ON THE SPECTRUM OF THE DISTRIBUTIONAL KERNEL RELATED TO THE RESIDUE

AMNUAY KANANTHAI

(Received 22 June 2000 and in revised form 26 February 2001)

Abstract

We study the spectrum of the distributional kernel $K_{\alpha, \beta}(x)$, where α and β are complex numbers and x is a point in the space \mathbb{R}^{n} of the n-dimensional Euclidean space. We found that for any nonzero point ξ that belongs to such a spectrum, there exists the residue of the Fourier transform $(-1)^{k} \widehat{K_{2 k, 2 k}(\xi)}$, where $\alpha=\beta=2 k, k$ is a nonnegative integer and $\xi \in \mathbb{R}^{n}$.

2000 Mathematics Subject Classification. 46F10, 46F12.

1. Introduction. Gel'fand and Shilov [2, pages 253-256] have studied the generalized function P^{λ}, where

$$
\begin{equation*}
P=\sum_{i=1}^{p} x_{i}^{2}-\sum_{j=p+1}^{p+q} x_{j}^{2} \tag{1.1}
\end{equation*}
$$

is a quadratic form, λ is a complex number, and $p+q=n$ is the dimension of \mathbb{R}^{n}. They found that P^{λ} has two sets of singularities, namely $\lambda=-1,-2, \ldots,-k, \ldots$ and $\lambda=-n / 2,-n / 2-1, \ldots,-n / 2-k, \ldots$, where k is a positive integer. For the singular point $\lambda=-k$, the generalized function P^{λ} has a simple pole with residue

$$
\begin{equation*}
\frac{(-1)^{k}}{(k-1)!} \delta_{1}^{(k-1)}(P) \quad \text { or } \quad \operatorname{res}_{\lambda=-k} P^{\lambda}=\frac{(-1)^{k}}{(k-1)!} \delta_{1}^{(k-1)}(P) \tag{1.2}
\end{equation*}
$$

for $p+q=n$ is odd with p odd and q even. Also, for the singular point $\lambda=-n / 2-k$ they obtained

$$
\begin{equation*}
\operatorname{res}_{\lambda=-n / 2-k} P^{\lambda}=\frac{(-1)^{q / 2} L^{k} \delta(x)}{2^{2 k} k!\Gamma((n / 2)+k)} \tag{1.3}
\end{equation*}
$$

for $p+q=n$ is odd with p odd and q even.
Now, let $K_{\alpha, \beta}(x)$ be the convolution of the functions $R_{\alpha}^{H}(u)$ and $R_{\beta}^{\ell}(v)$, that is,

$$
\begin{equation*}
K_{\alpha, \beta}(x)=R_{\alpha}^{H}(u) * R_{\beta}^{\ell}(v) \tag{1.4}
\end{equation*}
$$

where $R_{\alpha}^{H}(u)$ and $R_{\beta}^{\ell}(v)$ are defined by (2.1) and (2.3), respectively. Since $R_{\alpha}^{H}(u)$ and $R_{\beta}^{\ell}(v)$ are tempered distributions, see [4, pages 30-31], thus $K_{\alpha, \beta}(x)$ is also a tempered distribution and is called the distributional kernel.

In this paper, we use the idea of Gel'fand and Shilov to find the residue of the Fourier transform $(-1)^{k} \widehat{K_{2 k, 2 k}(\xi)}$, where $K_{2 k, 2 k}$ is defined by (1.4) with $\alpha=\beta=2 k$ and k is a nonnegative integer. We found that for any nonzero point ξ that belongs to the spectrum of $(-1)^{k} K_{2 k, 2 k}(x)$, there exists the residue of the Fourier transform
$(-1)^{k} \widehat{K_{2 k, 2 k}(\xi)}$. Actually $(-1)^{k} K_{2 k, 2 k}(x)$ is an elementary solution of the operator \diamond^{k} iterated k times, that is, $\diamond^{k}\left[(-1)^{k} K_{2 k, 2 k}(x)\right]=\delta$, where δ is the Dirac-delta distribution.

The operator \diamond^{k} was first introduced by Kananthai [4] and named as the Diamond operator defined by

$$
\begin{equation*}
\diamond^{k}=\left[\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{p}^{2}}\right)^{2}-\left(\frac{\partial^{2}}{\partial x_{p+1}^{2}}+\frac{\partial^{2}}{\partial x_{p+2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{p+q}^{2}}\right)^{2}\right]^{k} \tag{1.5}
\end{equation*}
$$

where $p+q=n$ is the dimension of \mathbb{R}^{n}.
Moreover, the operator \diamond^{k} can be expressed as the product of the operators \square^{k} and Δ^{k}, that is,

$$
\begin{equation*}
\diamond^{k}=\square^{k} \triangle^{k}=\triangle^{k} \square^{k}, \tag{1.6}
\end{equation*}
$$

where \square^{k} is an ultra-hyperbolic operator iterated k times defined by

$$
\begin{equation*}
\square^{k}=\left(\sum_{i=1}^{p} \frac{\partial^{2}}{\partial x_{i}^{2}}-\sum_{j=p+1}^{p+q} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{k}, \tag{1.7}
\end{equation*}
$$

where $p+q=n$. The operator Δ^{k} is an elliptic operator or Laplacian iterated k times defined by

$$
\begin{equation*}
\Delta^{k}=\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{n}^{2}}\right)^{k} \tag{1.8}
\end{equation*}
$$

