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BLASCHKE INDUCTIVE LIMITS OF UNIFORM ALGEBRAS
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ABSTRACT. We consider and study Blaschke inductive limit algebras A(b), defined as
inductive limits of disc algebras A(D) linked by a sequence b = {By};_, of finite Blaschke
products. It is well known that big G-disc algebras A; over compact abelian groups G
with ordered duals T = G ¢ Q can be expressed as Blaschke inductive limit algebras. Any
Blaschke inductive limit algebra A(b) is a maximal and Dirichlet uniform algebra. Its Shilov
boundary dA(b) is a compact abelian group with dual group that is a subgroup of Q. It is
shown that a big G-disc algebra Ag over a group G with ordered dual G c R is a Blaschke
inductive limit algebra if and only if Gc Q. The local structure of the maximal ideal space
and the set of one-point Gleason parts of a Blaschke inductive limit algebra differ dras-
tically from the ones of a big G-disc algebra. These differences are utilized to construct
examples of Blaschke inductive limit algebras that are not big G-disc algebras. A neces-
sary and sufficient condition for a Blaschke inductive limit algebra to be isometrically
isomorphic to a big G-disc algebra is found. We consider also inductive limits H* (I) of
algebras H®, linked by a sequence I = {Ik},‘i":1 of inner functions, and prove a version of
the corona theorem with estimates for it. The algebra H® (I) generalizes the algebra of
bounded hyper-analytic functions on an open big G-disc, introduced previously by Tonev.

2000 Mathematics Subject Classification. 46]15, 46J20, 30HOS.

1. Introduction. Let T ={z e C:|z| =1} denote the unit circleandlet D = {z € C:
|z| < 1} be the closed unit disc in C. Consider an inductive sequence

4

i% i3 i
A(Ty) = A(T) = A(T3) —= - - - (1.1)

of disc algebras A(Ty) = A(T) linked by homomorphisms i’,§“ TA(T) —» A(Tiy1).
Every conjugate mapping (iﬁ“)* 1My — My, maps the maximal ideal space My, 1 = D
of A(Ty41) into the maximal ideal space .l ~ D of A(Ty). Since iK*1(f) = fo (ikt!)* €
A(Ty41) for every f € A(Tg), the mapping (i’,ﬁ“)* is an analytic function preserving

the unit disc. The inverse limit

D, D, —2— D3 Dy —— s — @ (1.2)

is the maximal ideal space of the inductive limit algebra

[li_m{A(TTU,i’,j“}], (1.3)

k— oo

where the closure is taken in C(%). In general, the mappings (i,’j”)* are not obliged
to map the unit circle Ty, onto itself. The most interesting situations, though, are
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the ones when they do, and this is what we will assume in the sequel. In effect, the
mappings (i’,ﬁ“)* become finite Blaschke products

. n zZ—Z
Bi(2) = ¢i® ng;(ﬁ), 0<|zex| <1 (1.4)
S,

on D. The inductive limit algebra [@k_w {A(Typ), i’,:“ }1in this case is called a Blaschke
inductive limit algebra. Note that all algebras i’,ﬁ“ (A(Tg)) are algebraic extensions of
the disc algebra that are isometrically isomorphic to the disc algebra itself. Indeed,
let A be an algebra and let A[x] be the algebra of polynomials in x over A. For a given
unital polynomial p(x) = x"+a;x"* ' +---+ay, a; € Ain A[x] the set p(x)A[x] is
an ideal in the algebra A[x]. Recall that the algebraic extension of A by p(x) is the
algebra

Ap =Alx]/(p(x)Alx]). (1.5)

A, is isometrically isomorphic to A(T) if and only if the diagram

A(T) ——= A,

idi irr (1-6)

A(T) —> A(T)

is commutative, where i is the natural embedding i: A(T) — Ay, and m: A, — A(T)
is an isomorphism. In this case the homomorphism j =moi: A(T) — A(T) coincides
with the composition operator Cz = f o B defined by a finite Blaschke product B, that
is, (j(f(2))) = (Cp(f))(2) = f(B(2)). ~

Let G be a compact abelian group, whose dual group G is isomorphic to a subgroup
I' of R. Denote by Ag the big G-disc algebra generated by T, that is, As is the uni-
form algebra on G generated by the semigroup of characters {x“ € G:a €T,}, where
I, = {a €T :a = 0} is the positive part of . The elements in A are referred to as gener-
alized G-analytic functions on G. In Section 2 we review some results on finite Blaschke
products and generalized G-analytic functions. In Section 3, we show that Blaschke
inductive limit algebras share many properties with big G-disc algebras. We give also
necessary and sufficient conditions on a group I' C R so that the big G-disc algebra
Ag, G =T canbe expressed as the inductive limit of a Blaschke sequence of (algebraic
extensions of) disc algebras. In Section 4, we study annulus type Blaschke inductive
limit algebras. The local structure of Blaschke inductive limit algebras is studied in
Section 5. We construct Blaschke inductive sequences of disc algebras whose limits
are not big G-disc algebras. In Section 6, we describe the one-point Gleason parts in
the maximal ideal space of a Blaschke inductive limit algebra. This description plays
a crucial role in Section 7, where we find necessary and sufficient conditions for a
Blaschke inductive limit algebra to be expressed as a big G-disc algebra. In Section 8,
we consider inductive limits of algebras H® that are linked by inner functions, and
prove the corona theorem for them.
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2. Preliminaries. Here we state several basic results on finite Blaschke products
and generalized G-analytic functions, we will need further. Given a uniform algebra
A, My and 0A will denote the maximal ideal space and Shilov boundary of A corre-
spondingly. Any homomorphism @ : A — B between two uniform algebras naturally
generates a conjugate map @* : Jly — Jlg between their maximal ideal spaces. If, in
addition, @ is an isometry, that is, if

lle@llz=llglla 2.1)

for every g € A, then @ is called an embedding of A into B.

LEMMA 2.1. Let A and B be uniform algebras. A homomorphism @ : A — B generates
an embedding of A into B if and only if *(0B) D 0A.

PROOF. Note that for every g € A we have

. . [m(g)| = max|(@*())(g)| =max|s(@@)| =@ @)lls- (2.2)

If @*(0B) D 0A, then ||glla = maxyuean IM(g)| = [l (g)ll5- Hence @ is an isometry.
On the other hand, if @ is an isometry, then

pimax|m(@) | =lle@)lls = 1@ (2.3)
implies that the set @*(0B) is a boundary for A. Therefore @ *(0B) D 0A. O

Note that every embedding j: A(T) — A(T) of the disc algebra into itself generates
an isometric isomorphism between A(T) and j(A(T)). Hence j* : Mjacr)) — Macr) =
is a homeomorphism and j*0(j(A(T))) = 0A(T) = T. If, in addition, M ;(r)) = D and
0(j(A(T))) =T, then j*(T) = T, and hence the function j* is a finite Blaschke product
(see [6], Chapter I, 2). Consequently, for any isometry j: A(T) — A(T) with the above
properties there is a Blaschke product

B(z) =el’9]—[::1(lz__;k"2>, 0< |z <1, 2.4)
such that
(jof)(z)=foj*(z)=f(B(2)) VfeA(). (2.5)

Recall that zg € D is a critical point for B if B'(zo) = 0, that is, if card(B~1(zg)) <
ord B. By the Brower’s fixed point theorem, B always has a fixed point, thatis, B(zg) =
2o for some zy € D. If the order of B is greater than 1 then by the Schwartz lemma
the fixed point of B is unique.

