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Abstract. Sequentially complete, locally complete, locally Baire, and bornivorously web-
bed are equivalent for strictly webbed spaces. For inductive limits of strictly webbed spaces
these properties are equivalent. Moreover, they imply regularity.
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1. Introduction. Throughout this note E is a locally convex space and E1 ⊂ E2 ⊂ ···
is a sequence of Hausdorff locally convex spaces with continuous identity maps

id : (En,τn)→ (En+1,τn+1), n∈N where τn is the topology of En. Their locally convex

inductive limit is denoted by indEn. A web W in a locally convex space E is a countable

family of absolutely convex subsets of E, arranged in layers. The first layer of the web

consists of a sequence (Ap : p = 1,2, . . .) whose union absorbs each point of E. For

each set Ap of the first layer there is a sequence (Apq : q = 1,2, . . .) of sets, called the

sequence determined by Ap , such that

Apq+Apq ⊂Ap for each q,
⋃{

Apq : q = 1,2, . . .
}

absorbs each point of Ap.
(1.1)

Further layers are made up in a corresponding way so that each set of the kth

layer is indexed by a finite row of k integers and at each step the above mentioned

two conditions are satisfied. Suppose that we choose a set Ap from the first layer,

then a set Apq of the sequence determined by Ap and so on. The resulting sequence

S = (Ap,Apq,Apqr , . . .) is called a strand. Whenever we are dealing with only one strand

we can simplify the notation by writingW1 =Ap ,W2 =Apq, and so forth, thus S = (Wk)
is a strand where for each k, Wk is a set of the kth layer.

Let S = (Wk) be a strand. Consider xk ∈ Wk and the series
∑∞
k=1xk. The space E

is webbed if the series
∑∞
k=1xk is convergent for any choice of xk ∈ Wk; E is strictly

webbed if
∑∞
k=n+1xk converges to some element in Wn for every n ∈ N and for any

choice of xk ∈ Wk; E is bornivorously webbed if it is strictly webbed and for every

bounded set A ⊂ E, there exist a strand (Wk)k and a sequence (αk)k ⊂ C such that

A⊂αkWk, for every k∈N [2, 6, 7, 9].

A disk A ⊂ E is an absolutely convex, bounded and closed set. Let EA denote the

linear span of A endowed with the normed topology generated by the Minkowski

functional ρ of A. This topology is finer than the topology inherited from E. If (EA,ρA)
is a Banach (Baire) space, A is a Banach (Baire) disk. A locally convex space is locally
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complete (locally Baire) if every bounded subset is contained in a Banach (Baire) disk.

E is a quasi-locally complete space if for each bounded subset B in (E,τ) there exists a

weaker locally convex topology ς = ς(B) on E and a Banach disk A in (E,ς) such that

B ⊂A [8]. Note that locally complete implies quasi-locally complete.

E satisfies the Mackey convergence condition if for every null sequence (xn)n ⊂ E,

there exists a diskA such that (xn)n is a ρA-null sequence. Finally, E satisfies property

K if each null sequence has a series convergent subsequence.

2. Bornivorously webbed

Lemma 2.1. Let (E,τ) be a bornivorously webbed space. Then for every bounded set

A⊂ E there exists a Fréchet space (F,γ) such that A is contained and bounded in F .

Proof. Let A ⊂ E be a bounded set. Then there exist a strand (Wk)k ⊂ W and a

sequence (αk)k ⊂ C such thatA⊂αkWk, for every k∈N. Consider EWk = span(Wk) and

F =⋂k∈NEWk . Let {F∩(1/k)Wk : k∈N} be a fundamental system of neighborhoods of

zero in F . This topology is metrizable and finer than τ . We will see that it is complete.

Let (xk)k ⊂ F be a Cauchy sequence, and take (yk)k ⊂ (xk)k such that (yk+1−yk) ∈
Wk/k. Then

∑∞
k=1(yk+1−yk) τ

�������→ u, for some u in E.
∑∞
k=p+1(yk+1−yk) ∈ Wp/p, for

every p ∈ N, so
∑∞
k=1(yk+1−yk) ∈ F . Hence

∑∞
k=1(yk+1−yk) F

������→ u and if x = u+y1,

we have yk
F
������→ x and xk

F
������→ x.

If F = E, and {(1/k)Wk : k ∈N} is a fundamental system of neighborhoods, then E
with the topology γ generated by this family is a Fréchet space. This topology is finer

than the original one.

Theorem 2.2. Let (E,τ) be a locally convex space. If E is strictly webbed, then the

following properties are equivalent:

(a) E is sequentially complete.

(b) E is locally complete.

(c) E is locally Baire.

(d) E is bornivorously webbed.

Proof. (a)⇒(b)⇒(c). The proof is obvious. (c)⇒(d). Let A be a bounded subset of

E and B ⊂ E be a Baire disk such that A is contained and bounded in B. By [6, Theo-

rem 5.6.3] for id : EB → E, there exists a strand (Wk)k such that id−1(Wk) ∈ N0(EB).
Hence, for every k ∈ N there exists αk ∈ C such that A ⊂ αk id−1(Wk) ⊂ EB and A ⊂
αkWk ⊂ E.

(d)⇒(a). The argument of the proof is taken from [1, Theorem 1]: let (xn)n be a

Cauchy sequence in E, and Bn = clE co
⋃{xn : m ≥ n}, n ∈ N. The set B1 is bounded

in E which is bornivorously webbed, hence there exists a strand (Wk) in E and a

sequence (αk)k ⊂ C such that B1 ⊂αkWk for each k∈N. Denote by γ the topology on

E generated by the subbasis {Wk : k∈N} and, for brevity, by F the space (E,γ).
The set B1 ⊂ E is closed in E, and by the preceding lemma, it is closed in the locally

convex space F . Since B1 is convex, it is also weakly closed in F .