Trione [7, page 11] has shown that the function $R_{2 k}^{H}(u)$ defined by (2.1) with $\alpha=2 k$ is an elementary solution of the operator \square^{k}. Also, Aguirre Téllez [1, pages 147-148] has proved that the solution $R_{2 k}^{H}(u)$ exists only for odd n with p odd and q even $(p+q=n)$. Moreover, we can show that the function $(-1)^{k} R_{2 k}^{\ell}(v)$ is an elementary solution of the operator Δ^{k}, where $R_{2 k}^{\ell}(v)$ is defined by (2.3) with $\beta=2 k$.

2. Preliminaries

DEFINITION 2.1. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a point of \mathbb{R}^{n}, and write $u=x_{1}^{2}+$ $x_{2}^{2}+\cdots+x_{p}^{2}-x_{p+1}^{2}-\cdots-x_{p+q}^{2}, p+q=n$. Denote by $\Gamma_{+}=\left\{x \in \mathbb{R}^{n}: x_{1}>0, u>0\right\}$ the set of an interior of the forward cone, and $\overline{\Gamma_{+}}$denotes the closure of Γ_{+}. For any complex number α, define

$$
R_{\alpha}^{H}(u)= \begin{cases}\frac{u^{(\alpha-n) / 2}}{K_{n}(\alpha)}, & \text { for } x \in \Gamma_{+}, \tag{2.1}\\ 0, & \text { for } x \notin \Gamma_{+},\end{cases}
$$

where the constant $K_{n}(\alpha)$ is given by the formula

$$
\begin{equation*}
K_{n}(\alpha)=\frac{\pi^{(n-1) / 2} \Gamma((2+\alpha-n) / 2) \Gamma((1-\alpha) / 2) \Gamma(\alpha)}{\Gamma((2+\alpha-p) / 2) \Gamma((p-\alpha) / 2)} . \tag{2.2}
\end{equation*}
$$

The function $R_{\alpha}^{H}(u)$ is called the ultra-hyperbolic kernel of Marcel Riesz and was introduced by Nozaki [6, page 72]. The function R_{α}^{H} is an ordinary function or classical function if $\operatorname{Re}(\alpha) \geq n$ and is a distribution of α if $\operatorname{Re}(\alpha)<n$. Let $\operatorname{supp} R_{\alpha}^{H}(u) \subset \overline{\Gamma_{+}}$, where $\operatorname{supp} R_{\alpha}^{H}(u)$ denotes the support of $R_{\alpha}^{H}(u)$.

DEFINITION 2.2. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a point of \mathbb{R}^{n}, and write $v=x_{1}^{2}+$ $x_{2}^{2}+\cdots+x_{n}^{2}$. For any complex number β, define

$$
\begin{equation*}
R_{\beta}^{\ell}(v)=\frac{2^{-\beta} \pi^{-n / 2} \Gamma((n-\beta) / 2) v^{(\beta-n) / 2}}{\Gamma(\beta / 2)} . \tag{2.3}
\end{equation*}
$$

The function $R_{\beta}^{\ell}(v)$ is called the elliptic kernel of Marcel Riesz and is an ordinary function for $\operatorname{Re}(\beta) \geq n$ and is a distribution of β for $\operatorname{Re}(\beta)<n$.

DEfinition 2.3. Let f be a continuous function, then the Fourier transform of f, denoted by $\mathfrak{I} f$ or $\hat{f}(\xi)$, is defined by

$$
\begin{equation*}
\mathfrak{I} f=\hat{f}(\xi)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-i(\xi, x)} f(x) d x \tag{2.4}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, \xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n}$, and $(\xi, x)=\xi_{1} x_{1}+\xi_{2} x_{2}+$ $\cdots+\xi_{n} x_{n}$. From (2.4), the inverse Fourier transform of $\hat{f}(\xi)$ is defined by

$$
\begin{equation*}
f(x)=\mathfrak{I}^{-1} \hat{f}(\xi)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{i(\xi, x)} \hat{f}(\xi) d x . \tag{2.5}
\end{equation*}
$$

If f is a distribution with compact support, by [8, Theorem 7.4.3, page 187] (2.5) can be written as

$$
\begin{equation*}
\mathfrak{I} f=\hat{f}(\xi)=\frac{1}{(2 \pi)^{n / 2}}\left\langle f(x), e^{-i(\xi, x)}\right\rangle . \tag{2.6}
\end{equation*}
$$

Lemma 2.4. Given the equation

$$
\begin{equation*}
\diamond^{k} u(x)=\delta \tag{2.7}
\end{equation*}
$$

where \diamond^{k} is the operator defined by (1.5), and δ is the Dirac-delta distribution, $u(x)$ is an unknown, k is a nonnegative integer and $x \in \mathbb{R}^{n}$, where n is odd with p odd, q even $(n=p+q)$. Then $u(x)=(-1)^{k} K_{2 k, 2 k}(x)$ is an elementary solution of the operator \diamond^{k}. Here $K_{2 k, 2 k}(x)=R_{2 k}^{H}(u) * R_{2 k}^{\ell}(v)$ from (1.4) with $\alpha=\beta=2 k$.

