
,
{(
x1,x2

)
: x1 = x2

}
,
{(
x1,x2

)
: x1 ≠ x2

}〉
. (2.5)

Notice that, if X and Y are two nonempty sets and (p,q) ∈ X×Y a fixed element

in X×Y , then (p,q)∼ is contained in U ×V((p,q)∼ ∈ U ×V for short) if and only if

(p,q) ∈ U1×V1, and (p,q)≈ is contained in U ×V((p,q)≈ ∈ U ×V for short) if and

only if (p,q) �∈ (Uc2 ×Vc2 )c , or equivalently (p,q)∈Uc2 ×Vc2 .

Definition 2.8. Let X, Y be two nonempty sets and f : X → Y a function. The

graph of f , denoted by GR(f ), is defined as the following IS in X×Y :

GR(f )= 〈(x,y),{(x,f(x)) : x ∈X},{(x,f(x)) : x ∈X}c〉. (2.6)

3. Separation axioms in intuitionistic topological spaces. In this section, we

present T1 and T2 separation axioms in ITS’s. The separation axioms T1 and T2 pre-

sented here have certain similarities to those in Bayhan and Çoker [3].

Definition 3.1. Let (X,τ) be an ITS, (X,τ) is said to be

(a) T1(i)� ∀x,y ∈ X (x ≠ y) ∃U,V ∈ τ such that x∼ ∈ U , y
∼
�∈ U , and y

∼
∈ V ,

x∼ �∈ V (cf. [3, 14]);

(b) T1(ii)� ∀x,y ∈ X (x ≠ y) ∃U,V ∈ τ such that x≈ ∈ U , y
≈
�∈ U , and y

≈
∈ V ,

x≈ �∈ x∼ ∈ V (cf. [3, 14]);

(c) T1(iii)�∀x,y∈X (x≠y) ∃U,V ∈τ such thatx∼ ∈U⊆ȳ∼ andy
∼
∈V ⊆ x̄∼ (cf. [3]);

(d) T1(iv)�∀x,y∈X (x≠y) ∃U,V ∈τ such thatx≈ ∈U⊆ȳ≈ andy
≈
∈V ⊆ x̄≈ (cf. [3]);

(e) T1(v)�∀x,y ∈X (x ≠y) ∃U,V ∈ τ such that y
∼
�∈U and x∼ �∈ V (cf. [3]);

(f) T1(vi)�∀x,y ∈X (x ≠y) ∃U,V ∈ τ such that y
≈
�∈U and x≈ �∈ V (cf. [3]);

(g) T1(vii)�∀x ∈X, x∼ is τ-closed;

(h) T1(viii)�∀x ∈X, x≈ is τ-closed.
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Theorem 3.2. Let (X,τ) be an ITS, then the following implications are valid:

T1(v) T1(vi)

T1(i) T1(i)+T1(ii) T1(ii)

T1(vii) T1(iii) T1(iv)

(3.1)

Proof. The proof is obvious.

Counterexample 3.3. Let X = {a,b,c} and define the IT τ = {∅∼ ,X∼ ,A,B,C,D,
E,F,G}, where A = 〈X,{a,c},∅〉, B = 〈X,{b},∅〉, C = 〈X,{a},∅〉, D = 〈X,{c},∅〉,
E = 〈X,{a,b},∅〉, F = 〈X,{b,c},∅〉,G = 〈X,∅,∅〉. Then (X,τ) is T1(i), but not T1(ii).

Counterexample 3.4. Let X = {a,b} and define the IT τ = {∅∼ , X∼ ,A,B} on X,

where A = 〈X,∅,{a}〉, B = 〈X,∅,{b}〉. Then it is clear that (X,τ) is T1(v), but not

T1(i).

Counterexample 3.5. LetX = {a,b,c} and define the IT τ = {∅∼ , X∼ ,A,B,C,D,E,F}
onX, whereA= 〈X,∅,{a,b}〉, B = 〈X,{c},{a,b}〉,C = 〈X,∅,{b,c}〉,D = 〈X,{c},{b}〉,
E = 〈X,{a,c},{b}〉, F = 〈X,∅,{b}〉. Then (X,τ) is T1(vi), but not T1(ii).

