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1. Introduction. Let M be a smooth manifold of dimension n> 1. Embed M in Rm

for some m > n so that the resulting point set forms an analytic manifold with no

boundary. That this is possible follows from Whitney [1]. Let �(M) be the Lie algebra

of smooth vector fields on M that smoothly go to zero at infinity if M is not compact.

We will look at two types of finitely generated graded subalgebras of �(M). In one

type we look at the Lie algebra generated by n analytic vector fields that span the

tangent space at some point of M and such that no subset generates a finite dimen-

sional Lie algebra. It is shown that this is a graded Lie algebra and that the graded

subalgebras of two manifolds are isomorphic if and only if the manifolds are diffeo-

morphic. The other type is constructed from an atlas of the manifold satisfying some

conditions.

2. Graded subalgebras with dimM number of generators. Without loss of gen-

erality, we set n = 2 in this section. Choose two analytic vector fields Xj ∈ �(M)
that span the tangent space for some point of M and such that m is infinite dimen-

sional where m =m(X1,X2)= 〈X1,X2〉 is the Lie algebra generated by the Xj . We have

m =∑∞
k=1 mk(X1,X2) where mk =mk(X1,X2) is the span over R of the set

{[
Xj1 ,

[
Xj2 ,

[···[Xjk−1 ,Xjk
]]···]] : ji = 1,2

}
. (2.1)

For a smooth atlas of M define a topology on �(M) by the metric

ρ(v,w)=
∞∑
k=0

1
2k

‖v−w‖k
1+‖v−w‖k

, v,w ∈�(M), (2.2)

where ‖v−w‖k is the supremum on M of partial derivatives of order less than k+1

of components of v−w. Construct X̃j , m̃, and ρ̃(· ,·) for a smooth manifold M̃ in the

same way that Xj , m, and ρ(· ,·) were instead for M . Assume there is a Lie algebra

epimorphism Φ : m → m̃.

Lemma 2.1. The completion m̄ of m in the ρ2(· ,·) = ρ(· ,·)+ ρ̃(Φ(·),Φ(·)) topology

is �(M).
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Proof. Define

∆λξ =
∞∑

k,l=0

λkξl

k!l!
adk

(
X1
)(

adl
(
X2
)([
X1,X2

]))
(2.3)

which can be shown to converge for all λ, ξ in the ρ2 topology. Define

V =



∞∑
k=1

ak∆λkξk :
∞∑
k=1

a2
k <∞


⊂�(M). (2.4)

Let L be a nonzero element of �(M) and D a countable dense subset of M . Consider

v2i−1 =
(
L(1)(pi),

1
2
∆(1)λ1ξ1

(pi),
1
3
∆(1)λ2ξ2

(pi), . . .
)
∈ l2, (2.5)

v2i =
(
L(2)(pi),

1
2
∆(2)λ1ξ1

(pi),
1
3
∆(2)λ2ξ2

(pi), . . .
)
∈ l2, pi ∈D, (2.6)

where for example L(2)(pi) is the second component of L(pi) is a coordinate neigh-

bourhood of pi and l2 is the Hilbert space of elements (a1,a2, . . .) so that
∑∞
k=1a

2
k <∞

with inner product (· ,·). Let W be the span of the set of vk. Since m(X1,X2) is infinite

dimensional there are λk, ξk so that the map that maps (a1,a2,a3, . . .) to (a2,a3, . . .) is

injective on W . It will be injective on W̄ , the completion of W in the (· ,·) topology. If,

say, L(1)pk ≠ 0 then (0,1/2∆(1)λ1ξ1
(pk),1/3∆

(1)
λ2ξ2

(pk), . . .) is not an element of W̄ . There

is then a nonzero (a,a1,a2, . . .)∈ l2 with a≠ 0 so that

aL(pi)+a1∆λ1ξ1(pi)+a2∆λ2ξ2(pi)+··· = 0, ∀pi ∈D. (2.7)

Since D is dense this equation holds for all p ∈M hence L∈ V .

Theorem 2.2. If m and m̃ are isomorphic then M and M̃ are diffeomorphic.

Proof. Let Φ be an isomorphism of m and m̃. Let m have the topology ρ2 and m̃ the

topology ρ̃2(· ,·) = ρ̃(· ,·)+ρ(Φ−1(·),Φ−1(·)). The Lie bracket and Φ are continuous

in this topology.