Proof. See [4, page 33].
In this paper, we study the spectrum of $(-1)^{k} K_{2 k, 2 k}(x)$, relate to the residue of the Fourier transform $(-1)^{k} \widehat{K_{2 k, 2 k}(\xi)}$.

Lemma 2.5. The Fourier transform

$$
\begin{align*}
\widehat{K_{\alpha, \beta}(\xi)}= & (2 \pi)^{n / 2} \mathfrak{J} R_{\alpha}^{H}(u) \mathfrak{J} R_{\beta}^{\ell}(v) \\
= & \frac{(i)^{q} 2^{\alpha+\beta} \pi^{n}}{(2 \pi)^{n / 2} K_{n}(\alpha) H_{n}(\beta)} \cdot \frac{\Gamma(\alpha / 2) \Gamma(\beta / 2)}{\Gamma((n-\alpha) / 2) \Gamma((n-\beta) / 2)} \tag{2.8}\\
& \times\left(\sqrt{\sum_{i=1}^{p} \xi_{i}^{2}-\sum_{j=p+1}^{p+q} \xi_{j}^{2}}\right)^{-\alpha}\left(\sqrt{\sum_{i=1}^{n} \xi_{i}^{2}}\right)^{-\beta}, \quad i=\sqrt{-1} .
\end{align*}
$$

In particular, if $\alpha=\beta=2 k, k$ is a nonnegative integer,

$$
\begin{equation*}
(-1)^{k} \widehat{K_{2 k, 2 k}(\xi)}=\frac{1}{(2 \pi)^{n / 2}} \frac{1}{\left(\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right)^{2}-\left(\xi_{p+1}^{2}+\xi_{p+2}^{2}+\cdots+\xi_{p+q}^{2}\right)^{2}\right)^{k}}, \tag{2.9}
\end{equation*}
$$

where $R_{\alpha}^{H}(u)$ and $R_{\beta}^{\ell}(v)$ are defined by (2.1) and (2.3), respectively.
Proof. See [2, page 194] and [5, pages 156-157].
Definition 2.6. The spectrum of the distributional kernel $K_{\alpha, \beta}(x)$ is the support of the Fourier transform $\widehat{K_{\alpha, \beta}(\xi)}$ or the spectrum of $K_{\alpha, \beta}(x)=\operatorname{supp} \widehat{K_{\alpha, \beta}(\xi)}$. Now, from Lemma 2.5 we obtain

$$
\begin{equation*}
\operatorname{supp} \widehat{K_{\alpha, \beta}(\xi)}=\left(\operatorname{supp} \mathfrak{J} R_{\alpha}^{H}(u)\right) \cap\left(\operatorname{supp} \mathfrak{J} R_{\beta}^{\ell}(v)\right) . \tag{2.10}
\end{equation*}
$$

In particular, from (2.9) the spectrum of

$$
\begin{equation*}
(-1)^{k} K_{2 k, 2 k}(x)=\operatorname{supp}\left[\frac{1}{(2 \pi)^{n / 2}\left(\left(\sum_{i=1}^{p} \xi_{i}^{2}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{2}\right)^{k}}\right] . \tag{2.11}
\end{equation*}
$$

Lemma 2.7. Let $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a quadratic form of positive definite, and is defined by

$$
\begin{equation*}
P=P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\sum_{i=1}^{p} x_{i}^{2}\right)^{2}-\left(\sum_{j=p+1}^{p+q} x_{j}^{2}\right)^{2}, \tag{2.12}
\end{equation*}
$$

then for any testing function $\varphi(x) \in D$, the space of infinitely differentiable function with compact support,

$$
\begin{align*}
& \left\langle\delta^{(k)}(P), \varphi\right\rangle=\int_{0}^{\infty}\left[\left(\frac{\partial}{4 s^{3} \partial s}\right)^{k}\left(s^{q-4} \frac{\psi(r, s)}{4}\right)\right]_{s=r} r^{p-1} d r \tag{2.13}\\
& \left\langle\delta^{(k)}(P), \varphi\right\rangle=(-1)^{k} \int_{0}^{\infty}\left[\left(\frac{\partial}{4 r^{3} \partial r}\right)^{k}\left(r^{p-4} \frac{\psi(r, s)}{4}\right)\right]_{r=s} s^{q-1} d s \tag{2.14}
\end{align*}
$$

where $r^{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{p}^{2}, s^{2}=x_{p+1}^{2}+x_{p+2}^{2}+\cdots+x_{p+q}^{2}$, and