Counterexample 3.6. Let X = {a,b,c} and define the IS’s A = 〈X,{a},{c}〉, B =
〈X,{b},{a}〉, C = 〈X,{a},{b,c}〉,D = 〈X,∅,{b}〉, E = 〈X,{a,b},∅〉, F = 〈X,∅,{a,c}〉,
G = 〈X,∅,{b,c}〉, H = 〈X,{a},∅〉, K = 〈X,{a},{b}〉. Let τ denote the IT on X gener-

ated by the subbase S = {A,B,C,D,E,F,G,H,K}. Then (X,τ) is clearly T1(iv), but not

T1(iii).

Counterexample 3.7. Let X = {a,b,c,d} and consider the family τ = {∅∼ ,X∼ ,A,B,
C,D,E,F,G}, whereA=〈X,{a},∅〉, B=〈X,{b},{∅}〉,C=〈X,{c},∅〉,D=〈X,{a,b},∅〉,
E = 〈X,{b,c},∅〉, F = 〈X,{a,b,c},∅〉, G = 〈X,∅,∅〉. Then the ITS (X,τ) is T1(v), but

not T1(vi).

Counterexample 3.8. Let X = {a,b,c} and consider the family τ = {∅∼ ,X∼ ,A,B,C,
D,E,F,G,H,K}, whereA= 〈X,{a},{c}〉, B = 〈X,{b},∅〉,C = 〈X,{c},∅〉,D=〈X,{a,b},
∅〉, E = 〈X,{a,c},∅〉, F=〈X,{b,c},∅〉,G=〈X,∅,{c}〉,H = 〈X,∅,∅〉,K = 〈X,{a},∅〉.
Then the ITS (X,τ) on X is T1(i), but not T1(iii).

Counterexample 3.9. Let X = {a,b,c} and consider the family τ = {∅∼ ,X∼ ,A,B,C,
D,E,F,G}, whereA=〈X,{a,c},∅〉, B=〈X,{b,c},∅〉,C=〈X,{b},∅〉,D=〈X,{a,b},∅〉,
E = 〈X,{c},∅〉, F = 〈X,{a},∅〉, G = 〈X,∅,∅〉. Then the ITS (X,τ) on X is T1(iv), but

not T1(ii).
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Counterexample 3.10 (see [6]). Let X =N+ and consider the IS’s An given below:

A1 =
〈
X,{2,3,4, . . .},∅〉,

A2 =
〈
X,{3,4,5, . . .},{1}〉,

A3 =
〈
X,{4,5,6, . . .},{1,2}〉,

An =
〈
X,{n+1,n+2,n+3, . . .},{1,2,3, . . . ,n−1}〉 (n≥ 2).

(3.2)

Then τ = {∅∼ ,X∼}∪{An : n = 1,2,3, . . .} is an IT on X. Clearly (X,τ) is T1(vi), but not

T1(ii).

Proposition 3.11. Let (X,τ) be an ITS. Then

(a) (X,τ) is T1(i) if and only if (X,τ1) is T1.

(b) (X,τ) is T1(ii) if and only if (X,τ2) is T1.

(c) (X,τ) is T1(i) if and only if (X,τ0,1) is T1(i).
(d) (X,τ) is T1(ii) if and only if (X,τ0,2) is T1(ii).

Definition 3.12. Let (X,τ) be an ITS. (X,τ) is said to be

(a) T2(i)�∀x,y ∈ X (x ≠ y) ∃U,V ∈ τ such that x∼ ∈ U , y
∼
∈ V , and U∩V =∅∼

(cf. [3, 13]);

(b) T2(ii)�∀x,y ∈X (x ≠y) ∃U,V ∈ τ such that x≈ ∈U , y
≈
∈ V , and U∩V =∅∼

(cf. [3, 13]);

(c) T2(iii)�∀x,y ∈X (x ≠y) ∃U,V ∈ τ such that x∼ ∈U , y
∼
∈ V , and U ⊆ V̄ (cf.