Let A,B be the closure of open sets of M . By Lemma 2.1, there are vector fields

E,F ∈ m̄ with supports A, B, respectively. Let Ã, B̃ be the supports of Φ(E), Φ(F),
respectively. If A∩B 
= ∅ then there are E, F so that [E,F] 
= 0 hence [Φ(E),Φ(F)] 
= 0

consequently Ã∩ B̃ 
= ∅ and vice versa.

Let p0 ∈M and let Ai be the closure of open sets of M and let Ei ∈ m̄ have support

Ai and Φ(Ei) support Ãi. It follows from the previous paragraph that if Ai+1 ⊂ Ai
then Ãi+1 ⊂ Ãi. The Ai can be chosen so the diameters of Ai, Ãi approach zero and

{p0} = ∩∞i=1Ai. Let {p̃0} = ∩∞i=1Ãi. Let {Bi, B̃i} be another such sequence so that {p0} =
∩∞i=1Bi and suppose {p̃1} = ∩∞i=1B̃i. Now the sequence of sets {Ai∩Bi,Ãi∩ B̃i} satisfy

the same conditions so we must have that p̃0 = p̃1. We thus have a well-defined map

τ :M → M̃ so that τ(p0) = p̃0 which on using the previous argument but with Φ−1 is

a bijection.

Choose a coordinate neighborhood (x,y) of p0. Using eλad(X1)(X2), let λ(x,y) be

the value of λ required to move the integral curve of X2 passing through p0 along
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X1 so that it intersects the point (x,y). If X1(p0) = 0 there is then a Z1 ∈ m so that

X1(p0)+Z1(p0) 
= 0. Now use Lemma 2.1 with Φ restricted to 〈X1+Z1,X2〉. The map

τ will remain unchanged. Similarly, using eξad(X2)(X1) we can construct ξ(x,y).
Let B be the closure of a neighborhood of p0 then by Lemma 2.1 there is a sequence

Z(i)00 ∈ V that converges to a smooth vector field with support B. Consider a coordinate

system so that ∆λξ(x,y) = ∆ξ(x+λ,y), p0 = (0,0) so Z(i)λ0 constructed by replacing

∆λkξk by ∆λk+λ,ξ in Z(i)00 will converge to a smooth vector field with support B−(λ,0)
for sufficiently small B. Let Φ(Z(i)00 ) have support B̃. For a coordinate neighborhood

(x̃, ỹ) of p̃0 = τ(p0) = (0,0) such that ∆̃λξ(x̃, ỹ) = ∆̃ξ(x̃+λ,ỹ) we have Φ(Z(i)λ0 ) will

converge to a smooth vector field with support B̃ − (λ,0). Using also a coordinate

system so that Θλξ(x,y) = Θλ0(x,y+ξ) where Θλξ is constructed by interchanging

X1 and X2 in ∆λξ and on choosing smaller and smaller B we can conclude that τ maps

the point (x,y) to (x̃, ỹ) so that

λ(x,y)= λ̃(x̃, ỹ), ξ(x,y)= ξ̃(x̃, ỹ), (2.8)

where for example using eλ̃ad(Φ(X1))(Φ(X2)), λ̃(x̃, ỹ) is the value of λ̃ required to move

the integral curve of Φ(X2) passing through p̃0 along Φ(X1) until it intersects the

point (x̃, ỹ). Now λ(x,y), λ̃(x̃, ỹ), ξ(x,y), ξ̃(x̃, ỹ) are smooth functions so by taking

derivatives of (2.8) it follows that τ is a diffeomorphism.

It follows from Theorem 2.2 that an automorphism of m induces a diffeomorphism

of M .

Define VN(X1,X2) =
∑N
k=1 mk(X1,X2). The dimension of VN(X1,X2) is locally maxi-

mal if there is ε > 0 such that for analytic vector fields Yj on M so that ρ(Xj,Yj) < ε
we have dim VN(Y1,Y2)≤ dim VN(X1,X2).

Let {vq,vqk} be a set of smooth vector fields on M and let ‖·‖ be a norm on the

span of this set. We also require that as k→∞, ‖vqk−vq‖→ 0.

