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Abstract. We establish common fixed point theorems related with families of self-
mappings on metric spaces. Our results extend, improve, and unify the results due to
Fisher (1977, 1978, 1979, 1981, 1984), Jungck (1988), and Ohta and Nikaido (1994).
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1. Introduction. Let w and N denote the sets of nonnegative integers and positive

integers, respectively. For t ∈ [0,∞), [t] denotes the largest integer not exceeding t.
Let f and g be mappings from a metric space (X,d) into itself and Cf = {h : h : X →
X and hf = fh}. For x,y ∈ X and A ⊆ X, define Of (x) = {fnx : n ∈w}, Of (x,y) =
Of (x)∪Of (y), Of,g(x) = {f igjx : i,j ∈ w}, Of,g(x,y) = Of,g(x)∪Of,g(y), and

δ(A)= sup{d(x,y) : x,y ∈A}. Let iX denote the identity mapping on X. It is easy to

see that {fn : n ∈w} ⊆ Cf . Let Φ = {ϕ :ϕ : [0,∞)→ [0,∞) is upper semicontinuous

and nondecreasing and ϕ(t) < t for t > 0}. The following definition and lemmas were

introduced by Fisher [8], Singh and Meade [13], and Jungck [10], respectively.

Definition 1.1 (see [8]). LetA⊆X andAn ⊆X for alln∈N. The sequence {An}n∈N
is said to converge to A if

(i) each point a ∈ A is the limit of some convergent sequence {an}n∈N, where

an ∈An for all n∈N;

(ii) for arbitrary ε > 0, there exists an integer k such that An ⊆Aε for n> k, where

Aε is the union of all open spheres with centers in A and radius ε.

Lemma 1.2 (see [13]). Letϕ ∈ Φ, then (a) limn→∞ϕn(t)= 0 for all t > 0 and (b) t = 0

provided that t ≤ϕ(t) for some t ≥ 0.

Lemma 1.3 (see [10]). Let f and g be commuting self-mappings of a compact metric

space (X,d) such that gf is continuous. If A=⋂n∈N(gf)nX, then

(i) hA⊆A for all h∈ Cgf ;

(ii) A= fA= gA≠φ;

(iii) A is compact.

In recent years, a number of generalizations of a well-known contraction mapping

principles due to Banach have appeared in the literature (cf. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13]).
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First we list the following general conditions.

(1) There exists ϕ ∈ Φ and p,q,m,n∈w with p+q,m+n∈N such that

d
(
fpgqx,fmgny

)≤ϕ

δ

 ⋃
h∈Cg∪Cf

hOg,f (x,y)




 (1.1)

for all x,y ∈X.

(2) There exist p,q,m,n∈w with p+q,m+n∈N such that

d
(
fpgqx,fmgny

)
< δ


 ⋃
h∈Cgf

hOgf (x,y)


 (1.2)

for all x,y ∈X with fpgqx ≠ fmgny .

In the literature of fixed point theory there exist conditions which are special cases

of (1) or (2). Now we list below some of the contractive mappings for which various

fixed point theorems have been established.

(3) (See [6].) There exists r ∈ [0,1) andp,q,m,n∈w withp+q,m+n∈N such that

d
(
fpgqx,fmgny

)

≤ r ·max
{
d
(
f rgr

′
x,f sgs

′
y
)
,

d
(
f rgr

′
x,f tgt

′
x
)
,d
(
f sgs

′
x,f igi

′
y
)

:

0≤ r , t ≤ p, 0≤ r ′, t′ ≤ q, 0≤ s, i≤m, 0≤ s′, i′ ≤n}
(1.3)

for all x,y ∈X.

(4) (See [6].) There exist p,q,m,n∈w with p+q,m+n∈N such that

d
(
fpgqx,fmgny

)

<max
{
d
(
f rgr

′
x,f sgs

′
y
)
,

d
(
f rgr

′
x,f tgt

′
x
)
,d
(
f sgs

′
x,f igi

′
y
)

:

0≤ r , t ≤ p, 0≤ r ′, t′ ≤ q, 0≤ s, i≤m, 0≤ s′, i′ ≤n}
(1.4)

for all x,y ∈X for which the right-hand side of the inequality is positive.

(5) (See [11].) There exist k∈N and r ∈ [0,1) such that

d
(
fkx,f ky

)≤ rδ(Of (x,y)) (1.5)

for all x,y ∈X.

(6) (See [10].) For allx,y ∈X, d(fx,gy) < δ(ht : t ∈ {x,y}, h∈ Cgf )with fx ≠ gy .

In this note, we prove common fixed point theorems for Cf∩Cg and Cgf in bounded

complete metric spaces and compact metric spaces. Our results extend, improve and

unify the corresponding results in [1, 2, 3, 4, 5, 6, 7, 9, 10, 11].