$$
\begin{equation*}
\psi(r, s)=\int \varphi d \Omega^{p} d \Omega^{q} \tag{2.15}
\end{equation*}
$$

where $d \Omega^{p}$ and $d \Omega^{q}$ are the elements of surface area on the unit sphere in \mathbb{R}^{p} and \mathbb{R}^{q}, respectively. Both integrals (2.13) and (2.14) converge if $k<(1 / 4)(p+q-4)$ for any $\varphi(x) \in D$. If $k \geq(1 / 4)(p+q-4)$, these integrals must be understood in the sense of their regularization and (2.13) defined as $\left\langle\delta_{1}^{(k)}(p), \varphi\right\rangle$ and (2.14) defined as $\left\langle\delta_{2}^{(k)}(p), \varphi\right\rangle$. Moreover, if we put $u=r^{2}, v=s^{2}$, thus (2.13) and (2.14) become

$$
\begin{align*}
& \left\langle\delta^{(k)}(p), \varphi\right\rangle=\frac{1}{16} \int_{0}^{\infty}\left[\frac{\partial^{k}}{\partial v^{k}}\left(v^{(q-4) / 4} \psi_{1}(u, v)\right)\right]_{v=u} u^{(1 / 4)(p-4)} d u, \tag{2.16}\\
& \left\langle\delta^{(k)}(p), \varphi\right\rangle=\frac{(-1)^{k}}{16} \int_{0}^{\infty}\left[\frac{\partial^{k}}{\partial u^{k}}\left(u^{(p-4) / 4} \psi_{1}(u, v)\right)\right]_{u=v} v^{(1 / 4)(q-4)} d v, \tag{2.17}
\end{align*}
$$

where $\psi_{1}(u, v)=\psi(r, s)$.

Proof. See [2, pages 247-251].
Lemma 2.8. Let $G_{b}=\left\{\xi \in \mathbb{R}^{n}:\left|\xi_{1}\right| \leq b_{1},\left|\xi_{2}\right| \leq b_{2}, \ldots,\left|\xi_{n}\right| \leq b_{n}\right\}$ be a parallelepiped in \mathbb{R}^{n} and $b_{i}(1 \leq i \leq n)$ is a real constant and the inverse Fourier transform of $\widehat{K_{\alpha, \beta}(\xi)}$ is defined by

$$
\begin{equation*}
K_{\alpha, \beta}(x)=\mathfrak{I}^{-1} \widehat{K_{\alpha, \beta}(\xi)}=\frac{1}{(2 \pi)^{n / 2}} \int_{G_{b}} e^{i(\xi, x)} \widehat{K_{\alpha, \beta}(\xi)} d \xi, \tag{2.18}
\end{equation*}
$$

where $K_{\alpha, \beta}$ is defined by (1.4) and $x, \xi \in \mathbb{R}^{n}$, then $K_{\alpha, \beta}(x)$ can be extended to the entire function $K_{\alpha, \beta}(z)$ and be analytic for all $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$, where \mathbb{C}^{n} is the n-tuple space of complex number and

$$
\begin{equation*}
\left|K_{\alpha, \beta}(z)\right| \leq C \exp (b|\operatorname{Im}(z)|), \tag{2.19}
\end{equation*}
$$

where $\exp (b|\operatorname{Im}(z)|)=\exp \left[b_{1}\left|\operatorname{Im}\left(z_{1}\right)\right|+b_{2}\left|\operatorname{Im}\left(z_{2}\right)\right|+\cdots+b_{n}\left|\operatorname{Im}\left(z_{n}\right)\right|\right]$ and $C=$ $\left(1 /(2 \pi)^{n / 2}\right) \int_{G_{b}}\left|\widehat{K_{\alpha, \beta}(\xi)}\right| d \xi$ is a constant. Moreover, $K_{\alpha, \beta}(x)$ has a spectrum contained in G_{b}.

Proof. Since the integral of (2.18) converges for all $\xi \in G_{b}$, thus $K_{\alpha, \beta}(x)$ can be extended to the entire function $K_{\alpha, \beta}(z)$ and be analytic for all $z \in C^{n}$. Thus (2.18) can be written as

$$
\begin{equation*}
K_{\alpha, \beta}(z)=\frac{1}{(2 \pi)^{n / 2}} \int_{G_{b}} e^{i(\xi, z)} \widehat{K_{\alpha, \beta}(\xi)} d \xi . \tag{2.20}
\end{equation*}
$$