Lemma 2.3. If v1,v2, . . . ,vl are linearly independent then there is an N such that for

k >N , v1k,v2k, . . . ,vlk are linearly independent.

Proof. Assume there are t→∞ so that for each t we can find akt so that

a1tv1t+a2tv2t+···+altvlt = 0,
l∑

k=1

a2
kt = 1. (2.9)

There is a subsequence {aks} and ak such that |aks−ak| < 1/s, k = 1,2, . . . , l. Taking

the limit as s →∞ we have a1v1+a2v2+···+alvl = 0 with not all the ak zero which

contradicts the linear independence of the set {v1,v2, . . . ,vl}.

Let 〈F1,F2〉 be a free Lie algebra so dim VN(X1,X2)≤ dim VN(F1,F2) <∞. Since the

dimension of VN(X1,X2) is bounded for all analytic X1, X2 there are by Lemma 2.3

analytic X̂j so that the dimension of VN(X̂1, X̂2) is locally maximal. In fact it can be

shown that there is a Lie algebra m(X̂1, X̂2) with analytic X̂j so that the dimension of

VN(X̂1, X̂2) is locally maximal for all N .

Theorem 2.4. The Lie algebra m(X̂1, X̂2) is a graded Lie algebra.
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Proof. Let Yj be the projection of e−r2(∂/∂xp), p = 1,2, . . . ,m onto the tangent

space at each point of M . Choose two of the projections say Y1, Y2 so that they span

the tangent space at some point ofM . For ε > 0 there is an embedding and coordinates

on M so that
∥∥∥∥Yj(x1,x2

)−e−r2 ∂
∂xj

∥∥∥∥
0
< ε, ∀(x2

1+x2
2

)≤ 1, j = 1,2. (2.10)

Now by argument of Theorem 3.1 we have that m(e−r2(∂/∂x1),e−r
2(∂/∂x2)) is a graded

Lie algebra. By Lemma 2.3 with a sufficiently small ε we have

VN
(
Y1,Y2

)=m1
(
Y1,Y2

)⊕m2
(
Y1,Y2

)⊕···⊕mN
(
Y1,Y2

)
. (2.11)

Define Ej(t)= tYj+(1−t)X̂j and assume

�1
(
E1(t),E2(t)

)+�2
(
E1(t),E2(t)

)+···+�N
(
E1(t),E2(t)

)= 0 (2.12)

with �p(E1(1),E2(1)) 
= 0 for some p ≤N where �k(E1(t),E2(t)) is

ak1(t)Bk1
(
E1(t),E2(t)

)+···+aklk(t)Bklk
(
E1(t),E2(t)

)
(2.13)

and Bkq(E1(t),E2(t)) is

[
Ej1(t),

[
Ej2(t),

[
. . . ,

[
Ejk−1(t),Ejk(t)

]]···]]∈mk
(
E1(t),E2(t)

)
, (2.14)

where the ji depend on k and q. Since the dimension of VN(X̂1, X̂2) is locally maximal

we have that there is a t1 < 1 so that for t ∈ (t1,1], (2.12) holds. The akq(t) will

then be polynomials in t. By (2.11) and Lemma 2.3 there is a t0 > 0 so that for t ∈
[0, t0) we must have �p(E1(t),E2(t)) = 0. Now �p(E1(t),E2(t)) is analytic in t so

�p(E1(1),E2(1))= 0 which is a contradiction hence

VN
(
X̂1, X̂2

)=m1
(
X̂1, X̂2

)⊕m2
(
X̂1, X̂2

)⊕···⊕mN
(
X̂1, X̂2

)
. (2.15)

Theorem 2.5. The Lie algebras m(X1,X2) and m(X̂1, X̂2) are isomorphic.