2. Common fixed point theorems. Our main results are as follows.

Theorem 2.1. Let f andg be commuting mappings froma bounded complete metric

space (X,d) into itself. If f and g are continuous and satisfy (1), then

(i) f and g have a unique common fixed point u∈X which is also a unique com-

mon fixed point of Cf ∩Cg ;
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(ii) d(f i+agi+bx,u) ≤ ϕ[i/k](δ(X)) for all a,b ∈ {0,1} and i ∈ N, where k =
max{p,q,m,n};

(iii) limi→∞f i+agi+bx =u for all a,b ∈ {0,1};
(iv) {f igiX}i∈N converges to {u}.

Proof. For any i∈w and x,y ∈X, it follows from (1) that

d
(
f i+kgi+kx,f i+kgi+ky

)

≤ϕ

δ

 ⋃
h∈Cf∩Cg

hOf,g
(
f i+k−pgi+k−qx,f i+k−mgi+k−ny

)



≤ϕ

δ

 ⋃
h∈Cf∩Cg

hOf,g
(
f igix,f igiy

)



≤ϕ

δ

 ⋃
h∈Cf∩Cg

hf igiX






=ϕ

δ

 ⋃
h∈Cf∩Cg

f igihX






=ϕ(δ(f igiX))

(2.1)

which implies that

δ
(
f i+kgi+kX

)= sup
x,y∈X

d
(
f i+kgi+kx,f i+kgi+ky

)≤ϕ(δ(f igiX)) (2.2)

for all i∈w. We can write i= jk+t uniquely for some j,k∈w with t < k. Thus

δ
(
f igiX

)≤ϕ(δ(f (j−1)k+tg(j−1)k+tX
))≤ϕj(δ(f tgtX))≤ϕj(δ(X)). (2.3)

It follows from the boundedness of X, Lemma 1.2 and (2.3) that

lim
i→∞

δ
(
f igiX

)= lim
j→∞

ϕj(δ(X)). (2.4)

Since d(f igix,f i+tgi+tx) ≤ δ(f igiX) for all i,t ∈ w and x ∈ X, {f igix}i∈N is a

Cauchy sequence and converges to someu∈X by completeness ofX. For any i,c ∈w,

a,b ∈ {0,1} and x ∈X, by (2.3) and (2.4) we have

d
(
f i+agi+bx,f i+cgi+cx

)≤ δ(f igiX)≤ϕ[i/k](δ(X)). (2.5)

Letting c tend to infinity, we get

d
(
f i+agi+bx,u

)≤ϕ[i/k](δ(X)) (2.6)

for x ∈X. The continuity of f and g, and (2.4) and (2.6) ensure that

u= lim
i→∞

f igix = lim
i→∞

fagbf igix = fagbu (2.7)

for all a,b ∈ {0,1} and x ∈X. That is, fu= gu=u.
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Suppose that f and g have another common fixed point v ∈ X. It follows from

(2.4) that

d(u,v)≤ δ(f igiX)≤ϕ[i/k](δ(X)) �→ 0 as i �→∞. (2.8)

That is, u= v . Therefore f and g have a unique common fixed point. Note that fhu=
hfu= hu= hgu= ghu for all h∈ Cf ∩Cg . By the uniqueness of common fixed point

of f and g, we have hu=u for all h∈ Cf ∩Cg . Since f ,g ∈ Cf ∩Cg , it follows that u
is a unique common fixed point of Cf ∩Cg .

Let ε > 0. In view of (2.4), there exists c ∈N such that

δ
(
f igiX

)≤ϕ[i/k](δ(X))< 1
2
ε. (2.9)

for all i > c. Note that u∈ f igiX for all i∈w. Thus, for any i > c we have

f igiX ⊆ B(u,ε)= {x ∈X : d(u,x) < ε
}
. (2.10)

Therefore {f igiX}i∈N converges to {u}. This completes the proof.

Remark 2.2. [6, Theorem 2] is a special case of Theorem 2.1.

As an immediate consequence of Theorem 2.1, we have the following corollary.

Corollary 2.3. Let f and g be commuting mappings from a bounded complete
metric space (X,d) into itself. If f and g are continuous and satisfy the inequality

d
(
fpgqx,fmgny

)≤ rδ

 ⋃
h∈Cf∩Cg

hOf,g(x,y)


 (2.11)

for all x,y ∈X, where p,q,m,n∈w, p+q,m+n∈N and r ∈ [0,1). Then (i), (iii), and

(iv) of Theorem 2.1 and the following (v) hold:

(v) d(f i+agi+bx,u) ≤ r [i/k]δ(X) for all a,b ∈ {0,1} and i ∈ N, where k =
max{p,q,m,n}.