[3, 10]);

(d) T2(iv)�∀x,y ∈X (x ≠y) ∃U,V ∈ τ such that x≈ ∈U , y
≈
∈ V , and U ⊆ V̄ (cf.

[3, 10]);

(e) T2(v)� ∀x,y ∈ X (x ≠ y) ∃U,V ∈ τ such that x∼ ∈ U ⊆ ȳ∼ , y
∼
∈ V ⊆ x̄∼ , and

U∩V =∅∼ (cf. [3, 11]);

(f) T2(vi)�∀x,y ∈ X (x ≠ y) ∃U,V ∈ τ such that x≈ ∈ U ⊆ ȳ∼ , y
∼
∈ V ⊆ x̄∼ , and

U∩V =∅∼ (cf. [3, 11]);

(g) T2(vii)�∆x is an ICS in the product ITS (X×X,τX×X ).

Theorem 3.13. Let (X,τ) be an ITS. Then the following implications are valid:

T2(v) T2(vi)

T2(vii) T2(i) T2(ii)

T2(iii) T2(iv)

(3.3)

Proof. We prove only the case T2(i) ⇒ T2(vii). We must see that ∆̄X is an IOS

in (X×X,τX×X). Let (x,y)∼ ∈ ∆̄X . This means that (x,y) ∈ {(x,y) : x ≠ y}, that is,

x ≠y . Since (X,τ) is T2(i), there existU,V ∈ τ such that x∼ ∈U ,y
∼
∈ V , andU∩V =∅∼ .

Now in this case we have (x,y)∼ ∈U×V ⊆ ∆̄X . Indeed, from x ∈U1 and y ∈ V1 we get
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(x,y) ∈ U1×V1, that is, (x,y)∼ ∈ U×V . We also know that U×V ⊆ ∆̄X � U1×V1 ⊆
{(x,y) : x ≠ y} and (Uc2 ×Vc2 )c ⊇ {(x,y) : x = y}. If (y1,y2)∈ U1×V1, then y1 ∈ U1,

y2 ∈ V1 ⇒ y1 ≠ y2 ⇒ (y1,y2) ∈ {(x,y) : x ≠ y} follows. Thus the first inclusion is

true. For the second, (y1,y2) ∈ Uc2 ×Vc2 ⇒ y1 ∈ Uc2 and y2 ∈ Vc2 ⇒ y1 ≠ y2, that is,

we have Uc2 ×Vc2 ⊆ {(x,y) : x ≠ y}. Thus we see that (y1,y2) ∈ {(x,y) : x = y}. The

second inclusion is true, too. Now since

∆̄X =
⋃

(y1,y2)∼∈∆̄x

(
y1,y2

)
∼, (3.4)

it follows from the fact that ∆̄X is not a proper IS, that ∆̄X is an IOS in (X×X), that

is, (X,τ) is T2(vii).

Counterexample 3.14. Let X = {a,b} and consider the family τ = {∅∼ ,X∼ ,A,B} on

X, where A = 〈X,∅,{b}〉, B = 〈X,∅,{a}〉. Then the ITS (X,τ) on X is T2(ii), but not

T2(i).

Counterexample 3.15. Let X = {a,b,c} and define the IS’s A = 〈X,∅,{b,c}〉,
B = 〈X,{b},{a}〉, C = 〈X,{a},{c}〉, and D = 〈X,∅,{a,b}〉. Let τ denote the IT on X
generated by the subbase S = {A,B,C,D}. Then (X,τ) is T2(iv), but not T2(iii)

Counterexample 3.16. LetX = {a,b,c} and consider the family τ = {∅∼ ,X∼ ,A,B,C,
D,E,F,G,H,K,L,M} onX, whereA=〈X,∅,{b}〉, B = 〈X,∅,{a,c}〉,C = 〈X,{a},{b,c}〉,
D = 〈X,∅,{a}〉, E = 〈X,∅,{a,b}〉, F = 〈X,∅,{c}〉, G = 〈X,{a},{c}〉, H = 〈X,{a},∅〉,
K = 〈X,{a},{b}〉, L = 〈X,∅,{b,c}〉, and M = 〈X,∅,∅〉. Then the ITS (X,τ) on X is

T2(vi), but not T2(v).