We will need in the sequel the following result, which is probably well known.

LEMMA 2.2. If B is a finite Blaschke product with a single critical point zo € D, then

To(2)™ +B(2o)

B(z) = ——— ,
1+B(zp)To(z)m

(2.6)

where m = ordB and T¢ = e (z —zy) /(1 — Z9z) for some 0, 0 < 0 < 21r.
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PROOF. The restriction of B on D\{zy} generates a holomorphic covering from
D\{zo} onto D\{B(z9)}. If @(z) = (z - B(zg))/(1 — B(z0)z), then the composition
@ o B generates an unramified m-sheeted holomorphic covering from D\{z,} onto
D\{0}. Consequently, there exists a biholomorphic map o : D\{zp} — D\{0}, such
that (¢ oB)(z) = g (z)™ (cf. [6]). Clearly, o0 = T¢ for some 0 : 0 < 0 < 2m, that is,
@(B(z)) = (To(2))™. Hence

- . 2.7)
1+B(z0)To(z)™

O

Let G be a compact abelian group. We assume that its dual G is isomorphic to a
subgroup I' of R. The big G-disc Ag over G is the compact set obtained from the
Cartesian product [0,1] x G by identifying the points in the fiber {0} X G. The group
G ~ {1} X G C Ag is the topological boundary of A¢. If T = Z, then G = 7 = T, and the
big G-disc algebra A coincides with the classical disc algebra. We list here some of
the basic properties of Ag.

(a) Ag is a maximal Dirichlet algebra.

(b) The maximal ideal space .4, of A is homeomorphic to the closed big disc Ac.

(c) The Gelfand transformation X% of a character x4, a € I'. on A¢ is the function
X4(rg) = x*(g)r*, where rg € Ag.

(d) The origin O = ({0} xG)/({0} X G) in A¢ is a one-point Gleason part for Ag.

(e) The group G = bAg is the Shilov boundary of Ag.

(f) Any automorphism T of Ag, G # T is generated by a pair (g,¢) such that g €
G and @ : T — T is an automorphism that preserves I, that is, T = T(4,p), Where
T (X% = (XP @ (g9))x?@. The automorphisms of A¢ in the case when G = T are
the Mobius transformations of the unit disc.

3. Blaschke inductive limit algebras. Let A = {dx};_, be a sequence of natural
numbers. Suppose that my = H;‘:] dj, mo = 1, and denote by 4 the abelian subgroup
of Q, that is, generated by the numbers 1/my, k € N. The group I'y can be expressed
as the inductive (direct) limit of groups Z, namely

2 3 4 3
7, g, g, S, Sy, 3.1)

where C,’f“(mk) = dy - my, my € Zy = Z. The corresponding dual groups form an

inverse (projective) sequence of unit circles, whose limit is the compact abelian group

Gy = fA, that is,

5
T4

2 3 4
W1<T_11I2<T_21Tg<7_31y4._..._GA' (3.2)

Here T; = T are unit circles, and T£*!(z) = (C¥*1)"(2) = z9%. Indeed, Tf*!(eit™) =
QT m) — itdym — (pitm)d for every eit™ e Ty = 7.

There arises a conjugated inductive system {A(Tg), i’,j“},‘f:l of disc algebras A(T)
linked by homomorphisms i{*! = CTll<<+1 FA(TR) = A(Tger) iK1 (f) = foTi™!, that s,
(KL (F)(2) = f(z%) for z € Tyy1.

Consider the extensions T,’j”(z) = z%% on Dy. The limit of the inverse sequence
(D, 7¢ ™13, lim,  {Dy, T} is the big Ga-disc Ag, = ([0,11X GAN{0} X Ga) over the
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group G, = fA. There arises an analogous inductive system {A(Dy), i’,j*l}j"’ of algebras

A(D) = A(T) and connecting homomorphisms i’,j“ : A(Dy) — A(Dy41) defined as
before by
if“ = Czdk! that is, (il,:+1 (f))(z) = (f(z))dk. (3.3)

The elements of the component algebras A(Dy) can be interpreted as continuous
functions on Ag,. The uniform closure

[@{A(k),czdk}} (3.4)

k— oo

in C(A_GA) of the inductive limit of the system {A(k),Cde teo1, as well as the cor-
responding restriction algebra [@k_m{A(Hk),Czdk }1 is isometrically isomorphic to
the big Gs-disc algebra Ag,, that is, to the algebra A(A¢,) of generalized G4-analytic
functions on the big G -disc AGA (see [10]).

In a similar way, if {K;};?, is a sequence of compact subsets in the complex plane C
with 'rl”1 (K1) =K; for everyl € Z, then the closure of the inductive limit li_n}llﬁm {A(Ky),
C,a }in C(¥) is the algebra of generalized G 5-analytic functions A(J) on the compact
set I = 1<ir_nlqoo {Kl,'rl”l} in the big G-plane Cg, over the group G, (see [9]).

Consider an inductive sequence of disc algebras

AT -1 ATy L Ay 2 (3.5)

that are linked by the embeddings i’,j“ A(Ty) —» A(Tg41). We have that Mi'kf*l(A(Fk)) =

D, and also 8(1”,§+1 (A(Ty))) = T. According to the remarks following Lemma 2.1 there
are finite Blaschke products By : D — D such that i’,ﬁ“ = Cp, for every k € N, that is,

iKTL(f) = Cp (f) = foBy, (3.6)

where By (z) is a finite Blaschke product.

Let b = {Bx};_, be the sequence of Blaschke products corresponding to i’,j”, that
is, Cg, (f) = i’;ﬁ“(f)-

Consider the sequence A = {di};_; of orders of Blaschke products {Bx};_, and
let Iy € Q be the group generated by the numbers 1/my, my = H{‘zl d;, mo =1,
k=0,1,2,.... By 3 we denote the standard d-sheeted lifting of the unit circle T in
the Riemann surface %y of the function z!/4, Clearly 9 = T, and the diagram

Tk <—Tkn

By
Tk \L

T<=—"T
By

-

T+l (3.7)

commutes for every k = 0,1, 2,..., where 11y be the natural covering mapping . : Ty —
T. The inverse sequence of circles

A, B B, B, (3.8)
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is isomorphic to the inverse sequence
Ty —m Jy g g, (3.9)

where §k’s is the natural lifting of By to .
Let again TX"1(z) = z9%, and "' (z) be the natural lifting of Tf*! to Jy. Clearly,

the diagram
Tk
Tk \L
T

commutes for every k € N. The inverse sequence (3.9) is (topologically) isomorphic to
the sequence

<~ Tk
f£+1

l"k“ (3.10)
T

<
TE*l(z):zdk

) 2 =4 =5
T T5 A

J)—TJp —TJg ——TFJg— -+, (3.11)
which on its own is isomorphic to the sequence
2 3 4 5
U1<T_11IZ<T_2134T_31I4L...4_GA, (3.12)

Consequently, the set %, from (3.8) is homeomorphic to the group Gx. For the dual
sequence we get

n2 B Gi=Thca (3.13)
We have obtained the following result.