Now,

$$
\begin{array}{r}
\left.\left.\left|K_{\alpha, \beta}(z)\right| \leq \frac{1}{(2 \pi)^{n / 2}} \int_{G_{b}} \right\rvert\, \widehat{K_{\alpha, \beta}(\xi}\right)\left|\left|\exp \left(i \xi_{1} z_{1}+i \xi_{2} z_{2}+\cdots+i \xi_{n} z_{n}\right)\right| d \xi\right. \\
\left.=\frac{1}{(2 \pi)^{n / 2}} \int_{G_{b}}\left|\widehat{K_{\alpha, \beta}(\xi)}\right| \right\rvert\, \exp \left(i \xi_{1} \sigma_{1}+i \xi_{2} \sigma_{2}+\cdots+i \xi_{n} \sigma_{n}\right. \tag{2.21}\\
\left.-\xi_{1} \mu_{1}-\xi_{2} \mu_{2}-\cdots-\xi_{n} \mu_{n}\right) \mid d \xi,
\end{array}
$$

where

$$
\begin{equation*}
z_{j}=\sigma+i \mu_{j} \quad(j=1,2, \ldots, n), \tag{2.22}
\end{equation*}
$$

thus

$$
\begin{equation*}
\left|K_{\alpha, \beta}(z)\right| \leq \frac{1}{(2 \pi)^{n / 2}} \int_{G_{b}}\left|\widehat{K_{\alpha, \beta}(\xi)}\right| d \xi \exp \left(b_{1}\left|\mu_{1}\right|+b_{2}\left|\mu_{2}\right|+\cdots+b_{n}\left|\mu_{n}\right|\right) \tag{2.23}
\end{equation*}
$$

for $\left|\xi_{j}\right| \leq b_{j}$, or $\left|K_{\alpha, \beta}(z)\right| \leq C \exp \left(b_{1}\left|\operatorname{Im}\left(z_{1}\right)\right|+b_{2}\left|\operatorname{Im}\left(z_{2}\right)\right|+\cdots+b_{n}\left|\operatorname{Im}\left(z_{n}\right)\right|\right)$, or $\left|K_{\alpha, \beta}(z)\right| \leq C \exp (b|\operatorname{Im}(z)|)$, where $C=\left(1 /(2 \pi)^{n / 2}\right) \int_{G_{b}}\left|\widehat{K_{\alpha, \beta}(\xi)}\right| d \xi$ is a constant.

We must show that the support of $\widehat{K_{\alpha, \beta}(\xi)}$ is contained in G_{b}. Since $K_{\alpha, \beta}(z)$ is an analytic function that satisfies the inequality (2.19) and is called an entire function of order of growth ≤ 1 and of type $\leq b$, then by Paley-Wiener-Schartz theorem, see [3, page 162], $\widehat{K_{\alpha, \beta}(\xi)}$ has a support contained in G_{b}, that is the spectrum of $K_{\alpha, \beta}(x)$ is contained in G_{b}.

In particular, for $\alpha=\beta=2 k$, the spectrum of $(-1)^{k} K_{2 k, 2 k}(x)$ is also contained in G_{b}, that is $\operatorname{supp}\left[(-1)^{k} \widehat{K_{2 k, 2 k}(\xi)}\right] \subset G_{b}$, where $(-1)^{k} K_{2 k, 2 k}(x)$ is an elementary solution of the Diamond operator \diamond^{k} by Lemma 2.4, and the Fourier transform $(-1)^{k} \widehat{K_{2 k, 2 k}(\xi)}$ given by (2.9) can be defined as follows.

Definition 2.9. The Fourier transform

$$
(-1)^{k} \widehat{K_{2 k, 2 k}(\xi)}= \begin{cases}\frac{1}{(2 \pi)^{n / 2}\left[\left(\sum_{i=1}^{p} \xi_{i}^{2}\right)^{2}-\left(\sum_{j=p+1}^{p+q} \xi_{j}^{2}\right)^{2}\right]^{k}}, & \text { for } \xi \in G_{b} \tag{2.24}\\ 0, & \text { for } \xi \in C G_{b}\end{cases}
$$

where $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n}$ and $C G_{b}$ is the complement of G_{b}.

3. Main results

Theorem 3.1. For any nonzero point $\xi \in M$ where M is a spectrum of $(-1)^{k} K_{2 k, 2 k}(x)$, and $(-1)^{k} K_{2 k, 2 k}(x)$ is an elementary solution of the operator \diamond^{k} by Lemma 2.4. Then there exists the residue of the Fourier transform $(-1)^{k} \widehat{K_{2 k, 2 k}(\xi)}$ at the singular point $\lambda=-k$ and such a residue is

$$
\begin{equation*}
\frac{(-1)^{k-1}}{(2 \pi)^{n / 2}(k-1)!} \delta_{1}^{(k-1)(p)} \quad \text { or } \quad \operatorname{res}_{\lambda=-k}(-1)^{k} \widehat{K_{2 k, 2 k}(\xi)}=\frac{(-1)^{k-1}}{(2 \pi)^{n / 2}(k-1)!} \delta^{(k-1)(p)} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
P=\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right)^{2}-\left(\xi_{p+1}^{2}+\xi_{p+2}^{2}+\cdots+\xi_{p+q}^{2}\right), \tag{3.2}
\end{equation*}
$$

$p+q=n$ and $\delta_{1}^{(k-1)}(P)$ is defined by (2.16) with $\delta^{(k-1)}(P)=\delta_{1}^{(k-1)}(P)$ and n is odd with p odd, q even.