Proof. Let ε > 0 be such that for all analytic Yj so that ρ(Yj,X̂j) < ε we have that

dim VN(Y1,Y2) = dim VN(X̂1, X̂2). Let Zj− X̂j ∈ ⊕∞k=2mk(X̂1, X̂2) so that ρ(Zj,X̂j) < ε.
Assume �(Z1,Z2)= 0 where

�
(
Z1,Z2

)=�1
(
Z1,Z2

)+···+�N
(
Z1,Z2

)
(2.16)

and �k(Z1,Z2) = ak1Bk1(Z1,Z2)+···+aklkBklk(Z1,Z2). The dimension of VN(Z1,Z2)
will be locally maximal so by argument of Theorem 2.4 we have that �p(Z1,Z1) = 0

for all p ≤ N . Now �p(Z1,Z2) = �p(X̂1, X̂2)+Wp+1 = 0 where Wp+1 is an element

of ⊕∞k=p+1mk(X̂1, X̂2) hence �p(X̂1, X̂2) = 0 for all p ≤ N consequently �(X̂1, X̂2) = 0.

This holds for all such �. Since the dimension of VN(X̂1, X̂2) is locally maximal we

have �(Z1,Z2)= 0 if and only if �(X̂1, X̂2)= 0.

Define Ej(t) = tXj + (1− t)X̂j . Using Lemma 2.3 there is a t0 > 0 such that for

t ∈ [0, t0), ρ(Ej(t),X̂j) < ε and B(E1(t),E2(t)) is a basis element of VN(E1(t),E2(t)) if
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and only if B(X̂1, X̂2) is a basis element of VN(X̂1, X̂2). Using Lemma 2.1 with m = m̃ and

Φ = id we can conclude that �(E1(t),E2(t))= 0 for all t0 ∈ [0, t0). Now �(E1(t),E2(t))
is analytic in t so when t = 1 we have �(X1,X2)= 0. This holds for all N and all such

� so we can conclude there is an epimorphism

Φ : m
(
X̂1, X̂2

)
�→m

(
X1,X2

)
. (2.17)

It can be shown that there are Wj ∈ m̄ so that Wj , Φ(Wj) are analytic and the dimen-

sion of VN(Φ(W1),Φ(W2)) is locally maximal for all N and consequently Φ restricted

to 〈W1,W2〉 is an isomorphism. By Lemma 2.1 the completion of 〈W1,W2〉 in the ρ2

topology is �(M) so Φ restricted to m(X̂1, X̂2) is an isomorphism.

It follows from Theorems 2.4 and 2.5 that m(X1,X2) is a graded Lie algebra.

By Lemma 2.3, Theorem 2.5, and the argument presented in the first paragraph of

Theorem 2.4, it can be shown that if B(X1,X2) is a basis element of m(X1,X2) then the

bracket B(e−r2(∂/∂x1),e−r
2(∂/∂x2)) is a basis element of m(e−r2(∂/∂x1),e−r

2(∂/∂x2))
and vice versa. It can also be shown that the dimension of mk(e−r

2(∂/∂x1),e−r
2(∂/∂x2))

grows polynomially with k hence m(X1,X2) is not a free Lie algebra.

Theorem 2.6. The Lie algebras m(X1,X2) and m̃(X̃1, X̃2) are isomorphic if and only

if M and M̃ are diffeomorphic.

Proof. In Theorem 2.2 we showed that if m(X1,X2) and m̃(X̃1, X̃2) are isomorphic

then M and M̃ are diffeomorphic.

Let σ be a diffeomorphism of M and M̃ . By the paragraph preceding this theorem

we have that B1(X1,X2), . . . ,Bl(X1,X2) are basis elements of VN(X1,X2) if and only if

B1(X̃1, X̃2), . . . ,Bl(X̃1, X̃2) are basis elements of VN(X̃1, X̃2). As in Theorem 2.5 we must

have �(σ−1
∗ (X̃1),σ−1

∗ (X̃2))= 0 hence �(X̃1, X̃2)= 0. This holds for all N and � so we

then have an epimorphism m(X1,X2)→ m̃(X̃1, X̃2). Similarly, there is an epimorphism

m̃(X̃1, X̃2)→m(X1,X2) so m(X1,X2) and m̃(X̃1, X̃2) are isomorphic.

As a possible application we can look at diffeomorphism classes of S4. Let P =
{Ti(θ1,θ2,θ3,θ4) : i= 1, . . . ,8} be a set of polynomials in sin θj , cosθj , j = 1,2,3,4 so

that P defines a homeomorphism of S4 into a subset S4
P of R8. Let m(P) be the Lie

algebra with kth grade mk(P) constructed by projecting ∂/∂xi, i= 1,2, . . . ,8 onto the

tangent space of S4
P and choose four such projections so that they span the tangent

space for some point of S4
P . We can construct a finite dimensional graded Lie algebra

m(P,N)= m(P)⊕∞
k=N mk(P)

(2.18)

for some positive integerN . If we can find two polynomial sets P1, P2, and anN so that

m(P1,N) and m(P2,N) are not isomorphic then we have at least two diffeomorphism

classes of S4.