LEMMA 3.1. The inverse limit l‘ir_nkﬁoo{Tk,Bklvk} =%y in (3.11) can be equipped with
the structure of a compact abelian group isomorphic to G, whereT, = @A cQ.

Consider an inverse sequence

- B - B - By = B
D; =Dy -2 D3 —— Dy — .-, (3.14)

where b = {Br};_, is a sequence of finite Blaschke products. The inverse limit %, =
@k%@ {Dy, By} is a Hausdorff compact space. The limit of the adjoint system {A(Dy),
Cg, }7 of disc algebras A(Dy) linked by the homomorphisms

Cg, : A(Di) — A(Dis1) : (Cr () (2x+1) = f (Bi(2k+1)) (3.15)

is an algebra of functions on %, and its closure

A(b) = [li_n}{A(k),CBk}} (3.16)
k— o0

in C(%y) is called the Blaschke inductive limit algebra corresponding to the sequence
b = {Bx}y., of Blaschke products. Note that A(b) is isometrically isomorphic to the
restriction algebra [li_rr}lﬁ00 {A(Tg),Cp, .
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PROPOSITION 3.2. Let b = {By};_, be a sequence of finite Blaschke products and
let A(b) = [li_r}nkqoo {A(Ty),Cg,}] be the corresponding inductive limit of disc algebras.
Then

(i) A(b) is a uniform algebra on the compact set %), = liﬁlkﬁm {Dg, B} -
(i) The maximal ideal space of A(b) is Dy.

(iii) A(b) is a Dirichlet algebra.

(iv) A(b) is a maximal algebra.

(v) The Shilov boundary 4, C %y of A(b) is a group isomorphic to the group G,
whose dual group @A is isomorphic to the group Ty = Uy_o(1/my)Z C Q, where my, =
1_[{(:1 d;, mo =1, and dy = ord By.

Indeed, under our hypothesis By maps Ty+; onto Ty and Dg,; onto Dg. Since the
Shilov boundary of every component algebra A(Dy) is the unit circle Ty, and the max-
imal ideal space is the disc Dy, then the properties (i)-(iii) follow from the general
results of inductive limits of uniform algebras (e.g., [7]). The maximality of A(B) is a
consequence from the following result.

PROPOSITION 3.3. Every inductive limit of maximal algebras is a maximal algebra.

PROOF. Let A = [@UEZ {A7,i7 1], where A% are maximal algebras. If M, is the
maximal ideal space of A%, then by (i) M4 = 11110 {Mg, (ig)* }.Fix h € C(M)\A and sup-
pose that the algebra A[h] generated by A and h differs from C(M4). Clearly, A[h] =
(lim {A%[hs], (ig)**}]. Let g € lim_{A“[hs], (iT)**1\A, and consider the algebra
Algl c A[h].Wehave thatg = {{g}sesx, go € CMo)} €lim _ {C(Mo), (i5)**FNAC
C(M4)\A. Since iT. (A7) C A™ and g ¢ A, it follows that g7 ¢ A? for every o € 3. By
the maximality we have that A%[g°] = C(My), o € 2. Consequently, A[h] D Alg] =
[@U{A”[g], (ig)**}1 = [li_ngU{C(Mg), (i5)**}]1 = C(M4). This shows that A is a max-
imal algebra. O

We end this section with the following property of big G-disc algebras.

THEOREM 3.4. Let G be a compact abelian group whose dual group Gis isomorphic to
a subgroupT of R. The big G-disc algebra A¢ can be expressed as a Blaschke inductive
limit of disc algebras if and only if T is isomorphic to a subgroup of Q.

PROOF. The first part of the theorem follows from Proposition 3.2. Let G=TcQ
and let {a;};>, be an enumeration of I'. Without loss of generality, we can assume that
ar=1.Letl'=72,T2=7+a»Z,T3 =7+a»>Z+asZ, and so forth. Since Z c T and T* is
isomorphic to Z, there is a my € N, such that T* = (1/my)Z. By I'* c T*k+1 we have that
dk+1 = (Mys1) /My € Z. The inclusion ik*! : T* — T¥+1 generates a mapping iK™ :7 — 7
such that i¥*1(1) = dj.1, thus lk*l(n) di+1-n, n € Zy. Clearly, the group

IIZ

Dmi z=lim{r*,i{""} cQ (3.17)

k—oo

is generated by the numbers 1/my, k € N. As we saw at the beginning of this section,
the Blaschke inductive limit [hm JHA(T), C 4, } ] corresponding to the sequence A =
{dx}7° coincides with the big G/\ dlSC algebra Ag,,. O
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THEOREM 3.5. Let b = {By};_, be a sequence of finite Blaschke products on D with
no more than one critical point z(()k) and such that Bk(z(()k”) ) = z(()k) for n big enough.
Then the algebra A(b) is isometrically isomorphic to the big G »-disc algebra Ac ,, where

A ={dk}y_,, dx = ord By.

PROOF. Without loss of generality, we can suppose that the hypotheses hold for
every n € N. Lemma 2.2 implies that for every Mobius map @ on D with (pk(z(()k)) =0
there exist another Mébius map @1 on D such that the diagram

-
By

Pk k+1 (318)

<
S <—

-
2%

becomes commutative. Hence, @y o By = (@i.1)% and (pk(z(()k)) = 0. Take @y to be
the identity on D. Lemma 2.2 allows us to define inductively a sequence {@y}y., of
Moébius maps on D. Every @y generates an isometric automorphism Cyp, On A(D) such
that the conjugate diagram

CBk
A(D) —— A(D)
ngkT Tcd)kﬂ (3.19)
Ca

A(D) —% A(D)

commutes, that is, Cp, o Cp, = Co,,, © C,4, . Therefore, the inductive sequences

A(D) —2 A(D) —2 A(D) —2 - — A(D), (3.20)
where Cg, (f) = f 0By, and
AD) 22 A(D) 22 A(D) 22— Ag,, (3.21)
where C_a, (f) = f (z4), are isomorphic. Consequently,
A(b) = [@{A(k),cgk}} = [@{A(k),Czdk}} = Ag,. (3.22)
k—co k—co O

COROLLARY 3.6. If there is a Mébius transformation T, such that (t='oByoT)(z) =
2% @i (z), k =1,2,3,..., where @y are Mébius transformations and dy > 1, then the
algebra A(b) is isometrically isomorphic to the big G-disc algebra Ag, where G is the
group generated by the numbers 1/my, my = H{Ll d,my=1,k=0,1,2,....

COROLLARY 3.7. If every Blaschke product By in Theorem 3.5 is a Mobius transfor-
mation, then the algebra A(b) is isometrically isomorphic to the disc algebra Az = A(T).

Indeed, Theorem 3.5 implies that in this case A(b) = Ag, with A = {1,1,...}. There-
foreTy =7 and G5 =T.
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As Theorems 3.4 and 3.5 show, certain classes of algebras of G-generalized analytic
functions can be expressed as inductive limits of disc algebras. Actually, any algebra of
generalized G-analytic functions can be expressed as inductive limit of an, in general
not necessarily countable, inductive spectrum of disc algebras.

