REMARKS ON A PAPER BY SILVERMAN

VIKRAMADITYA SINGH

(Received 15 August 2000 and in revised form 23 November 2000)

Abstract. We improve a result in Silverman's paper (1999) and answer a question he posed. We also consider a similar problem and obtain sufficient conditions for starlikeness.
2000 Mathematics Subject Classification. 30C45.

1. Introduction. Let A be the class of analytic functions in the unit disc $U=\{z$: $|z|<1\}$ having expansion of the form

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots \tag{1.1}
\end{equation*}
$$

and let $S \subset A$ be the set of univalent functions in U. A function $f \in S$ is said to be starlike of order $\alpha, 0<\alpha<1$, and is denoted by S_{α}^{*} if $\operatorname{Re} z\left(f^{\prime}(z) / f(z)\right)>\alpha, z \in U$ and is said to be convex and is denoted by C if $\operatorname{Re}\left\{1+z\left(f^{\prime \prime}(z) / f^{\prime}(z)\right)\right\}>0, z \in U$. Silverman [2] investigated properties of the functions $f \in A$ and the class

$$
\begin{equation*}
G_{b}=\left\{\left.f \in A| |\left(\frac{1+z\left(f^{\prime \prime}(z) / f^{\prime}(z)\right)}{z\left(f^{\prime}(z) / f(z)\right)}\right)-1 \right\rvert\,<b, z \in U\right\} \tag{1.2}
\end{equation*}
$$

Some of the results established by him and relevant to us are given in the following theorem.

THEOREM 1.1. Let $f \in G_{b}$ then
(i) If $0<b \leq 1, G_{b} \subset S^{*}(2 /(1+\sqrt{1+8 b}))$ and in particular $G_{1} \subset S^{*}(1 / 2)$.
(ii) $G_{b} \subset C$ for $0<b \leq 1 / \sqrt{2}$ and $G_{1} \not \subset C$.
(iii) For $b \geq 11.66, G_{b} \not \subset S^{*}(0)$ and for large enough $b, G_{b} \not \subset S$.

His method did not extend to $b>1$ and he expected the order of starlikeness of G_{b} to decrease from $1 / 2$ to 0 as b increases from 1 to some value b_{0} after which functions in G_{b} need not be starlike.

In this paper we establish the following theorems.
THEOREM 1.2. Let $f \in G_{b}, 0<b \leq 1$, then $G_{b} \subset S^{*}(1 /(1+b))$ and this order of starlikeness is sharp. Furthermore, for $b>1$ the elements of G_{b} need not be regular in U.

We notice that if we put $p(z)=z\left(f^{\prime}(z) / f(z)\right)$, then $p(z)$ is analytic in U with $p(0)=1$ and G_{b} gets transformed to

$$
\begin{equation*}
G_{b}=\left\{f \in A, \left.p(z)=z \frac{f^{\prime}(z)}{f(z)}| | z \frac{p^{\prime}(z)}{p^{2}(z)} \right\rvert\,<b, z \in U\right\} \tag{1.3}
\end{equation*}
$$

DEFINITION 1.3. An analytic function $f(z)$ is said to be subordinate to another analytic function $g(z)$, denoted symbolically as $f(z) \prec g(z)$, if $f(0)=g(0)$ and there exists an analytic function $\omega(z) \in A, \omega(0)=0$ and $|\omega(z)|<1, z \in U$ such that $f(z)=g(\omega(z))$.

Theorem 1.4. Let $-1 \leq \alpha \leq 1,0 \leq a<1, \lambda>0$ and let $p(z)$ be an analytic function in $U, p(0)=1, p(z) \neq 0, z \in U$ satisfy the subordination

$$
\begin{equation*}
z \frac{p^{\prime}(z)}{p^{2}(z)} \prec \frac{\lambda z}{(1+a z)^{1+\alpha}} \tag{1.4}
\end{equation*}
$$

Then

$$
\begin{gather*}
\frac{1}{p(z)}<1-\frac{\lambda}{a \alpha}\left(1-(1+a z)^{-\alpha}\right), \quad \alpha \neq 0, \\
\operatorname{Re} \frac{1}{p(z)}>0 \quad \text { if } 0<\lambda \leq \frac{a \alpha}{1-(1+a)^{-\alpha}}, \quad \alpha \neq 0 . \tag{1.5}
\end{gather*}
$$

For $\alpha=0$ and $0<\lambda \leq a / \log (1+a)$

$$
\begin{equation*}
p(z) \prec \frac{1}{1-(\lambda / a) \log (1+a z)}, \quad \operatorname{Re} p(z)>\left(1-\frac{\lambda}{a} \log (1-a)\right)^{-1} . \tag{1.6}
\end{equation*}
$$

The special case of (1.4) for $\alpha=1, \lambda=b-a,-1 \leq b<a \leq 1$ had been considered in [1]. Silverman's case corresponds to $\alpha=-1$.