Remark 2.4. In case p =m, g = iX , Corollary 2.3 reduces to a result which gener-

alizes [11, Theorem 3].

Theorem 2.5. Let f and g be commuting mappings from a compact metric space
(X,d) into itself such that gf is continuous. If (2) is satisfied, then f and g have a
unique common fixed point u∈X. Moreover, u= hu for all h∈ Cgf .

Proof. Let A = ⋂n∈N(gf)nX. It follows from Lemma 1.3 that A = fA = gA ≠∅
and thatA is compact. We claim thatA={u} for someu∈X. Otherwiseδ(A)>0. By the

compactness ofA there exists distinctu,v∈A such thatδ(A)=d(u,v). Clearly, we can

find x,y ∈A such that fpgqx =u and fmgny = v . Using (2) and Lemma 1.3 we have

δ(A)= d(fpgqx,fmgny)< δ

 ⋃
h∈Cgf

hOgf (x,y)


≤ δ


 ⋃
h∈Cgf

hA


≤ δ(A) (2.12)

which is a contradiction. Thus A = {u} for some u ∈ X. Lemma 1.3 ensures that

u= hu for all h∈ Cgf . In particular, u= fu= gu. If f and g have another common

fixed point c ∈X. Then c = (gf)nc for all n∈N. That is, c ∈A= {u}. Hence u is the

only common fixed point of f and g. This completes the proof.
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Remark 2.6. Theorem 2.5 includes [6, Theorem 5] as a special case.

As an immediate consequence of Theorem 2.5, we have the following corollary.

Corollary 2.7. Let f and g be commuting mappings from a compact metric space

(X,d) into itself. If gf is continuous and there exists p,m∈N such that

d
(
fpx,gmy

)
< δ


 ⋃
h∈Cgf

hOgf (x,y)


 (2.13)

for all x,y ∈X with fpx ≠ gmy . Then the conclusion of Theorem 2.5 holds.

Corollary 2.8. Let f be a continuous mapping from a compact metric space (X,d)
into itself. Assume that there exists p,m∈N such that

d
(
fpx,fmy

)
< δ


 ⋃
h∈Cf

hOf (x,y)


 (2.14)

for all x,y ∈ X with fpx ≠ fmy . Then f has a unique fixed point u ∈ X and hu = u
for all h∈ Cf .

Remark 2.9. Corollary 2.7 extends, improve and unifies [10, Theorem 4.2], [9, Theo-

rem 2], and [7, Theorem 5].

Remark 2.10. [1, Theorem 4], [2, Theorem 4], [4, Theorem 9], [3, Theorem 2], and

[5, Theorem 4] are special cases of Corollary 2.8.

Remark 2.11. The following examples reveal that the condition that f and g are

continuous is necessary in Theorems 2.1, 2.5, and Corollaries 2.7, 2.8.

Example 2.12. Let X = [0,1] with the usual metric d. Define f ,g :X →X by g = iX ,

f0 = 1/4 and fx = (1/3)x for all X ∈ (0,1]. Take p =m = 2, q = n = 1, r = 1/2,

ϕ(t) = (1/2)t for all t ≥ 0. Then (X,d) is a bounded metric space, g is continuous,

and f is discontinuous.

For x,y ∈ (0,1], we have

d
(
fpgqx,fmgny

)= 1
9
|x−y|

≤ 1
2
|x−y| ≤ 1

2
δ
(
Of,g(x,y)

)

≤ϕ

δ

 ⋃
h∈Cf∩Cg

hOf,g(x,y)




.

(2.15)

For x = 0, y ∈ (0,1] or x ∈ (0,1], y = 0, we have

d
(
fpgqx,fmgny

)≤max
{∣∣∣∣ 1

12
− 1

9
y
∣∣∣∣,
∣∣∣∣ 1

12
− 1

9
x
∣∣∣∣
}
<

1
8

= 1
2
δ
(
Of,g(0)

)≤ϕ

δ

 ⋃
h∈Cf∩Cg

hOf,g(x,y)




.

(2.16)
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For x =y = 0, we have

d
(
fpgqx,fmgny

)= 0<
1
8
= 1

2
δ
(
Of,g(0,0)

)≤ϕ

δ

 ⋃
h∈Cf∩Cg

hOf,g(x,y)




. (2.17)

That is, f and g satisfy (1) and (2.11). But f and g have no common fixed point in X.

Example 2.13. Let (X,d),f ,g,p,q,m, and n be as in Example 2.12. It is easy to

check that the conditions of Theorem 2.5 and Corollary 2.8 are satisfied except for

the continuity assumption. However f has no fixed point in X.
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