4. Annulus type Blaschke algebra A(b)["1], Let D" = {z e C:7 < |z| < 1},
and bD"! = {z € C: |z| =7 or |z| = 1}. Denote by A(D["!1) the uniform algebra of
continuous functions on D11 that are analytic in the interior. Note that A(D["-11) =
R(DI"11), the algebra of continuous rational functions on DI":1!, By a well-known result
of Bishop, the Shilov boundary of A(D!"!1) is bD["-!1 and the restriction of A(D["-11)
on bD!"11is a maximal algebra with codimRe(A (D™ !1)|,pr17) = 1. These results have
been extended to the generalized G-analytic case in [5]. Namely, let G be a compact
abelian group whose dual group is isomorphic to a subgroup I of R. Let A[V A =[r,1]x
G, 0 < ¥ < 1 be the r-annulus in the big G-disc Ag, and let R(Ag‘l]) be the uniform
algebra on A[V 1 generated by the functions ¥4, a €T, defined in Section 2. Then

(@) A is the maximal ideal space of R(Al"!).

(b) bA” = (7,11 xG = ({r} xG) U ({1} X G) is the Shilov boundary of R(AZ").

() R(A[T 1]) is a maximal algebra with codlmRe(R(A[T 1])I 7,1]) =1.

Consequently, the algebra R(A[V 1]) coincides with the algebra A(A[V 1 ) of continu-
ous functions on A[V 1 that are locally approximable by generalized G-analytic func-
tions in the interior of AL"!,

Let A = {dx}§_, be a sequence of natural numbers and Tf*!(z) = z%. Fix r € (0,1]
and for every k € N consider the sets

Ee =D =z e Corlim < |z <1} = (120 Tdo- -0t ) (DM, (4.1)

where my = H{‘ZI d;, mg = 1. Hence, there arises an inverse sequence

3
T4

4
pril T g, g T 4.2)

of compact subsets of D. Consider the conjugate inductive sequence

C C C
ADM) = A(E) =2 A(E) —=2- - 4.3)

where the embeddings C,a; : A(Ex-1) — A(Ey) are the composition operators by 2%,
namely,

(Coa 0 f)(2) = f(2%). (4.4)
Let G denote the compact abelian group whose dual group I'y = G is the subgroup of
Q generated by the numbers 1/my, my = ]‘[{‘:1 d,mo=1,k=0,1,2,....

LEMMA 4.1. The uniform algebra [lim {A(Ek),Cde }1 is isomorphic to the algebra

A(A[r ) of G-analytic functions on A; [ 1].

PROOF. Let ay = 1/my, where as before m; = ]_[l 1di, mo = 1. Consider the
algebras AK(AZY) = {go g™ : g € A(Ek)} c A(AT) k= 0,1,2,.... Clearly,
Ak(A[r Uy ¢ Ak*l(A[r 1y and A(A[V o1 = [Ur- OAk(A[Y 1. There arises an inductive
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sequence
A0<A[rll>(_> Al(A[rl])(_> Az( rl])(i> A G A(A[Gy’l]), (4.5)

where jK*1 is the natural inclusion of Ak(A[r 1 into A"“(A[Gr’l]). The inductive
sequences (4.3), and (4.5) are isomorphic. Indeed, ¥% maps Ag’l] onto Eg, and the
mapping @ defined by (g o X*) = g maps isometrically and isomorphically
Ak(A[T 1y onto A(Ex). In addition, k2o @y = qgk”lAk(AEj'”) = Qi1 0 jKT2, that is,
the diagram

Ak(plrn) 2 Ik Ak (plr)

q)ki iq)ku (4.6)
k+2

L1

A(Ex) —— A(Ek+1)
commutes. Therefore (4.3) and (4.5) are two isomorphic sequences, and thus

() = | Ul | | faeale). i3} = [ it} -

— 00

Let now b = {By};_; be a sequence of finite Blaschke products on D and let dy =
ord By. Define inductively the sets

Fu=B;" (Fy-1)={2€C:By(2) €Fy 1} = (BioBao---0By) ' (DY), Fy=D. (4.8)

Consider the following conjugate sequences

[1’ 1] F ‘—FZ <_F3 - — gbl[;”l] Cgbh, (49)
: Cs.
AU P AR S A(R) B (4.10)

where (Cg, o f)(2) = f(Br(2)).

THEOREM 4.2. If the Blaschke products B,, do not have critical points on F,, for
any n € N, then @) ~ AZ!! and the algebra A(D)"V) = [lim, {A(Fn),Bn}] is
isometrically isomorphic to the algebra A(A[Y .

For the proof we need the following version of a well-known result about Riemann
surfaces.

LEMMA 4.3. Suppose that the dy-sheeted holomorphic covering By : Fy — Fx_1 does
not have critical points, and there exist a biholomorphic mapping Y_1 from Fy_1 onto
Ex_1. Then there exist a biholomorphic mapping Yy, : Fx — Ey such that the diagram

Fyy<=—Fx

By
ll/kli i‘lr‘k 4.11)
Ex 1 <=—Ex
2%

is commutative, that is, Y1 o Bx = (@)%, where dj = ord By.
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PROOF. The function z% generates a bijection % from Ey onto the di-sheeted
covering Ek,l over Ey_;. Likewise, the map (k-1 o By : Fx — Ex—1 generates a bijection
(Wi_10°Bx)" from F to fk,l. Therefore the map Yy = (2;5)’1 o (Wy_10By)" is a bijec-
tion from Fj onto Ei. Since all component mappings of gy are locally holomorphic,
SO is Y. O

PROOF OF THEOREM 4.2. Let ¢ be theidentity map on D11 = Ey = Fy. Lemma 4.3
allows us to define inductively biholomorphic mappings @y : Fx — Ex for every k € N
such that (y_1 0By = ()%, Consequently, A[Gy’l] =lim {Ep, 2z} = lim  {Fn,Bn}
= QDL“] C 9p. The conjugate map Cy, maps the algebra A(Ey) isometrically and iso-
morphically onto A(Fy). Hence the inductive sequences (4.3) and (4.10) are isomorphic,

and therefore,

A(b)[r,1] = [@{A(Fk),cgk}] . [h_r,n{A(Ek),de}} =A(ad"). @)
k—o0 k— oo O

In the setting of Theorem 4.2 the listed below properties of the algebra A(b)["!!
follow directly from Theorem 4.2, Proposition 3.3, and the results in [6].

(a) The maximal ideal space of the algebra A(b)!"!l is homeomorphic to the set
Al

(b) The Shilov boundary of A(b)"-!! is the set loAE;y‘” ={r,1} xG.

(c) A(b)I"1] is a maximal algebra on its Shilov boundary.

(d) codimRe(A (D), rr) = 1.

(e) One-point Gleason parts of A(b)"!) belong to the Shilov boundary bA"'.

5. Local structure of Blaschke inductive limit algebras. Let F be a closed subset
of the unit disc D. Denote by A(F) the algebra of all continuous functions on F that
are analytic in the interior of F. Recall that A(F) coincides with the uniform closure
on F of the restrictions of Gelfand transforms of the elements in A(T) on F. That is,
A(F) = A(D) .

