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Abstract. Let C(X) be the ring of all continuous real-valued functions defined on a com-
pletely regular T1-space. Let CΨ (X) and CK(X) be the ideal of functions with pseudocom-
pact support and compact support, respectively. Further equivalent conditions are given
to characterize when an ideal of C(X) is a P -ideal, a concept which was originally defined
and characterized by Rudd (1975). We used this new characterization to characterize
when CΨ (X) is a P -ideal, in particular we proved that CK(X) is a P -ideal if and only if
CK(X) = {f ∈ C(X) : f = 0 except on a finite set}. We also used this characterization to
prove that for any ideal I contained in CΨ (X), I is an injective C(X)-module if and only if
cozI is finite. Finally, we showed that CΨ (X) cannot be a proper prime ideal while CK(X)
is prime if and only if X is an almost compact noncompact space and ∞ is an F -point. We
give concrete examples exemplifying the concepts studied.

2000 Mathematics Subject Classification. 54C30, 54C40, 13C11.

1. Introduction. Let X be a completely regular T1-space, βX the Stone-Cech com-

pactification of X, υX the Hewitt real compactification of X, C(X) the ring of all con-

tinuous real-valued functions defined on X and C∗(X) the subring of all bounded

functions in C(X).
For each f ∈ C(X), let Z(f) = {x ∈ X : f(x) = 0}, cozf = X−Z(f), and suppf =

cozf . If I is an ideal of C(X), let cozI = ⋃f∈I cozf . For each A ⊆ βX let OA = {f ∈
C(X) : A ⊆ IntβX Z(f̄ )}, where f̄ is the continuous extension to βX of the bounded

function

f∗(x)=




1, f (x)≥ 1,

f (x), −1≤ f(x)≤ 1,

−1, f (x)≤−1,

(1.1)

and let MA = {f ∈ C(X) : A ⊆ clβX Z(f)}. For p ∈ X, Op = Op = {f ∈ C(X) : p ∈
IntX Z(f)} and Mp =Mp = {f ∈ C(X) : f(p)= 0}. Let CK(X) denote the ideal of func-

tions with compact support and CΨ (X) denote the ideal of functions with pseudocom-

pact support in the ring C(X). It is known that CK(X)=OβX−X and CΨ (X)=OβX−υX .

For all notation and undefined terms in this paper the reader may consult [4].

It was mentioned in [4] that ifX is a P -space, then suppf is finite for each f ∈ CK(X).
This raises the question; when does the converse of this hold? At first we thought the

converse is always true, but we could not prove it, and we were able later on to find

an example showing that the converse is not always true. Until by chance while we

were studying properties of P -ideals, we found that the above property is equivalent
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to CK(X) being a P -ideal. We were able to give more equivalent conditions to P -ideals

which leads us to our result, moreover we used this new characterization for P -ideals

to characterize when CΨ (X) is an injective C(X)-module and to generalize a result

which was proved earlier by Vechtomov in [10]. We also study when CK(X) is a prime

ideal and when it is maximal.

2. P -ideals. Recall that an ideal I of C(X) is called pure if for each f ∈ I there exists

g ∈ I such that f = fg, and in this case g = 1 on suppf . The ideal I is called regular

if for each f ∈ I there exists g ∈ I such that f = f 2g. A space X is called a P -space if

every Gδ-set in X is open. A point p ∈ βX is called a P -point if Op =Mp , it is called

an F -point if Op is prime. The space X is called an F -space if Op is prime for each

p ∈ βX.

The space X is a P -space if and only if every prime ideal of C(X) is maximal if and

only if Ox =Mx for each x ∈ X, see [4]. Rudd in [9] extends this concept to ideals in

rings of continuous functions.

Definition 2.1 (see Rudd [9]). A nonzero ideal I of C(X) is called a P -ideal if every

proper prime ideal of I is maximal in I.
If X is a P -space, then every ideal of C(X) is a P -ideal. Later on we will give an

example of a nonzero ideal I of C(X) that is a P -ideal while X is not a P -space.