3. Graded subalgebras constructed from atlases. Let {(Uα,φα) :α∈ I} be an atlas

of M such that

(1) Uα is a neighborhood of Oα where the Oα are disjoint open connected subsets

of M , the union of the closure of all the Oα is M .
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(2) φα :Uα→Rn are onto.

(3) φα ◦φ−1
β are analytic.

(4) For σ,β∈ I, a γ ∈ I can be found such that Uσ ∩Uγ =∅ and Uβ∩Uγ 
= ∅.

(5) For any set {α1,α2, . . . ,αq} such that if U = Uα1 ∩Uα2 ∩···∩Uαq 
= ∅ then U is

connected and is a proper subset of Uα1∩···∩Uαi−1∩Uαi+1∩···Uαq for all i.
Without loss of generality, in this section we consider manifolds so that |I| < ∞.

Define

m = 〈Xαp :α∈ I, p ∈N= {1,2, . . . ,n}〉⊂�(M) (3.1)

to be the Lie algebra generated by Xαp where Xαp is zero outside Uα and for points

of Uα the push forward by φα of Xαp is e−r2(∂/∂xp) so m =∑∞
k=1 mk where mk is the

span over R of the set

{[
Xβ1j1 ,

[
Xβ2j2 ,

[···[Xβk−1jk−1 ,Xβkjk
]]···]] : βi ∈ I, jm ∈N

}
. (3.2)

If all the φα ◦φ−1
β are rational functions it can be shown that the dimension of mk

grows polynomially with k.

Theorem 3.1. The Lie algebra m is a graded Lie algebra.

Proof. Consider for example an equation

a1
[
Xγ1j1 ,[Xγ2j2 ,[···

[
Xγk−1jk−1 ,Xγkjk

]]···]]

+···+al
[
Xσ1i1 ,[Xσ2i2 ,

[···[Xσm−1im−1 ,Xσmim
]]···]]= 0.

(3.3)

We can write a component of (3.3) in the coordinates of Uβ as

a1
[
P11F11+···+P1τ1F1τ1

]
e−q1r2+···+al

[
Pl1Fl1+···+PlτlFlτl

]
e−qlr

2 = 0, (3.4)

where Pij(x1, . . . ,xn) is a polynomial and Fij(x1, . . .0c,xn) is made of factors of partial

derivatives of components of Xαp , α 
= β. qi is the number of times the factors of the

form Xβp appear in the ith term of (3.3). Since the Xαp , α 
= β are analytic for some

point on the boundary ofUβ we must have qi = qj . Consequently writing equations like

(3.3) in the coordinates of Uγ for each γ ∈ I and using condition 5 on the atlas allows

us to conclude, m = ⊕∞k=1mk and [mi,mj] ⊂ mi+j follows using properties of the Lie

bracket.

Construct {(Ũα̃,φ̃α̃) : α̃ ∈ Ĩ}, X̃α̃p , m̃, ρ̃(· ,·) for a smooth manifold M̃ in the same

way that {(Uα,φα) : α ∈ I}, Xαp , m, ρ(· ,·) were for M . Assume there is a Lie algebra

isomorphism Φ : m → m̃. We can take Φ so that Φ(m1)= m̃1. We now show this implies

M and M̃ are diffeomorphic.

Lemma 3.2. There is a bijection B : I → Ĩ such that for all p ∈ N, the support of

Φ(Xαp) is the closure of ŨB(α).