Let b = {B1,Bo,...,B;,,...} be a sequence of finite Blaschke products on D and let
0 <r < 1. Consider the following compact subsets of D : Dif) =B;! (Dif,)l), forn=>1,
D" = D07 = {z € D:|z| < ¥}. There arises an inverse sequence

D071 <B—1D§Y) ,B;ZDE”) ,B_3D§V) B (5.1)
of subsets of D. The inductive limit
A(b)10r] = [h_r,n{A(D;”),CBM}] (5.2)
n—oo

is again a uniform algebra on its maximal ideal space @kﬁw {D&” ,Bni1 |D‘” } = QDE,O'H c
9p. Every Blaschke product

B(z) = ewnzzl ( 12—;2;(](2)’ |zk| <1, (5.3)
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of order n generates an n-sheeted covering over each simply connected domain V ¢ D
that does not contain critical points of B. Thus the set F = B~1(V) ¢ D is biholomor-
phic to the collection of n copies of V, thatis, F = V X F,,, where F, = {1,2,...,n}, and
the algebra A(F) is isomorphic to a subalgebra of the algebra

AMWV)=A(V)BA(V)&---0A(V) = A(V XFy), (5.4)

where A(V x Fy,) is the algebra of all continuous functions f(z,k) on V x F, such
that f(-,k) € A(V), k =1,2,...,n. Clearly, V x F,, is the set of maximal ideals of the
algebra A(F), and A(F) |y = A(V) for every k = 1,2,...,n. Hence A(F) c A (V) =
A(VXFp) C C(VXFEy).

The space C(F,) can also be considered as a subalgebra of A™ (V) consisting of all
functions f € A™ (V) that are constant on the sets V x {k}, k € F,.

PROPOSITION 5.1. Let b = {B1,Bo,...,B,,...} be a sequence of finite Blaschke prod-
ucts on D and let O < v < 1. Suppose that the set D\ does not contain critical points of
B, for every n € N. Then

(i) There is a compact Cantor set Y such that My 0 = QDE,O‘” = l(iglkaw{D&”,
B,/ DLP} is homeomorphic to the Cartesian product D171 x Y.

(i) The uniform algebra A(b)1°"1 on QDLO‘Y] is isometrically isomorphic to an algebra
of functions f(x,y) € C(DI®"1xY), such that f(-,y) € A(DI") for every y €Y.
(iii) AD)OT g0y = ADIOTY) forevery y €Y.

PrROOF. Consider the inductive sequence

C
LA(DY))

Cpy

C
A(plor) ADS)) =2 o plor], (5.5)

Since the set DYy, = B} (Di,?,l) is biholomorphic to D% x F,,, for n > 1, there arises
a mapping ji : DI®"1 x Fp,, — D71 x Fy,, | such that the diagram

(r) (r)
Dk*l B Dk

k
Ikll llk (56)

plor] X Fy,_ (T plo.r] X Fin,,

commutes. Note that jx maps D! onto DI®"), and F,,, onto Fp,, ,.Hence, the con-
jugate diagram

() Cy (r)
A(D) > A(D")
Cryy T Tclk (5.7)
c

J
A(DIOT X Fpy ) —> A(DIO7] X Fpy, )
is commutative for every k € N. Therefore, the inductive sequence (5.5) is isomorphic
to the sequence

A([O,V]) ., A([D)[O’” X Finy) 2, A([OJ’] X Fin,) S (5.8)
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Consider the inductive sequence

Cj3

Cj C;
C— C(Fpm,) =2~ C(Fm,) (5.9)
of restrictions of A(D'*"!x Fy,, ) on Fyn,. Let B=[lim __{C(Fpm,),Cj,,, }]. A straight-
forward check shows that B is a commutative C*-algebra. Therefore B = C(Y), where
Y = @naw{an! Jnlrm, } is a Cantor set. Note that the inductive sequence (5.1) is
isomorphic to the sequence

plort L plorlx F, L2 DO xF,, LD xF,, L ... — DOy, (5.10)

Clearly, the algebra A(b)!0"] = [li_r}nnqoo{A(DL”),CBnH}] - [li_ngnﬁm{A([D)[o'V] X F,,),
Cjn.1 11 is a subalgebra of A(D*") xY) such that A(b)!%" |00, = A(DIO7) for
every y €Y. O

Note that the set Y here is homeomorphic to {{y»}5_1, Yn € (BioByo---0B,)~1(0)}.
Since
b@io,r] _ @{bDT(’LT)’B”uD%)} ~T, XY, (5.11)

n—oo

Proposition 5.1 implies the following corollary.

COROLLARY 5.2. In the setting of Proposition 5.1, the only one-point Gleason parts
of the algebra A(b)!1°") are the points of the Shilov boundary b®\"" ~ T, x Y.

PROPOSITION 5.3. Let b = {B1,Bo,...,By,...} be a sequence of finite Blaschke prod-
ucts on D, and let 0 < v < 1. Suppose that
(a) For every n € N the points of the set (ByoByo---0By,)~1(0) are the only singular
points for By, in DY
(b) All points in (a) have one and the same order d,, > 1.
Then
(i) There is a compact Cantor set Y such that Mg, = @) = 1ir_nkﬂm{D§f),
Byl DLL”} is homeomorphic to the Cartesian product Ag)/;r] XY, where A = {dy}y_, is the
sequence of the orders of By.
(i) The uniform algebra A(b)"*" on@,°"" is isometrically isomorphic to an algebra
of functions f(x,y) € C(Ag)/“r] xY), such that f(-,y) € A(AE?A'”) foreveryy cY.
(i) A(D)IO7 | y001(yy =AMLY forevery y €.

PROOF. Theset (BjoBso---0B,)~! (Dﬁl”) C D is biholomorphic to the collection of
m,, copies of Dﬁf), thatis, F = Dﬁf) X Fmps Fm, = 11,2,...,my}. In addition, the algebra
A(F) is isomorphic to a subalgebra of the algebra

Amn) (D) = A(DT) e A(D )@ --- @ A(DT) = A(DY) X Fy,,). (5.12)

Moreover, A(F) |0\, = AD) forevery k = 1,2,...,my. Hence A(F) c Atmn) (D)
= A(DY’ X Fp,) C C(DY) X Fp, ), while D) X Fyy, is the set of maximal ideals of A(F).
Consider the space C(Fy,) as a subalgebra of A™n)(D{) consisting all of functions

f € Amn) (D) that are constant on the sets DY’ x {k}, k € Fp,, . As in the proof
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of Proposition 5.1, B = [li_r’nnqoo{C(an),Cjnﬂ}] = C(Y), where Y is the Cantor set
liLnnqoo {Fimy,,JnlEm, }> and (5.1) is isomorphic to the sequence

DIO7] I plOr X F,, S pIOFIFy, S ATy (5.13)
Consequently, the limit QDLO’T] of the inverse sequence (5.1) is isomorphic to A[C?/“V] X
Y. Moreover, the algebra A(b)[07] = [h_f,nnaoo{A(Dy))’CBnﬂ}] is a subalgebra of

0, N 0,
C(A[GAY] xY) such that A(b)0"] ‘A[é)/,\r]x{y} = A(A[GAT]) for every y €Y. 0

Note that, as before, the set Y is homeomorphic to the set

{n}p-1s Yn € (BioBao-+-0By) " (0)}. (5.14)
Proposition 5.3 and (5.11) imply the following corollary.