Counterexample 3.17. Let X = {a,b,c,d} and define the IS’s A = 〈X,{a},{b}〉,
B = 〈X,{b},{a,d}〉,C = 〈X,{b},{c}〉,D = 〈X,{c},{a,b}〉, E=〈X,{a},{d}〉, F=〈X,{d},
{a}〉, G = 〈X,{b},{d}〉, H = 〈X,{d},{b}〉, K = 〈X,{c},{d}〉, L = 〈X,{d},{c}〉, M =
〈X,{a},{c}〉, and N = 〈X,{c},{a}〉. Let τ denote the IT on X generated by the subbase

S = {A,B,C,D,E,F,G,H,K,L,M,N}. Then (X,τ) is T2(iii), but not T2(i).

Counterexample 3.18. Let X = {a,b} and consider the family τ = {∅∼ ,X∼ ,A,B} on

X, where A= 〈X,{b},∅〉, B = 〈X,∅,{b}〉. Then the ITS (X,τ) on X is T2(iv), but not

T2(ii).

Counterexample 3.19. We consider the IT onX as in Counterexample 3.15. (X,τ)
is T2(iv), but not T2(i).

Counterexample 3.20. We consider the ITS on X as in Counterexample 3.14.

(X,τ) is T2(ii), but not T2(v).

Proposition 3.21. Let (X,τ) be an ITS. Then

(a) (X,τ) is T2(i)⇒ (X,τ1) is T2.

(b) (X,τ) is T2(ii)⇒ (X,τ2) is T2.

Proposition 3.22. Let (X,τ) be an ITS. Then

(a) (X,τ) is T2(i)⇒ (X,τ0,1) is T2(i).
(b) (X,τ) is T2(ii)⇒ (X,τ0,2) is T2(ii).
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Theorem 3.23. Let (X,τ) be an ITS. Then the following implications are valid:

(a) T2(i)⇒ T1(iii).
(b) T2(ii)⇒ T1(ii).
(c) T2(iii)⇒ T1(iii).
(d) T2(iv)⇒ T1(iv).
(e) T2(v)⇒ T1(iii).
(f) T2(vi)⇒ T1(vi).

Proof. The proof is obvious.

Proposition 3.24. Let (X,τ) be T2(i). Then every intuitionistic point x∼ is the inter-

section of all the intuitionistic closed neighborhoods of x∼ .

Proof. Let (X,τ) be T2(i) and x ∈ X. We denote the intersection of IC neighbor-

hoods of x∼ by the IS C = 〈X,C1,C2〉. We assume the contrary and suppose that there

exists a distinct IP y
∼

in C , that is, y ∈ C1.

Case 1. {x} ⊂
≠
C1, then there exists y ∈ C1 such that x ≠ y . Since (X,τ) is T2(i),

there exist IOS’s U and V such that x∼ ∈ U , y
∼
∈ V , and U ∩ V = ∅∼ which implies

that U ⊆ V̄ . Hence we have x∼ ∈ U ⊆ V̄ . Thus V̄ is a closed neighborhood of x∼ . From

our assumption, we get y
∼
∈ V̄ . But it is a contradiction, since V1∩V2 =∅. Thus our

assumption is false. This means that C consists only of the IP x∼ .

Case 2. {x} ⊂
≠
Cc2 and {x} = C1, then there exists y ∈ Cc2 such that y ≠ x. Since

(X,τ) is T2(i), there exist IOS’s U,V ∈ τ such that x∼ ∈ U , y
∼
∈ V , and U∩V =∅∼ and

the same result as in the previous assumption holds in this case, too.