Proof. We define the generalized function P^{λ}, where P is given by (3.2) and λ is a complex number, by

$$
\begin{equation*}
\left\langle P^{\lambda}, \varphi\right\rangle=\int_{P>0} P^{\lambda}(\xi) \varphi(\xi) d \xi, \tag{3.3}
\end{equation*}
$$

where $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$ and $d \xi=d \xi_{1} d \xi_{2} \cdots d \xi_{n}$ and $\varphi(\xi) \in D$, the space of continuous infinitely differentiable function with compact support. Now,

$$
\begin{equation*}
\left\langle P^{\lambda}, \varphi\right\rangle=\int_{P>0}\left[\left(\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}\right)^{2}-\left(\xi_{p+1}^{2}+\xi_{p+2}^{2}+\cdots+\xi_{p+q}^{2}\right)\right]^{\lambda} \varphi(\xi) d \xi \tag{3.4}
\end{equation*}
$$

We transform to bipolar coordinates defined by

$$
\begin{gather*}
\xi_{1}=r w_{1}, \xi_{2}=r w_{2}, \ldots, \xi_{p}=r w_{p}, \\
\xi_{p+1}=s w_{p+1}, \xi_{p+2}=s w_{p+2}, \ldots, \xi_{p+q}=s w_{p+q}, \quad p+q=n \tag{3.5}
\end{gather*}
$$

where $\sum_{i=1}^{p} w_{i}^{2}=1$ and $\sum_{j=p+1}^{p+q} w_{j}^{2}=1$. Thus

$$
\begin{equation*}
r=\sqrt{\sum_{i=1}^{p} \xi_{i}^{2}}, \quad s=\sqrt{\sum_{j=p+1}^{p+q} \xi_{j}^{2}} . \tag{3.6}
\end{equation*}
$$

We have $\left\langle P^{\lambda}, \varphi\right\rangle=\int\left[r^{4}-s^{4}\right]^{\lambda} \varphi(\xi) d \xi$. Since the volume $d \xi=r^{p-1} s^{q-1} d r d s d \Omega_{p} d \Omega_{q}$ where $d \Omega_{p}$ and $d \Omega_{q}$ are the elements of surface area on the unit sphere in \mathbb{R}^{p} and \mathbb{R}^{q}, respectively. Thus

$$
\begin{align*}
\left\langle P^{\lambda}, \varphi\right\rangle & =\int_{p>0}\left(r^{4}-s^{4}\right)^{\lambda} \varphi r^{p-1} s^{q-1} d r d s d \Omega^{p} d \Omega^{q} \tag{3.7}\\
& =\int_{0}^{\infty} \int_{0}^{r}\left(r^{4}-s^{4}\right)^{\lambda} \psi(r, s) r^{p-1} s^{q-1} d s d r
\end{align*}
$$

where $\psi(r, s)=\int \varphi d \Omega_{p} d \Omega_{q}$.
Since $\varphi(\xi)$ is in D, then $\psi(r, s)$ is an infinitely differentiable function of r^{4} and s^{4} with bounded support. We now make the change of variable $u=r^{4}, v=s^{4}$, and writing $\psi(r, s)=\psi_{1}(u, v)$. Thus we obtain

$$
\begin{equation*}
\left\langle P^{\lambda}, \varphi\right\rangle=\frac{1}{16} \int_{u=0}^{\infty} \int_{v=0}^{u}(u-v)^{\lambda} \psi_{1}(u, v) u^{(p-4) / 4} v^{(q-4) / 4} d v d u \tag{3.8}
\end{equation*}
$$

Write $v=u t$. We obtain

$$
\begin{equation*}
\left\langle P^{\lambda}, \varphi\right\rangle=\frac{1}{16} \int_{0}^{\infty} u^{\lambda+(1 / 4)(p+q)-1} d u \int_{0}^{1}(1-t)^{\lambda} t^{(q-4) / 4} \psi_{1}(u, u t) d t \tag{3.9}
\end{equation*}
$$

Let the function

$$
\begin{equation*}
\Phi(\lambda, u)=\frac{1}{16} \int_{0}^{1}(1-t)^{\lambda} t^{(q-4) / 4} \psi_{1}(u, u t) d t \tag{3.10}
\end{equation*}
$$

Thus $\Phi(\lambda, u)$ has singularity at $\lambda=-k$ where it has simple poles. By Gel'fand and Shilov [2, page 254, equation (12)] we obtain the residue of $\Phi(\lambda, u)$ at $\lambda=-k$, that is,

$$
\begin{equation*}
\operatorname{res}_{\lambda=-k} \Phi(\lambda, u)=\frac{1}{16} \frac{(-1)^{k-1}}{(k-1)!}\left[\frac{\partial^{k-1}}{\partial t^{k-1}}\left\{t^{(q-4) / 4} \psi_{1}(u, u t)\right\}\right]_{t=1} \tag{3.11}
\end{equation*}
$$