Theorem 2.2 (see Rudd [9]). Let I be a nonzero ideal of C(X). Then the following

statements are equivalent:

(1) I is a P -ideal.

(2) Z(f) is open for each f ∈ I.
(3) Every ideal of I is pure.

(4) Every prime ideal of C(X) which does not contain I is maximal in C(X).

Now we prove the following theorem which is the main result in this section, it gives

more equivalent conditions to Theorem 2.2 and it will be used to characterize when

CΨ (X) is a P -ideal and when it is injective.

Theorem 2.3. Let I be a nonzero ideal of C(X). Then the following statements are

equivalent:

(1) I is a P -ideal.

(2) Ox =Mx for each x ∈ cozI and I ⊆Ox for x ∉ cozI.
(3) I is a regular ring.

(4) cozI is a P -space and I is pure.

Proof. (1)⇒(2). Let x ∈ cozI, then I is not contained in Mx . Hence for each prime

ideal P ⊆Mx , P does not contain I, and therefore it is maximal in C(X). ThusOx =Mx ,

since Ox is the intersection of all prime ideals contained in Mx , see [4].

Now, if x ∉ cozI, then I ⊆Mx . Suppose that there exists f ∈ I−Ox . So there exists

a prime ideal P ⊆Mx such that f ∈ I−P . Hence P is a maximal ideal of C(X), and so

P =Mx which is a contradiction, since I ⊆Mx . Hence, I ⊆Ox for each x ∉ cozI.
(2)⇒(3). It is clear that for each f ∈ I, Z(f) is open. So it follows by Theorem 2.2

that each ideal of I is pure, and so a z-ideal. Hence f ∈ f 2I, since Z(f)= Z(f 3). Thus,

there exists g ∈ I such that f = f 2g.
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(3)⇒(1). Clear, since the condition implies that each ideal of I is pure.

(2)⇒(4). The condition implies that I is pure. Let G = ⋂∞n=1Gn, where each Gn is

an open set in cozI. Let y ∈ G. For each n ∈ N there exists fn ∈ C(X) such that

0 ≤ fn ≤ 1, fn(y) = 0 and fn(X−Gn) = 1. Let f = ∑∞
n=1f 2

n/2n. Then f ∈ C(X) and

f(y)= 0. So f ∈My =Oy . Hence, y ∈ IntX Z(f)⊆ Z(f)⊆
⋂∞
n=1Gn =G. Thus G is an

open set, and therefore cozI is a P -space.

(4)⇒(2). Let y ∈ cozI, and f ∈My . Then y ∈ Z(f)⋂cozI =⋂∞n=1{x ∈ X : |f(x)| <
1/n}⋂cozI. Hence, y ∈ IntX Z(f), and so f ∈Oy . Now, let y ∉ cozI and f ∈ I. Purity

of I implies that there exists g ∈ I such that f = fg. So suppf ⊆ cozg ⊆ cozI. Hence

y ∈X−suppf ⊆ Z(f). Consequently, f ∈Oy .

It will be shown later in Examples 3.6 and 3.7 that the two conditions in statement

(4) above are both necessary.

3. When is CΨ (X) a P -ideal? If X is a P -space, then CK(X) is the set of all functions

in C(X) which are eventually zero (see [4]). Now our aim is to show when does the

converse of this result hold? In fact, we are going to show that CK(X) is the set of all

functions that are eventually zero if and only if CK(X) is a P -ideal. The point is that

we were able to find a space X which is not a P -space, while CK(X) is a P -ideal. In fact,

one can say more, but first we will need the following lemma.

Lemma 3.1. If I is a pure ideal, then suppf ⊆ cozI for each f ∈ I.

Proof. Let f ∈ I, then there exists g ∈ I such that f = fg, which implies that

suppf ⊆ cozg ⊆ cozI.

In the following theorem we will use the result in Theorem 2.3 to characterize when

CΨ (X) is a P -ideal.

Theorem 3.2. Let I be an ideal contained in CΨ (X). Then I is a P -ideal if and only

if cozI is discrete and I is pure.