Proposition 3.25. Let (X,τ) be an ITS, (Y ,Φ) a T2(i) ITS and f : (X,τ)→ (Y ,Φ) a

continuous function. Then the graph of f is an ICS in X×Y .

Proof. We must show that GR(f ) is an IOS in X×Y . Let (x,y)∼ ∈ GR(f ). Then

(x,y)∈ {(x,f (x)) : x ∈ X}c which implies that y ≠ f(x). Since (Y ,Φ) is T2(i), there

exist U,V ∈ Φ such that y
∼
∈ U , f(x∼) ∈ V , and U∩V =∅∼ . From the assumption that

f is continuous, we see that f−1(V)= 〈X,f−1(V1),f−1(V2)〉 is an open neighborhood

of x∼ . Also f−1(V)×U is an open neighborhood of (x,y)∼. It can be shown easily that

f−1(V)×U ⊆ GR(f ). Since GR(f ) is not a proper IS in X×Y , our assumption holds,

that is, GR(f ) is an IOS in X×Y .

Proposition 3.26. Let (X,τ) be an ITS, (Y ,Φ) a T2(i) ITS and f : (X,τ)→ (Y ,Φ)
a continuous function. Then the IS C = 〈(x1,x2),{(x1,x2) : f(x1) = f(x2)},{(x1,x2) :

f(x1)≠ f(x2)}〉 in X×Y is an ICS in X×Y .

Proof. A similar argument as in the proof of Proposition 3.25 can be followed.

Proposition 3.27. Let (X,τ) and (Y ,Φ) be two ITS’s. Then

(a) If (X,τ) and (Y ,Φ) are T1(i), then so is (X×Y ,τ×Φ).
(b) If (X,τ) and (Y ,Φ) are T1(ii), then so is (X×Y ,τ×Φ).
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Proof. (a) Let (X,τ) and (Y ,Φ) be T1(i). Let (x1,y1),(x2,y2)∈X×Y and (x1,y1)≠
(x2,y2). Now suppose that x1 ≠ x2. Since (X,τ) is T1(i) then there exist U,V ∈ τ such

that x1∼
∈ U , x2∼

�∈ U , and x2∼
∈ V , x1∼

�∈ V . Then we have IOS’s U ×Y∼ = 〈(X,Y),U1×
Y ,(Uc2 ×∅c)c〉 and V ×Y∼ = 〈(X,Y),V1×Y ,(Vc2 ×∅c)c〉 in τ×Φ having the properties

(x1,y1)∼ ∈ U×Y∼ , (x2,y2)∼ �∈ U×Y∼ , and (x2,y2)∼ ∈ V ×Y∼ , (x1,y1)∼ �∈ V ×Y∼ . We can

prove the case y1 ≠y2 similarly. Thus we conclude that (X×Y ,τ×Φ) is T1(i).
(b) Similar to the previous one.

Proposition 3.28. Let (X,τ) and (y,Φ) be two ITS’s. Then

(a) If (X,τ) and (Y ,Φ) are T2(i), then so is (X×Y ,τ×Φ).
(b) If (X,τ) and (Y ,Φ) are T2(ii), then so is (X×Y ,τ×Φ).
(c) If (X,τ) and (Y ,Φ) are T2(iii), then so is (X×Y ,τ×Φ).
(d) If (X,τ) and (Y ,Φ) are T2(vii), then so is (X×Y ,τ×Φ).

Proof. (a) Let (X,τ), (Y ,Φ) be T2(i). Let (x1,y1), (x2,y2)∈ X×Y , and (x1,y1)≠
(x2,y2) and suppose that x1 ≠ x2. Since (X,τ) is T2(i) then there exist U,V ∈ τ such

that x1∼
∈ U , x2∼

∈ V , and U∩V =∅∼ . Then we can form the IOS’s U×Y∼ = 〈(X,Y),U1×
Y ,(Uc2×∅c)c〉 and V×Y∼ = 〈(X,Y),V1×Y ,(Vc2 ×∅c)c〉 in τ×Φwhich contains (x1,y1)∼
and (x2,y2)∼, respectively. Now we must see that (U×Y∼)∩(V ×Y∼)=∅∼ . Indeed,