Thus, $\operatorname{res}_{\lambda=-k} \Phi(\lambda, u)$ is a functional concentrated on the surface $P=0(t=1, u=v$, $p=u-v=0$). On the other hand, from (3.9) and (3.10) we have

$$
\begin{equation*}
\left\langle P^{\lambda}, \varphi\right\rangle=\int_{0}^{\infty} u^{\lambda+(1 / 4)(p+q)-1} \Phi(\lambda, u) d u \tag{3.12}
\end{equation*}
$$

Thus $\left\langle P^{\lambda}, \varphi\right\rangle$ in (3.12) has singularities at $\lambda=-n / 4,-n / 4-1, \ldots,-n / 4-k$. At these points,

$$
\begin{equation*}
\operatorname{res}_{\lambda=-n / 4-k}\left\langle P^{\lambda}, \varphi\right\rangle=\frac{1}{k!}\left[\frac{\partial^{k}}{\partial u^{k}} \Phi\left(-\frac{n}{4}-k, u\right)\right]_{u=0} \tag{3.13}
\end{equation*}
$$

Thus the residue of $\left\langle P^{\lambda}, \varphi\right\rangle$ at $\lambda=(-1 / 2) n-k$ is a functional concentrated on the vertex of the surface P. Now consider the case when the singular point $\lambda=-k$. Write (3.10) in the neighborhood of $\lambda=-k$ in the form $\Phi(\lambda, u)=\Phi_{0}(u) /(\lambda+k)+\Phi_{1}(\lambda, u)$ where $\Phi_{0}(u)=\operatorname{res}_{\lambda=-k} \Phi(\lambda, u)$ and $\Phi_{1}(\lambda, u)$ is regular at $\lambda=-k$. Substitute $\Phi(\lambda, u)$ into (3.12) we obtain

$$
\begin{equation*}
\left\langle P^{\lambda}, \varphi\right\rangle=\frac{1}{\lambda+k} \int_{0}^{\infty} u^{\lambda+(1 / 4)(p+q)-1} \Phi_{0}(u) d u+\int_{0}^{\infty} u^{\lambda+(1 / 4)(p+q)-1} \Phi_{1}(\lambda, u) d u \tag{3.14}
\end{equation*}
$$

Thus $\operatorname{res}_{\lambda=-k}\left\langle P^{\lambda}, \varphi\right\rangle=\int_{0}^{\infty} u^{-k+(1 / 4)(p+q)-1} \Phi_{0}(u) d u$. By substituting $\Phi_{0}(u)$ and (3.11), we obtain

$$
\begin{equation*}
\operatorname{res}_{\lambda=-k}\left\langle P^{\lambda}, \varphi\right\rangle=\frac{(-1)^{k}}{16(k-1)!} \int_{0}^{\infty}\left[\frac{\partial^{k-1}}{\partial t^{k-1}}\left\{t^{1(q-4) / 4} \psi_{1}(u, u t)\right\}\right]_{t=1} u^{-k+(1 / 4)(p+q)-1} d u \tag{3.15}
\end{equation*}
$$

since, we put $v=u t$. Thus $\partial^{k-1} / \partial t^{k-1}=u^{k-1}\left(\partial^{k-1} / \partial v^{k-1}\right)$, by substituting $\partial^{k-1} / \partial t^{k-1}$ we obtain

$$
\begin{equation*}
\operatorname{res}_{\lambda=-k}\left\langle P^{\lambda}, \varphi\right\rangle=\frac{(-1)^{k}}{16(k-1)!} \int_{0}^{\infty}\left[\frac{\partial^{k-1}}{\partial t^{k-1}}\left\{v^{1(q-4) / 4} \psi_{1}(u, v)\right\}\right]_{u=v} u^{(1 / 4) p-1} d u \tag{3.16}
\end{equation*}
$$

Now, by (2.16)

$$
\begin{equation*}
\operatorname{res}_{\lambda=-k}\left\langle P^{\lambda}, \varphi\right\rangle=\frac{(-1)^{k-1}}{(k-1)!} \delta_{1}^{(k-1)}(P) . \tag{3.17}
\end{equation*}
$$

Since, by Definition 2.9 we have

$$
\begin{equation*}
(-1)^{k} \widehat{K_{2 k, 2 k}(\xi)}=\frac{1}{(2 \pi)^{n / 2}} P^{\lambda} \quad \text { for } \lambda=-k, \tag{3.18}
\end{equation*}
$$

and $\xi \in G_{b}$. Let M be a spectrum of $(-1)^{k} K_{2 k, 2 k}(x)$ and $M \subset G_{b}$ by Lemma 2.8. Thus for any nonzero $\xi \in M$ we can find the residue of $(-1)^{k} \widehat{K_{2 k, 2 k}(\xi)}$, that is,