Proof. Suppose I is a P -ideal. Then cozI is a P -space, and I is pure. So suppf ⊆
cozI for each f ∈ I. Hence suppf is a pseudocompact P -space. Thus cozf is a finite

open set, since a pseudocompact P -space is finite (see [4]). So it follows that for each

x ∈ cozf ,{x} is clopen in X. Hence, cozI is a discrete space of X. The converse

is clear.

The following corollary is the main result in this paper, it gives a concrete descrip-

tion of the ideal CK(X) when it is a P -ideal.

Corollary 3.3. The following statements are equivalent:

(1) CK(X) is a P -ideal.

(2) cozCK(X) is discrete and CK(X) is pure.

(3) CK(X)= {f ∈ C(X) : f = 0 except on a finite set}.

Proof. The equivalence of (1) and (2) follows from Theorem 3.2, since CK(X) ⊆
CΨ (X).

(1)⇒(3). Let f ∈ CK (X). Then suppf is finite, since it is a compact P -space. So cozf
is finite. Hence f = 0 except on a finite set.
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(3)⇒(1). Let f ∈ CK(X). Then cozf is finite. So Z(f) is clopen, since cozf is. Hence,

CK(X) is a P -ideal.

In [6, 8] several generalizations of real compactness are studied, from them the

concept of Ψ -compactness. A space X is called Ψ -compact if CK(X) = CΨ (X). The

following corollary relates Ψ -compactness of the space X and CΨ (X) being a P -ideal.

Corollary 3.4. If CΨ (X) is a P -ideal, then X is Ψ -compact.

Proof. If f ∈ CΨ (X), then suppf is finite. Hence f = 0 except on a finite set. Thus

CΨ (X) ⊆ {f ∈ C(X) : f = 0 except on a finite set} ⊆ CK(X) ⊆ CΨ (X). Thus CΨ (X) =
CK(X), and so X is Ψ -compact.

The following is an example of a non P -space X such that CK(X) is a P -ideal. This

shows that the converse of the result in [4] needs not be true.

Example 3.5. Let X be the set of all rational numbers with {0} clopen and all

other points have their usual neighborhoods. Then cozCΨ (X) = {0} is discrete and

CΨ (X) = {f ∈ C(X) : f = 0 except for x = 0} is pure. The space X is not a P -space,

since {2} =⋂∞n=1(2−1/n,2+1/n)
⋂
X is not open.

The following two examples show that the two conditions in Theorem 2.3(4) and

Theorem 3.2 are both necessary.

Example 3.6. Let X = [−1,1] with all points isolated and {0} has its usual neigh-

borhoods. Then cozCΨ (X)=X−{0} is discrete.

Now, define

f(X)=



x, x = 1

n
for n∈ Z∗,

0, otherwise.
(3.1)

Then suppf = {1/n : n ∈ Z∗}⋃{0} is compact, but Z(f) is not open. So CΨ (X) is

not a P -ideal, although cozCΨ (X) is discrete.

Example 3.7. Let R be the space of all real numbers, then CK(R) is a pure ideal,

since R is locally compact (see [2]), while CK(R) is not a P -ideal.

4. Injectivity of CΨ (X). Recall that an ideal I is called an injective ideal if it is an

injective C(X)-module. Vechtomov in [10] mentioned that if X is locally compact, then

CK(X) is an injective C(X)-module if and only if X is finite. We now use the result in

Theorem 2.3 to extend the result of Vechtomov to any ideal contained in CΨ (X) for

any space X. In fact we will show that the concept of P -ideals and injective modules

are equivalent for principal ideals contained in CΨ (X).

Theorem 4.1. Let I be any ideal contained in CΨ (X). Then I is an injective C(X)-
module if and only if cozI is finite.

Proof. Suppose I is an injective C(X)-module, then I is a regular ring and so it

follows by Theorems 2.3 and 3.2 that cozI is discrete. Moreover, since I is a direct

summand of any module of which it is a submodule (see [5]), it follows that I = (e)
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with e2 = e. So cozI = coze = suppe, since Z(e) is clopen (see [1]). Hence cozI is a

pseudocompact discrete space. Thus cozI is finite.