(
U×Y∼

)∩(V ×Y∼
)= 〈(X,Y),(U1×Y

)∩(V1×Y
)
,
(
Uc2 ×∅c)c∪(Vc2 ×∅c)c〉

= 〈(X,Y),(U1∩V1
)×(Y ∩Y),[(Uc2 ×Y

)∩(Vc2 ×Y
)]c〉

=
〈
(X,Y),∅×Y ,[(Uc2

)∩(Vc2
)×(Y ∩Y)]c

〉

= 〈(X,Y),∅,X×Y〉=∅∼ .

(3.5)

Thus (X×Y ,τ×Φ) is T2(i).
(b) Similar to previous one.

(c) Assume that (X,τ) and (Y ,Φ) are T2(iii). Let (x1,y1), (x2,y2) ∈ X × Y and

(x1,y1)≠ (x2,y2). Suppose thatx1 ≠ x2. Since (X,τ) is T2(iii), then there existU,V ∈
τ such that x1∼

∈ U , x2∼
∈ V , and U ⊆ V̄ . Then we have IOS’s U ×Y∼ = 〈(X,Y),U1 ×

Y ,(Uc2 ×∅c)c〉 and V ×Y∼ = 〈(X,Y),V1×Y ,(Vc2 ×∅c)c〉 in τ ×Φ containing (x1,y1)∼
and (x2,y2)∼, respectively. Now, it is easy to see that U ×Y∼ ⊆ V ×Y∼ holds, which is

identical to U1×Y ⊆ (Vc2 ×Y)c and V1×Y ⊆ (Uc2 ×Y)c . A similar argument holds if

y1 ≠y2. Thus we conclude that (X×Y ,τ×Φ) is T2(iii).
(d) We are to show that ∆X×Y is an ICS, that is, ∆̄X×Y is an IOS. Since ∆̄X×Y is not a

proper IS in X×Y , it is sufficient to show that for every ((p1,q1),(p2,q2))∼ ∈ ∆̄X×Y ,

there exists an IOS S in (X×Y)× (X×Y) such that ((p1,q1),(p2,q2))∼ ∈ S ⊆ ∆̄X×Y .

Since ((p1,q1),(p2,q2))∼ ∈ ∆̄X×Y , we get ((p1,q1) ≠ (p2,q2))∼, that is, p1 ≠ p2 or

q1 ≠ q2. Here come three possible cases:

(1) p1 ≠ p2, q1 = q2;

(2) p1 = p2, q1 ≠ q2;

(3) p1 ≠ p2, q1 ≠ q2.

Here we show only case (3). Other cases can be proved similarly. Let p1 ≠ p2,

q1 ≠ q2. Since (p1,p2)∼ ∈ ∆̄X , (q1,q2)∼ ∈ ∆̄Y and ∆̄X , ∆̄Y are IOS’s, ∃U1,U2 ∈ τ and V1,
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V2 ∈ Φ such that (p1,p2)∼ ∈U1×U2 ⊆ ∆̄X and (q1,q2)∼ ∈ V1×V2 ⊆ ∆̄Y . We prove that

((p1,q1),(p2,q2))∼ ∈ (U1×V1)×(U2×V2)⊆ ∆̄X×Y . This can be shown in two steps.

Step 1. The expression ((p1,q1),(p2,q2))∼ ∈ (U1×V1)×(U2×V2) is equivalent to

((p1,q1),(p2,q2)) ∈ (U1×V1)(1)× (U2×V2)(1) � ((p1,q1),(p2,q2)) ∈ (U(1)1 ×V(1)1 )×
(U(1)2 ×V(1)2 ). This means that (p1,q1)∈U(1)1 ×V(1)1 and (p2,q2)∈U(1)2 ×V(1)2 which are

true, since p1 ∈U(1)1 , p2 ∈U(1)2 , q1 ∈ V(1)1 , q2 ∈ V(1)2 .