In the notation of subordination the class G_{b} defined by (1.3) can equivalently be written as

$$
\begin{equation*}
G_{b}=\left\{f \in A, p(z)=z \frac{f^{\prime}(z)}{f(z)} \left\lvert\, z \frac{p^{\prime}(z)}{p^{2}(z)} \prec b z\right., z \in U\right\} . \tag{1.7}
\end{equation*}
$$

We need the following result from [3].
Theorem 1.5. If h is starlike in $U, h(0)=0$ and p is analytic in $U, p(0)=1$ satisfies

$$
\begin{equation*}
z p^{\prime}(z) \prec h(z), \tag{1.8}
\end{equation*}
$$

then

$$
\begin{equation*}
p(z) \prec q(z)=1+\int_{0}^{z} \frac{h(t)}{t} d t \tag{1.9}
\end{equation*}
$$

where q is a convex function.
2. Proof of Theorem 1.2. From (1.7), $f \in G_{b}$ is equivalent to

$$
\begin{equation*}
z \frac{p^{\prime}(z)}{p^{2}(z)}=b \omega(z), \quad \omega(0)=0,|\omega(z)|<1 \tag{2.1}
\end{equation*}
$$

By integration from 0 to z and using $p(0)=1$, we get

$$
\begin{equation*}
\frac{1}{p(z)}=1-b \int_{0}^{1} \frac{\omega(t z)}{t} d t \tag{2.2}
\end{equation*}
$$

From (2.2) using Schwartz lemma for $\omega(z)$, we get

$$
\begin{equation*}
\left|1-\frac{1}{p(z)}\right| \leq b|z| \tag{2.3}
\end{equation*}
$$

or equivalently, $|z|=r$ and

$$
\begin{equation*}
\left|p^{2}(z)\right|-2 \operatorname{Re} p(z)+1 \leq b^{2} r^{2}\left|p^{2}(z)\right| \tag{2.4}
\end{equation*}
$$

Therefore, if $b \leq 1$,

$$
\begin{equation*}
\left(1-b^{2} r^{2}\right)\left|p^{2}(z)\right|-2 \operatorname{Re} p(z)+1 \leq 0 \tag{2.5}
\end{equation*}
$$

This is equivalent to

$$
\begin{align*}
\left|p(z)-\frac{1}{1-b^{2} r^{2}}\right| & \leq \frac{b r}{1-b^{2} r^{2}}, \quad \text { if } 0 \leq b \leq 1 \tag{2.6}\\
\left|p(z)+\frac{1}{b^{2}-1}\right| & \geq \frac{b}{b^{2}-1}, \quad \text { if } b>1 \tag{2.7}
\end{align*}
$$

Equation (2.6) gives

$$
\begin{equation*}
\operatorname{Re} p(z) \geq \frac{1}{1+b} \tag{2.8}
\end{equation*}
$$

and this is sharp because

$$
\begin{equation*}
p(z)=\frac{1}{1+b z} \Longrightarrow f(z)=\frac{z}{1+b z} \tag{2.9}
\end{equation*}
$$

satisfies (2.6). The function $p(z)$ given by (2.9) satisfies (1.7) even for $b>1$. However, (2.9) shows that for $b>1$ both $p(z)$ and $f(z)$ have a pole at $z=-1 / b$ and $\operatorname{Re} p(z)$ can be negative. Thus, the functions $f \in G_{b}$ for $b>1$ need not even be regular.
3. Proof of Theorem 1.4. We notice that the function $z /(1+a z)^{1+\alpha}, 0 \leq a<1$, is starlike for $0<\alpha \leq 1$ and convex for $-1 \leq \alpha \leq 0$. Since every convex function is starlike, we obtain, from (1.4) and Theorem 1.5,

$$
\begin{align*}
& \frac{1}{p(z)} \prec 1-\frac{\lambda}{a \alpha}\left(1-(1+a z)^{-\alpha}\right), \quad \alpha \neq 0 \tag{3.1}\\
& \frac{1}{p(z)} \prec 1-\frac{\lambda}{a} \log (1+a z), \quad \alpha=0
\end{align*}
$$

As $(1+a z)^{-\alpha},|\alpha| \leq 1, \alpha \neq 0$, is a convex function with real coefficients, we obtain

$$
\begin{align*}
& \operatorname{Re} \frac{1}{p(z)}>0 \quad \text { if } 0<\lambda \leq \frac{a \alpha}{1-(1+a)^{-\alpha}},|\alpha| \leq 1, \alpha \neq 0 \\
& \operatorname{Re} \frac{1}{p(z)}>0 \quad \text { if } 0<\lambda \leq \frac{a}{\log (1+a)}, \quad \alpha=0 \tag{3.2}
\end{align*}
$$

Hence,

$$
\begin{equation*}
\operatorname{Re} p(z) \geq \frac{1}{1-(\lambda / a \alpha)\left\{1-(1-a)^{-\alpha}\right\}}, \quad \alpha \neq 0 \tag{3.3}
\end{equation*}
$$

and $f(z)$ satisfying $p(z)=z\left(f^{\prime}(z) / f(z)\right)$ is starlike of order $1 /\left(1-(\lambda / a \alpha)\left\{1-(1-a)^{-\alpha}\right\}\right)$, $\alpha \neq 0$ and $1 /(1-(\lambda / a) \log (1-a))$ for $\alpha=0$.

In the special case $\alpha=1$ and $\lambda=a-b$ we obtain $\operatorname{Re} p(z) \geq(1-a) /(1-b),-1 \leq b<$ $a \leq 1$ which corresponds to the case in [1]. If $\alpha=-1$, we obtain $\operatorname{Re} p(z)>1 /(1+\lambda)$ which agrees with Theorem 1.2.

References

[1] M. Obradović and S. Owa, A criterion for starlikeness, Math. Nachr. 140 (1989), 97-102. MR 90i:30020. Zbl 676.30009.
[2] H. Silverman, Convex and starlike criteria, Int. J. Math. Math. Sci. 22 (1999), no. 1, 75-79. MR 2000a:30028. Zbl 921.30009.
[3] T. J. Suffridge, Some remarks on convex maps of the unit disk, Duke Math. J. 37 (1970), 775-777. MR 42\#4722. Zbl 206.36202.

[^0]
[^0]: Vikramaditya Singh: 3A/95 Azad Nagar, Kanpur UP 208002, India
 E-mail address: rasingh@rocketmai1.com