COROLLARY 5.4. In the setting of Proposition 5.3, the points of the Shilov boundary
bEDE,O’V] = G, XY and of the set {O} XY, where O is the origin of the big G-disc A_GA are
the only one-point Gleason parts of the algebra A(b)"],

Corollary 5.4 implies that A(b)[%"] is isometrically isomorphic to a big G-disc alge-
bra if and only if the set Y consists of one point.

COROLLARY 5.5. In the setting of Proposition 5.3 the algebra A(b)!%"1 is isomorphic
to a big G-disc algebra if and only if every Blaschke product B,, has a single critical

point z\"” in DY’ such that B, (z") = z§** for all n big enough.

6. One-point Gleason parts of Blaschke inductive limit algebras. A celebrated
theorem by Wermer states that in every non-one-point Gleason part of the maximal
ideal space of a Dirichlet algebra one can embed an analytic disc. Therefore it is of
some importance to identify the one-point Gleason parts of an algebra, and especially
those of them that do not belong to the Shilov boundary.

Given a sequence of finite Blaschke products b = {B,, },;_; on D consider the Blaschke
inductive limit algebra A(b) = [li_r>nkaoo {A(Dk),CBk}] on the compact set %, =
@kaw{Dk’Bk}’ where Cp, (f) = f o Bi. Recall that the Shilov boundary of A(b) is
the group %, = @kﬁw {Tk,Bx}. Let B, be the set of all Blaschke products on D whose
zeros are inside the disc D, = {|z| < 7}, and let B2 C B, be the set of those products
that vanish at 0. In this section we prove the following theorem.

THEOREM 6.1. Suppose that B,, € B% and ord B, > 1 for everyn € N. Then A(b) has
only one one-point Gleason part in the set %, \%p.

We proceed with the proof by several lemmas. Given two points m; and m; in %,
consider the Gleason metric

d(mi,mz) = sup  |[mi(f)-ma(f)]. (6.1)
feAy, Ifll<1

LEMMA 6.2. Letmy = (z1,22,...), where zy = Bx(Zk+1), and my = (wy,w>,...), Where
wy = Bx(wy+1), be the inverse representations of m, and m;, € 9y, correspondingly.
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Then
4d(m1,m2)

4+d?(mq,mp) T ke 6.2)

Zp — Wi ‘
1—-wrze |

PROOF. Let zy, wy € D denote the restrictions of 1, and m» on A(Dy), respectively.
Define

di(mi,mz) = sup  [mi(f)—ma(f)] = d(zx, wi). (6.3)
fEADy),IIflI<1

Since Cg, (A(Dy)) C A(Dg+1) and Ap = UT A(Dg) we have

di(mi,mz) < dis1(my,my) <d(my,ms),

d(my,my) = Ilim di(mi, my). ©4)

Note (see [4]) that
4dy (my,mo) _ | Zk—wk 6.5)

4+di(’l’l’l1,1’l’lz) 1-wizi | ’
Consequently,
4d(mi,my)  4di(mi,my) | zZe—wi '

_ AL R — =] —_— . 6.6
4+d2(my,my) k-~ 4+di(mi,my) klglo 1—-wirzk ( E])

LEMMA 6.3. Forevery ¢ € [0,1] let (@) = SUP ;) <, |z/<0 1(Z—20)/ (1 —202)|. Then

max |B(2)| < («())”"* (6.7)
<@

Iz|
for every B € B,..

PROOF. By the well-known properties of Mobius transformations, we have that
x(e) <1 and x(g) =1 only if ¢ = 1. Consequently, if |z| < g, then for any B € %,

n
1—[ ( zZ—2 )
k=1 1—202

Observe that because B,,(0) = 0 for every n € N, the point O = (0,0,...) belongs to
the maximal ideal space %, of A(b).

|B(2)| = < (ax(0))". (6.8)

O

PROPOSITION 6.4. Suppose that B, € B and ordB, > 1 for every n € N. Then
0 =(0,0,...) is a one-point Gleason part of A(b) in D,\9p.

PROOF. Let m = (z1,z2,...) be a point in %), and let 4(O,m) = d. By (6.2)

4do,m) B )
T 20.m —im|zn| = =csl (6.9)

According to the Schwartz lemma |z,,| = |B(zy,+1)| < |zn+1l, and hence |z,| < ¢ for
every n € N. Thus,

)BTl ex(e),  (6.10)

By
S (

|Zn| = |Bn(zn+l)’ = |Zn+1| Zn+1) < |Zn+1{((x(c)
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and consequently,
C:}lifn |zn| <calc) <c. (6.11)

Therefore x(c) =1, and thus 1 = ¢ = 4d/(4+d?), thatis, d = d(O,m) = 2, that is, m
and O belong to different Gleason parts. O

It remains to show that O is the only one-point Gleason part of A(b).

LEMMA 6.5. LetW be a simply connected domain such thatD, C W C D. LetK = D\W
and Kg = D\B~Y(W). If the boundary bW of W is a piecewise smooth curve, then the
covering map Kg — K generated by the Blaschke product B does not have singular
points.

PROOF. let z; € K. Consider a simply connected domain W, W c W c D with a
piecewise smooth boundary bW that contains zo. As a pre-image of a simply connected
domain, B~! (W) alsois a simply connected domain with a piecewise smooth boundary
bB~1(W) = B~1(bW). Since all zeros of B belong to D, ¢ W c W, the Argument Princi-
ple for analytic functions implies that every turn along bB~! (W) generates ord B turns
along bwv. Therefore, card(B~'(zy)) = ordB, that is, zo is not a critical point for B.

O

PROOF OF THEOREM 6.1. Because of Proposition 6.4 it remains to show that the
point O = (0,0,...) is the only one-point Gleason part for A(b). Let m € @, m =
(z1,22,...,2Zn,...) = O.As we saw in the proof of Proposition 6.4, |z,,| < |zkx+1| for every
n €N, and lim;, .« |z, | = 1. Therefore, without loss of generality we can assume that

Zi| >r+e, wheres:l_—r. (6.12)
2

Consider the simply connected domains

Wi =By (W), Wo = Driep,

(6.13)

Ko = DIOr+e/2l) Kns1 =By (Kn) = Dp\ Wyt
Lemma 6.5 implies that B;,, has no singularities on K 1. According to Theorem 4.2,
A(b)"11 is isomorphic to A(A[GYA‘”). Clearly Ay p)ir11 € Dp, and A(b) |, () 18 @ uni-
form subalgebra of A(b)["1). The point m belongs to the interior of Jl, .11 since
z, € IntK, for every n € N.