Step 2. We show the inclusion (U1 × V1)× (U2 × V2) ⊆ ∆̄X×Y . For this purpose

we must first show that (U1×V1)(1)× (U2×V2)(1) ⊆ {((u1,v1),(u2,v2)) : (u1,v1) ≠
(u2,v2)} or equivalently, (U(1)1 ×V(1)1 )×(U(1)2 ×V(1)2 )⊆ {((u1,v1),(u2,v2)) : (u1,v1)≠
(u2,v2)}. This is true since U1 ×U2 ⊆ ∆̄X and V1 ×V2 ⊆ ∆̄Y , we have U(1)1 ×U(1)2 ⊆
{(u1,u2) : u1 ≠ u2} and V(1)1 ×V(1)2 ⊆ {(v1,v2) : v1 ≠ v2}, respectively. Thus the first

inclusion is true. The second inclusion can be proved similarly. Hence ∆̄X×Y is an IOS,

that is, ∆̄X×Y is an ICS, which means that (X,Y ,τ×Φ) is T2(vii).

Remark 3.29. Let (X,τ) and (Y ,Φ) be T2(iv). Then (X×Y ,τ×Φ)may not be T2(iv).

Here come the reverse implications.

Proposition 3.30. Let (X,τ) and (Y ,Φ) be two ITS’s. Then

(a) If (X×Y ,τ×Φ) is T2(i), then so are (X,τ) and (Y ,Φ).
(b) If (X×Y ,τ×Φ) is T2(ii), then so are (X,τ) and (Y ,Φ).
(c) If (X×Y ,τ×Φ) is T2(iii), then so are (X,τ) and (Y ,Φ).

Proof. The proofs of (a) and (b) are easy. (c) Let (X × Y ,τ ×Φ) be T2(iii), and

x1 ≠ x2 (x1,x2 ∈X). We take a fixed y ∈ Y . Then, since (x1,y) ≠ (x2,y) and X×Y is

T2(iii), there exist U×Z and V ×T where U,V ∈ τ and Z,T ∈ Φ such that (x1,y)∼ ∈
U ×Z , (x2,y)∼ ∈ V ×T , and U ×Z ⊆ V ×T . Thus we get (x1,y) ∈ U1×Z1, (x2,y) ∈
V1×T1, and U1×Z1 ⊆ (Vc2 ×Tc2 )c , V1×T1 ⊆ (Uc2 ×Zc2)c ; in other words x1 ∈U1, y ∈ Z1,

x2 ∈ V1, y ∈ T1, and (U1×Z1)∩ (Vc2 ×Tc2 ) = ∅,(V1×T1)∩ (Uc2 ×Zc2) = ∅. From the

last intersection we get (Uc1 × Vc2 )× (Z1 ∩ Tc2 ) = ∅ and (V1 ∩Uc2 )× (T1 ∩ Zc2) = ∅,

respectively. y ∈ Z1 and y ∈ T1 implies that Z1∩Tc2 ≠∅ and U1∩Vc2 =∅ from which

U1 ⊆ V2 follows. Similarly y ∈ T1∩Zc2 and V1∩Uc2 = ∅ meaning that V1 ⊆ U2. Thus

x1∼
∈U , x2∼

∈V , and U⊆ V̄ , that is, (X,τ) is T2(iii). Similarly (Y ,Φ) is T2(iii), too.
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[9] E. Coşkun and D. Çoker, On neighborhood structures in intuitionistic topological spaces,
Math. Balkanica (N.S.) 12 (1998), no. 3-4, 283–293. MR 1 688 660. Zbl 01505530.

[10] A. A. Fora, Separation axioms for fuzzy spaces, Fuzzy Sets and Systems 33 (1989), no. 1,
59–75. MR 90k:54011. Zbl 702.54007.

[11] M. H. Ghanim, E. E. Kerre, and A. S. Mashhour, Separation axioms, subspaces and sums
in fuzzy topology, J. Math. Anal. Appl. 102 (1984), no. 1, 189–202. MR 86i:54005.
Zbl 543.54006.
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