$$
\begin{align*}
\operatorname{res}_{\lambda=-k}\left\langle(-1)^{k} K_{2 k, 2 k}(\xi), \varphi(\xi)\right\rangle & =\frac{1}{(2 \pi)^{n / 2}} \operatorname{res}_{\lambda=-k}\left\langle P^{\lambda}, \varphi\right\rangle \\
& =\frac{(-1)^{k-1}}{(2 \pi)^{n / 2}(k-1)!}\left\langle\delta_{1}^{(k-1)}(P), \varphi\right\rangle \tag{3.19}
\end{align*}
$$

or $\operatorname{res}_{\lambda=-k}(-1)^{k} \widehat{K_{2 k, 2 k}(\xi)}=\left((-1)^{k-1} /\left(2(\pi)^{n / 2}(k-1)!\right)\right) \delta_{1}^{(k-1)}(P)$ for $\xi \in M$ and $\xi \neq 0$.
Now consider the case $\xi=0$. We have from (3.13) that, the residue of $\left\langle P^{\lambda}, \varphi\right\rangle$ occurs at the point $\lambda=(-1 / 2) n-k$ that is $\operatorname{res}_{\lambda=-(1 / 2) n-k}\left\langle P^{\lambda}, \varphi\right\rangle$ is a functional concentrated on the vertex of surface P. Since $u=0$ and $v=u t$, then $u=v=0$, that implies

$$
\begin{equation*}
\sqrt{\xi_{1}^{2}+\xi_{2}^{2}+\cdots+\xi_{p}^{2}}=\sqrt{\xi_{p+1}^{2}+\xi_{p+2}^{2}+\cdots+\xi_{p+q}^{2}}=0 \tag{3.20}
\end{equation*}
$$

It follows that $\xi_{1}=\xi_{2}=\cdots=\xi_{p+q}=0, p+q=n$. Thus, the residue of $\left\langle P^{\lambda}, \varphi\right\rangle$ is concentrated on the point $\xi=0$.

Since, from Definition 2.9, $\left(1 /(2 \pi)^{n / 2}\right) P^{\lambda}=(-1)^{k} K_{2 k, 2 k}(\xi)$ if $\lambda=-k$. Thus we only consider the residue of $(-1)^{k} \widehat{K_{2 k, 2 k}(\xi)}$ at $\lambda=-k$. From (3.12), we consider the residue of $\left\langle P^{\lambda}, \varphi\right\rangle$ only at $\lambda=-k$. That implies $(1 / 4)(p+q)-1=0$ or $n=4(p+q=n)$. Since $n=4$ is an even dimension which contradicts Lemma 2.4, the existence of the elementary solution $(-1)^{k} K_{2 k, 2 k}(x)$ that exists for odd n. Thus cases (3.12) and (3.13) do not occur. This implies that the case $\xi=0$ does not happen. It follows that

$$
\begin{equation*}
\operatorname{res}_{\lambda=-k}(-1)^{k} K_{2 k, 2 k}(\xi)=\frac{(-1)^{k-1}}{(2 \pi)^{n / 2}(k-1)!} \delta_{1}^{(k-1)}(P) \tag{3.21}
\end{equation*}
$$

for nonzero point $\xi \in M$ concentrated on the surface $P=0$, where M is a spectrum of $(-1)^{k} K_{2 k, 2 k}(x)$.

Acknowledgements. The author would like to thank the Thailand Research Fund for financial support and particularly Prof Dr Virulh Sa-yakanit who gave some partial supports.

References

[1] M. A. Aguirre Téllez, The distributional Hankel transform of Marcel Riesz's ultrahyperbolic kernel, Stud. Appl. Math. 93 (1994), no. 2, 133-162. MR 95k:46066. Zbl 820.46037.
[2] I. M. Gel'fand and G. E. Shilov, Generalized Functions. Vol. 1. Properties and Operations, Academic Press, New York, 1964. MR 55\#8786a. Zbl 115.33101.
[3] , Generalized Functions. Vol. 2. Spaces of Fundamental and Generalized Functions, Academic Press, New York, 1968. MR 55\#8786b. Zbl 159.18301.
[4] A. Kananthai, On the solutions of the n-dimensional diamond operator, Appl. Math. Comput. 88 (1997), no. 1, 27-37. MR 98i:35133. Zbl 922.47042.
[5] , On the Fourier transform of the diamond kernel of Marcel Riesz, Appl. Math. Comput. 101 (1999), no. 2-3, 151-158. MR 2000a:46061. Zbl 939.46023.
[6] Y. Nozaki, On Riemann-Liouville integral of ultra-hyperbolic type, Kōdai Math. Sem. Rep. 16 (1964), 69-87. MR 29\#4906. Zbl 168.37201.
[7] S. E. Trione, On Marcel Riesz's ultra-hyperbolic kernel, Trabajos de Matematica 116 (1987), 1-12.
[8] A. H. Zemanian, Distribution Theory and Transform Analysis. An Introduction to Generalized Functions, with Applications, McGraw-Hill, New York, 1965. MR 31\#1556. Zbl 127.07201.

Amnuay Kananthai: Department of Mathematics, Chiangmai University, Chiangmai 50200, Thailand

E-mail address: malamnka@science.cmu.ac.th