By lemma, F is a Fréchet space. Hence the canonical imbedding F → F ′′, where F ′′ is

the second dual of F equipped with the strong topology, is a topological isomorphism
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into F ′′. Since F is complete, it is closed in F ′′ and each functional from the strong

dual F ′ of F can be continuously extended to F ′′. Thus the σ(F,F ′)-closed set B1 is

also σ(F ′′,F ′)-closed in F ′′.
Further, since B1 is bounded in F ′′, it is equicontinuous in F ′. Hence by Alaoglu

theorem, the set B1 is relatively σ(F ′′,F ′)-compact. This, together with the σ(F ′′,F ′)-
closedness, implies that B1 is σ(F ′′,F ′)-compact in F ′′.

Similarly, all sets Bn, n∈N, are σ(F ′′,F ′)-compact. Every finite intersection
⋂{Bn :

1≤n≤m} = Bm,m∈N, is nonempty. Hence there exists x0 ∈
⋂{Bn :n∈N}⊂B1⊂E.

This implies the existence of an upper triangular matrix Λ = (λnm) with all entries

λnm ≥ 0, only finite number of nonzeros in each row, and the sum of all entries in each

row is equal to 1, such that the sequence {yn =
∑∞
m=nλnmxm}n converges to x0 in the

topology γ. Then the continuity of the identity map F → E implies the convergence

yk→ x0 in E.

Take a balanced, convex, zero neighborhood V in E. Then there exist p,q ∈N such

that yn−x0 ∈ V for n ≥ p and xm−xn ∈ V for m ≥ n ≥ q. Then for n ≥max(p,q),
we have

x0−xn =
(
x0−yn

)+(yn−xn
)= (x0−yn

)+
∞∑

m=n
λnm

(
xm−xn

)∈ V +V. (2.1)

This implies xn→ x0 in the space E.

Since property K implies locally Baire (see [4, Theorem 2]), this theorem proves

that for strictly webbed spaces, property K implies local completeness. This answers

Gilsdorf’s question 3.2 in [4] in a negative way. Moreover, these different additional

properties for strictly webbed spaces, which appear in [1, 4, 5], are proved to be all

equivalent.

3. Inductive limits. Let (En,τn)n be an inductive sequence of locally convex spaces,

and let (E,τ)= ind(En,τn) be its inductive limit. The space (E,τ) is regular if for each

bounded subset B in (E,τ), there exists n = n(B) ∈ N such that B is contained and

bounded in (En,τn). (E,τ) is sequentially retractive if for each convergent sequence

(xk)k in (E,τ) there exists n=n((xk)k)∈N such that the sequence converges to the

same limit in (En,τn). Equivalently, each null sequence in (E,τ) is a null sequence in

some (En,τn).
Sequentially retractive inductive limits were introduced and studied by Floret [3, 7].

He proved that sequential retractivity implies regularity. In order to get more infor-

mation about the relation between regularity and sequential retractivity, we will prove

the following proposition.

Proposition 3.1. Let (E,τ)= ind(En,τn) be a regular inductive limit. If E satisfies

the Mackey convergence condition, then it is sequentially retractive.

Proof. Let (xk)k be a null sequence in E. Since the Mackey convergence condition

holds, there exists a bounded disk B ⊂ E such that (xk)k is a ρB-null sequence. Now E
is regular, so B is contained and bounded in some En. So, the topology ρB in EB ⊂ En,

is finer than that inherited from En. Hence (xk)k is an En-null sequence.
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In the next propositions, we present other relations between these properties and

regularity for strictly webbed spaces.

Following Floret [3] and the proof of Theorem 1 in [1], if (E,τ) = ind(En,τn) is an

inductive limit of an inductive sequence of bornivorously webbed spaces note that

we have:

E sequentially retractive it follows that E is regular and implies that if xk
τ
�������→ x0, then

there exists n0 ∈N and a sequence {yk :yk ∈ conv{xm}∞m=k}∞k=1 such that yk
τn0���������������������������������������������������������→ x0.

Theorem 3.2. Let (E,τ)= ind(En,τn) be the inductive limit of an inductive sequence

of strictly webbed locally convex spaces. Consider the conditions:

(a) E satisfies property K
(b) E is locally Baire

(c) E is bornivorously webbed

(d) E is sequentially complete

(e) E is locally complete

(f) E is quasi-locally complete

(g) E is regular.

Then (a)⇒(b)�(c)�(d)�(e) and (e)⇒(f)⇒(g).

Proof. (a)⇒(b). [4, Theorem 2].

(b)�(c)�(d)�(e). By Theorem 2.2, since the inductive limit of strictly webbed

spaces is strictly webbed.

(e)⇒(f). It is clear.

(f)⇒(g). [8, Theorem 1].

Proposition 3.3. Let (E,τ) = ind(En,τn) be the inductive limit of an inductive

sequence of strictly webbed locally convex spaces such that every (En,τn) satisfies prop-

erty K. If E is sequentially retractive then E satisfies property K.

Proof. Let (xm)m be a null sequence in E. Then there exist n ∈ N, with xm
En���������������������������������→

0 and a subsequence (xmk)k ⊂ (xm)m such that
∑∞
k=1xmk

En���������������������������������→ x. Therefore
∑∞
k=1

xmk
E
����������������������������������������→ x.

Note that combining the results of this section, and under the hypothesis of

Proposition 3.3 we have (a)⇒(b)�(c)�(d)�(e)⇒(f)⇒(g). Moreover if E satisfies the

Mackey convergence condition they are all equivalent.
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