If we assume that m is the only point in its Gleason part with respect to A(b), then

sup |f(m1) —f(m)| > sup |f(m1)—f(m)| =2 (6.14)
feAD)II | fllo=1 feAD), fllo=1

for every m; € Myy)r11, that is, m is the only point in its Gleason part for A(b)tr1l]
a contradiction. Hence, m does not belong to any one-point Gleason part of A(b)["11,
O

COROLLARY 6.6. Let B € B, B(0) # 0, and By(z) = z% B, dy > 1. Then A(b) has
only one one-point Gleason part in the set 9,\%y,.
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7. Blaschke inductive limit algebras and big G-disc algebras. Throughout the pre-
vious sections we obtained certain relations between Blaschke inductive limit algebras
and big G-disc algebras (Theorem 3.4, Corollary 5.5). The main theorem in this sec-
tion provides necessary and sufficient conditions for a Blaschke inductive limit alge-
bra A(b) to be isometrically isomorphic to a big G-disc algebra in the case when all
Blaschke products By : D — D in the generating A(b) sequence b = {By} are equal. If
this is the case, we will denote the Blaschke inductive limit algebra [li_n’lkaoo {A(D),Cg}]
by A(B) rather than by A(b).

PROPOSITION 7.1. Let B be a finite Blaschke product with B(0) = 0. If the Blaschke
algebra A(B) = [li_r}nkq00 {A(D), Cg}], is isometrically isomorphic to a big G-disc algebra,
then necessarily B(z) = cz™, wherec € C,|c| =1, and n € N.

We precede the proof of Proposition 7.1 by several lemmas.
LEMMA 7.2. Consider the defining A(B) inductive sequence

A B, CBp, S (7.1)

where B(0) = 0 and Ay = A(Dy). For every n € N there exists an automorphism I, :
A(B) — A(B) such that
In(il (Al)) = in(An)s (7.2)
where i, : A, — A(B) is the natural imbedding.
PROOF. We prove the result for I». For n > 2 the proof follows the same lines. For
every n € N consider the identity mapping I} of A, onto A,.;. For every n € N we

have that I} id(Dy,)) = id(Dy1), TR ()l = | fI| for every f € A, and henceforth the
diagram

Cp
Ap —=Apn1
Igli J/Igwl (7.3)
Cp

An+1 > An+2

commutes. Consequently, the given inductive sequence is isomorphic to

Ay —BAy SBp, S (7.4)
Clearly, there arises an isometric isomorphism from h_r}nkaoo {A(D), Cg} ontoitself, that
can be extended as an automorphism I, of A(b) = [lim, __{A(D),Cp}] onto itself. It
is straightforward to check that I, satisfies (7.2). O

COROLLARY 7.3. IfB(0) =0 thenO = (0,0,...) € Map) is a fixed point of the mapping
L : M) — Maes), that is, conjugate to the automorphism I, from Lemma 7.2.

PROOF. Observe that according to Proposition 6.4 and Corollary 6.6, the point O is
the only one-point Gleason part of the algebra A(B), that is, outside its Shilov bound-
ary. Since I, is an automorphism, it preserves the structure of the algebra A(B). There-
fore the point I} (O) is also a one-point Gleason part of A(B) out of the Shilov bound-
ary. Hence, I} (O) = O, as claimed. O
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The following result is probably well known.

LEMMA 7.4. Let X be a connected compact Hausdorff set and let y,, € C(X) be
such that lim,, .|| exp(yy,) — 1|| = 0. Then there are k,, € Z such that the functions
@n = Yy — 21Tk, 1 converge uniformly to 0 on X.

PrROOF. If ¢y, = u, + iv,, then exp(y,) = exp(u,)(cosv, + isinv,). B
lim,,_ | exp(y@y) — 1] = 0 we have that exp(u,)sinv,, — 0 and exp(u,)cosv, — 1
uniformly on X. It follows that exp(u,) is a bounded sequence on X and, conse-
quently, cosv, — 1, sinv,, — 0 uniformly on X. The connectedness of X implies that
for every n € N there is a k,, € Z such that ||v, — 21k, || < 1. Therefore, v,, —21k,, — 0
because of sinv,, — 0. Consequently, cos(v, — 2mky,) — 1, thus exp(u,) — 1, hence

n — 0, hence @,, = ¢, — 21k, i — 0 uniformly on X, as desired. O

Observe that the mapping i} : M4 — D conjugated to the inclusion i; : A(D) —
A(B) maps the Shilov boundary 0A(B) =%, onto T = 0A(D).

LEMMA 7.5. Let B be a finite Blaschke product with B(0) = 0. If S is an isometric
isomorphism from the Blaschke inductive limit algebra A(B) onto a big G-disc algebra
Ag, then the set (Soi,) (A(T)) contains necessarily a character X1 of the group G = 0Ag.

PROOF. Note that since |(S0i,)({d(T))| =1 on G, then (Soi,)({d(T)) = x1exp(),
where x; € G and @ € C(G), by the van Kampen theorem [12]. The Arens-Royden
theorem (e.g., [3]) assures that x; € Ag. We show that actually x; € (So1i1)(A(T)).

Let x be any fixed element in G NAg. Given an ¢ > 0 one can find an n € N so that
A((Soin)(A(T)),x) < &, where d(-,-) is the uniform distance in Ag € C(G). Hence by
(7.2) we have

d((Seir) (AM)),SI,'S7'x) = d (i1 (A(T),I,' S~ x)
=d((In°i1) (A(M),$"'x)
=d(in(A(T)),S7'X)
=d((Sein)(A(T)),x) <&,

(7.5)

where I,, is the mapping from Lemma 7.2. As an automorphism of the big G-disc
algebra Ag onto itself, SI,;'S~! maps x to a function of type cxo, where xo € Ag is
again a character on G, c € C, |c| =1 (see [1]). Therefore, for every & > 0 one can find
a character x: € G NS(A(B))|g such that

d(i1 (A(T)),S7 " xe) =d((Soir) (A(T)),Xe) <& (7.6)

By the van Kampen theorem for every n € N one can find m,, € Z, ¢, € C(T), and
X1/n € Ag such that

m Mn i 1
[[((Seir)(id™™(T)) expWn) — X1/ml|=|[(S o i1) (id(T)) eXp((5°ll)lI/n)—X1/nH<£y
(7.7)

where i, (z™" exp(Yy,)) € i1 (A(T)). Consequently,

mn , 1
[1(x0)™" exp (M@ +i1(n)) = Xunll < . (7.8)
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This can happen only if (x1)™" = x1,». Therefore, we obtain that

lexp (mag + ia (wa) 11| < - (7.9)

By Lemma 7.2 we have that the functions m, @ + i;(¢,) — 21k, i tend uniformly
to O for some k,, € Z as n — o. Note that i; (y,) — 21k,i € i1 (C(T)) € C(%y) =
[lim, _{C(T),B*}]. Consequently, [|@ + (i1(yn) — 21tkyi) /my | — 0, and hence @ €
i1 (C(T)). From (S 0 i,)(id(T)) = x1exp(g) we conclude that x; € (§01i;)(C(T)). It
remains to show that x; € (So1i;)(A(T)). Suppose that S~1x; ¢ i1 (A(T)) C i1 (C(T))
and take a g € C(T) such that i;(g) = S~'x%. Then g ¢ A(T), and the algebra A, =
[A(T),g] on T generated by A(T) and g equals C(T) by the maximality of the disc
algebra A(T). Observe that i1 (C(T)) = i1(Ay) = [i1 (A(T)), (S toiy)g] = [i1(A(T)),
Xx%] € i1(C(T)) N A(B)lg,. However, this contradicts the antisymmetry property of
the big G-disc algebra A = A(B). We conclude that S~1x; € i1 (A(T)), that is, x1 €
(Soiy) (A(T)). O