Conversely, suppose cozI is finite. Then I is a P -ideal, since cozf is clopen for each

f ∈ I, and so every ideal of I is a z-ideal in C(X). Let J be any ideal of C(X), and let

ϕ ∈HomC(X)(J,I). Define

e1(x)=



1, x ∈ cozϕ(J),

0, otherwise.
(4.1)

Then ϕ(J) = (e1), since it is a z-ideal contained in I, and cozϕ(J) is compact. Let

f1 ∈ J such that ϕ(f1)= e1. Let A= cozϕ(J)
⋂

cozf1. Define

g(x)=



1, x ∈A,
0, otherwise.

(4.2)

Then g ∈ I, since Z(e1)⊆ Z(g), and I is a z-ideal. Also there exists h∈ J such that

Z(h)= Z(g). Define

k(x)=




1
h
(x), x ∈A,

0, otherwise.
(4.3)

Then g = kh ∈ J. Moreover, f1e1 = f1g. Now, e1 = ϕ(f1) = ϕ(f1)e1 = ϕ(f1e1) =
ϕ(f1g) = gϕ(f1) ∈ J. So for each f ∈ J, ϕ(f) =ϕ(f)e1 =ϕ(fe1) = fϕ(e1). Define

Ψ : C(X)→ I, such that Ψ(f )= fϕ(e1) for each f ∈ C(X). Then Ψ ∈HomC(X)(C(X),I),
and Ψ |J =ϕ. Thus I is an injective C(X)-module.

A commutative ring R with identity is called hereditary if every ideal of R is a

projective R-module. Brookshear in [3] showed that C(X) is hereditary if and only if

X is finite and Vechtomov in [10] showed that if X is locally compact, then CK(X) is

an injective C(X)-module if and only if X is finite. The following corollary gives more

equivalent conditions in case that X is locally compact.

Corollary 4.2. If X is a locally compact space, then the following statements are

equivalent:

(1) C(X) is hereditary.

(2) X is finite.

(3) CK(X) is an injective C(X)-module.

(4) CΨ (X) is an injective C(X)-module.

The following corollary gives more equivalent conditions to Theorem 3.2 and relates

P -ideals and injective modules.

Corollary 4.3. Let I be an ideal contained in CΨ (X). Then I is a P -ideal if and only

if for every f ∈ I, the principal ideal (f ) is an injective C(X)-module.

Proof. Suppose I is a P -ideal, then for each f ∈ I, cozf is finite. So it follows by

Theorem 4.1 that the ideal (f ) is an injective C(X)-module.

Conversely, let f ∈ I. Then cozf is finite, and therefore Z(f) is clopen for each

f ∈ I. Hence I is a P -ideal.
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Example 4.4. Let X be the space defined in Example 3.5, then CΨ (X) is an injective

C(X)-module, since cozCΨ (X)= {0} is finite.

The following example shows that there exists a P -ideal which is not injective.

Example 4.5. Let X =N∗, the one point compactification of the natural numbers.

Let I = {f ∈ C(X) : f = 0 except on a finite set}. Then I is a P -ideal, since Z(f) is open

for each f ∈ I, but I is not injective since cozI =N is an infinite set.

5. When is CΨ (X) prime? Johnson and Mandelker in [6] used some ideals in C(X)
to study various generalizations of real compact spaces as µ-compactness, η-compact-

ness, and Ψ -compactness. A space X is called µ-compact if CK(X) = I(X), the inter-

section of all free maximal ideals in C(X), it is called η-compact if CΨ (X)= I(X) and

it is called Ψ -compact if CΨ (X) = CK(X). In this section we will prove that CK(X) is

maximal if and only if I(X) is maximal and X is µ-compact. We will show that CΨ (X)
could not be a proper prime ideal. We will also show that if I(X) is prime, then it must

be maximal.

Recall that a space X is called an almost compact space if |βX−X| ≤ 1. That is, X
is either compact or βX =X⋃{∞} =X∗, the one-point compactification of X.

It is known that if X is an almost compact space, then it is pseudocompact (see [4]).