PROOF OF PROPOSITION 7.1. Let if : Mlap D be the conjugate map i (z1,22,...)
= z;, where (z1,22,...) € @k{D,B}. Note that i; (O) = 0. By Lemma 7.5 the set (S o
i1)(A(D)) NG contains a character X1 € G. Let S71x1 =[(h,hoB,hoBoB,...)] € AB),
where h € A(T). Note that for the Gelfand transform ﬂ we have 0 = Sfiz (0) =
(i1(h))(0) = h(if(0)) = h(0). Suppose that B(zp) = 0 for some zy € D. Then
ﬂ(o,zo,...) = h(0) = 0, and therefore (0, zg,...) = O since O is the only zero of
ﬂ in M4 ). Hence, zp = 0, that is, 0 is the only zero of the Blaschke product B.
Consequently, B(z) =cz™ forsome m e N, ce(, |c| =1. O

Theorem 3.5 and Proposition 7.1 imply the following result.

THEOREM 7.6. Let B be a finite Blaschke product on D. The Blaschke inductive limit
algebra A(B) is isometrically isomorphic to a big G-disc algebra if and only if B(z) is
conjugate to some power z'™ of z, that is, if and only if there is an m € N and a Mébius
transformation T : D — D such that (T"'oBoT)(z) = z™.

8. Inductive limits of algebras H*. Consider the inverse sequence

D, 2D, 2Dy Bop, Bl (8.1)
where Dy = D and I = {I1,1I>,...,I,...} is a sequence of non-constant inner functions
on D. The limit of the inverse sequence (8.1) we denote by %;. The inductive limit
li_rhnkﬁm{H,‘f,I,j‘}i" of the adjoint inductive sequence

If I¥ I
HY Y HY 2 HY = ... (8.2)

of algebras Hy’ = H* (D), where I} (f) = f oIy, is a subalgebra of BC (%), the algebra
of bounded continuous functions on the set %;. The closure H{) of @k_m{H ¥}
in BC(%y) is a uniform algebra. We call its elements I-hyper-analytic functions on %j.

Recall that according to the classical corona theorem for the space H® (Carleson,
[2]), given f1,..., fx, functions in H* with Z?d |fil = o > 0 on D, there exist functions
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J1,--., gk in H® such that Z’J‘-:lfjgj =1onD.If || fille <1, then g; can be chosen to
satisfy the estimates ||g;l|l < C(k,o0) for some constant C(k,o) > 0.
Here we consider and solve the corona problem for the algebra H,.

THEOREM 8.1. If f1,f>,...,fn, Ifjll <1, are I-hyper-analytic functions on %; for
which

| i) |+ -+ |fux)]| 28>0 foreachx € %y, (8.3)

then there is a constant K(n,d) and I-hyper-analytic functions gi,..., gn on @; with
llgjll < K(n,d), such that the equality

S1X)gr1 () + -+ fn(X)gn(x) =1 (8.4)

holds for every point x in the set %;.

Observe that the adjoint mappings Ij-‘ : HJ‘?o - Hﬁl are isometric isomorphisms;
and so are the mappings 15‘. H;"’ — Hp defined by l? = I;.‘ oI;f+1 o---oJF. Because of
(I7 (fN(z) = fU;(2)),z € Dj;1 forevery j € Nand f € H;", we have that (L?(f))(z) =
SUjelji10---0l)(z), where z € Di,;. Consequently, every component space HJ‘?o can
be embedded isometrically and isomorphically into li_n'lkaoo {H*, I} cH (n Via a natu-
ral mapping t; :H;" - H("}’) (see [7]). Moreover, if z* € Dy, then f(z*) = ((;(f))(x*),
where x* € 9 is defined as x* = (zy,2»,...,2;,...) with z; = z* and I;,(zn+1) = z,, for
n=j.

PROOF. Without loss of generality we can assume that || f;|| < 1/2 for all f; € H},
in (8.3) and that 6 < 1/2. Let C(n,5/2) be the corresponding Carleson’s constant and
let ¢ = max{1,C(n,5/2)}. By the definition of the space H{}, there are integers n; € N

and functions fj e H;’fj, such that
~ ~ S _
1fj = tn; (F)ll = sup | f5(x) = (tn; (f)) () | < 5, J=1,...,n. (8.5)
xedy 2cn

We may assume (by considering ¢;" (fj) instead of f\,:]') that all fj € Hj, for some m =
nj, j=1,2,...,n. By (8.3) for every z* € D we have

(tm (F1) ) [+ 4 [ (tm (Fn)) () |

~

= > 1f () =20 1 (*) = (tm () (x%) | (8.6)
j=1

i@+ | fulz®) ] =

where as before x* = (z1,22,...,2Zm,...) with z,, = z* and I,(zy.+1) = z,, for n >
m. Consequently, for the bounded analytic functions fi,...,f, on D we have that
[fil++ -+ |ful =86/2 >0 on D. In addition,

1l = om Lo = il 4 185 = e < sl 5o <10 8)



BLASCHKE INDUCTIVE LIMITS OF UNIFORM ALGEBRAS 619

According to the corona theorem for H* there exist functions hi,...,h, € H~ with
lhjlle < C(n,6/2) < c such that fih, + - -+ fuhy, =1 on D. Hence,

1= (flhl+"'+fnhn)(2*) = Lm(flhl"‘"""fnhn)(X*)

= (tn (F) tm (B1) + -+t (Fo) t () ) () .
on %y, and |ltm(hj)lle = [lhjll« < c. Note that while the function
F=fitn(h1) + -+ fatm(hn) € HY, (8.9)
may not be identically equal to 1 on %y, it is invertible in H;°. Indeed,
11 =Flle = || Xt (F)) tm (hy) = X fitm (h))
! ! - (8.10)

~ ) 1)
< %Hlm(fj) — fillolltm (Rj)]] < penh=5< 1.

Now the identity fi1g1 + -+ fugn = 1 holds on %; with g; = tn(h;)/F € Hfy, j =
1,...,n. Note that [|[F e < 1/(1 =68/2) = 2/(2=10), since |F(x)| =1-35/2 on %;
according to (8.10). Hence,

2c  2max{l,C(n,6/2)}

2-8 2-6 8.11)

1951l = Tt () [l [F I <

The proof is completed by choosing K(n,6) = 2max{1,C(n,6/2)}/(2-0). O

Consider the particular case when I = {z2,Z3,...,z"*1,...}. The corresponding set
9 then coincides with the open big disc Ag over the compact abelian group G = Q
(e.g., [11]), and the algebra Hj) coincides with the set H¢ of hyper-analytic functions,
introduced in [8]. In this case the result in Theorem 8.1 reduces to the corona theorem
for HZ with estimates, which straightens the result in [8].
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