For more properties of this space, see [7, 11].

Theorem 5.1. The set CΨ (X) cannot be a proper prime ideal in C(X).

Proof. Suppose that CΨ (X) is a proper prime ideal, then it is contained in a unique

maximal ideal. So βX −υX is a one-point set since CΨ (X) = OβX−υX ⊆ Mx for each

x ∈ βX−υX. Thus υX is an almost compact space and so it is pseudocompact.

Hence υX is compact and therefore υX = β(υX)= βX. This is a contradiction.

Also, since υX is compact, it follows that CK(υX) = C(υX) which implies that

CΨ (X)= C(X).
Theorem 5.2. The ideal I(X) is prime if and only if X is an almost compact non-

compact space.

Proof. Suppose that I(X) is prime, then |βX−X| = 1, since I(X) =MβX−X ⊆Mx

for each x ∈ βX−X. Hence X is an almost compact noncompact space.

The converse is clear.

The following corollary follows easily from Theorem 5.2.

Corollary 5.3. If I(X) is prime, then it is maximal.

Example 5.4. Let T be the Tychonoff plank, then βT= T∗ = T∪{t0} (see [4]). So

I(T)=Mt0 is maximal.

Theorem 5.5. The ideal CK(X) is prime if and only if X is an almost compact non-

compact space and ∞ is an F -point.

Proof. If CK(X) is prime, then |βX−X| = 1. So CK(X)=O∞ is prime and ∞ is an

F -point.

The converse is clear.
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The following example shows that the two conditions in Theorem 5.5 are both

necessary.

Example 5.6. CK(T)=Ot0 is not prime (see [4]), although T is an almost compact

space. On the other hand, every point in βN is an F -point but CK(N) is not prime.

Theorem 5.7. The following statements are equivalent:

(1) CK(X) is maximal.

(2) C(X) contains only one proper free ideal.

(3) X is an almost compact noncompact space and ∞ is a P -point.

(4) X is µ-compact and I(X) is maximal.

Proof. (1)⇒(2). Clear, since CK(X) is the intersection of all free ideals.

(2)⇒(3). X is noncompact, since C(X) contains a proper free ideal. Also since CK(X)
is maximal it follows that X is an almost compact space and CK(X) =O∞ =M∞, and

so ∞ is a P -point.

(3)⇒(4). CK(X)=O∞ =M∞ = I(X), so X is µ-compact and I(X) is maximal.

(4)⇒(1). Clear.

Example 5.8. Let W denote the space of all ordinals less than the first uncountable

ordinal number ω1. Then CK(W) = Mω1 (see [4]). So CK(W) is maximal and W is an

almost compact space.

The following is an example of a space X such that CK(X) is prime but not maximal.

Example 5.9. Let N be the set of all natural numbers and let p ∈ βN−N, such that

p is not a P -point. Such a point exists since βN is not a P -space and N is discrete.

So there exists f ∈ C∗(N), such that p ∈ clβNZ(f), but p ∉ IntβNZ(f̄ ) where f̄ is the

continuous extension of f to βN. Since p is not a P -point, it is not isolated, so the

space X = βN−{p} is an almost compact space. Let f1 = f̄ |X , then f1 ∈ C∗(X), since

X is pseudocompact. Moreover, p ∈ clβNZ(f)⊆ clβNZ(f1)= clβX Z(f1), since Z(f)⊆
Z(f1). Hence f1 ∈Mp . Also, since f̄1|X = f1 = f̄ |x, it follows that f̄1 = f̄ , because X
is dense in βX. So p ∉ IntβNZ(f̄ ) = IntβNZ(f̄1) = IntβX Z(f̄1). Hence f1 ∉Op . That is,

f1 ∈Mp−Op . Now, since N is an F -space, it follows that βN is an F -space. So βX is

an F -space, which implies that X is an F -space. (This is because Y is an F -space if and

only if βY is an F -space (see [4]).) Thus p is an F -point. So CK(X)=Op is a prime ideal.

Hence CK(X) is a prime ideal which is not maximal.
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