Proof. Write Φ(Xαp) = Z̃α̃1 +···+ Z̃α̃m where Z̃α̃i ∈ m̃1 and supp Z̃α̃i = ¯̃Uα̃i . As-

sume m > 1. There is a Z̃α̃i , say Z̃α̃1 , so that suppΦ−1(Z̃α̃1) ⊃ Uα. By condition 4

on the atlas there is a Ũγ̃ such that Ũα̃1 ∩ Ũγ̃ = ∅ and Ũα̃m ∩ Ũγ̃ 
= ∅. We can then

find a X̃γ̃q so that [Φ(Xαp),[X̃γ̃q, Z̃α̃m]] 
= 0, hence Φ−1([X̃γ̃q, Z̃α̃m]) has support on
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Uα. It can be checked that the bracket of an element of m1 with an element of m2 is

not zero if they have common support. The intersection of Uα and the supports of

Φ−1(Z̃α̃1) and Φ−1([X̃γ̃q, Z̃α̃m]) is then not empty so [Φ−1(Z̃α̃1),Φ−1([X̃γ̃q, Z̃α̃m])] 
= 0

hence [Z̃α̃1 ,[X̃γ̃q, Z̃α̃m]] 
= 0 which is a contradiction since Ũα̃1∩Ũγ̃ =∅ som= 1. Use

the argument as just presented on Φ(Xαp+Xαq) to conclude that suppΦ(Xαp)= ¯̃Uα̃1 ,

for each p ∈ N. Define B : I → Ĩ by B(α) = α̃1. If suppΦ(Xβ1p1) = suppΦ(Xβ2p2) then

by letting Z̃B(β1) = Φ(Xβ1p1+Xβ2p2) and using a similar argument as just presented on

Φ−1(Z̃B(β1)) allows us to conclude that B is bijective.

Theorem 3.3. If m and m̃ are isomorphic then M and M̃ are diffeomorphic.

Proof. We can write L ∈ �(M) as L = ∑α∈I Lα where Lα ∈ �(M) has support, a

compact subset of Uα. By Lemmas 3.2 and 2.1 we have that Lα is in the completion of

〈Xαp : p ∈N〉 in the ρ2 topology. Now use the argument of Theorem 2.2.

We now look at how the graded Lie algebras constructed from different atlases sat-

isfying the five conditions differ. Let {(Uα,φα),(Ûβ,φ̂β) :α∈ I\{β}} be an atlas of M
satisfying the five conditions on an atlas and require also thatUβ∩Uγ 
= ∅ if and only if

Ûβ∩Uγ 
= ∅ for all γ ∈ I. Define X̂βp to be the push forward of Xβp by φ̂−1
β ◦φβ. Define

m̂ = 〈Xαp,X̂βp :α∈ I\{β}, p ∈N〉 (3.5)

with kth grade m̂k.

We can in fact choose Ûβ and φ̂β so that the dimension of
∑N
k=1 m̂k is locally maxi-

mum for all N .

Theorem 3.4. There is an epimorphism m̂ →m mapping X̂βp to Xβp and Xαp to Xαp
for α 
= β.

Proof. Without loss of generality, we can let n= 1 and define Xα = Xα1. Define a

diffeomorphism

θ−1 : (−1,1) �→R, x � �→ x
1−x2

. (3.6)

Write φ̂−1
β ◦φβ in the θ◦φβ coordinates ofUβ asx� x̂ = x+T(x) and x= x̂+S(x̂). Let

T(N)(x)= e−1/(1+δ)2−x2
N∑
l=0

b(N)l xl, δ > 0 (3.7)

be such that asN →∞, T(N) converges uniformly to T on [−1,1]. Define X̂(N)β and m̂(N)

by replacing T(x) by T(N)(x) in the definition of X̂β and m̂. Consider for example an

equation of the form

a(N)1

[
X̂(N)β ,

[
Xγ2 ,

[···[Xγk−1 , X̂
(N)
β
]]···]]

+···+a(N)l
[
Xν1 ,

[
X̂(N)β ,

[···[X̂(N)β ,Xνk
]]···]]= 0.

(3.8)

By the argument of Theorem 3.1, each term will contain the same number of factors

of the form X̂(N)β . We can write Xβ� X̂β in the θ◦φβ coordinates of Uβ as

e−[x/(1−x
2)]2

(
1−x2

)2

1+x2

d
dx

� �→ e−[(x+S(x))/(1−(x+S(x))2)]2

1+S ′(x)

(
1−(x+S(x))2)2

1+(x+S(x))2

d
dx

. (3.9)
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With this in mind, we can write (3.8) in the θ ◦φβ coordinates of Uβ after clearing

denominators and exponentials as

a(N)1

[(
P(N)11 +Q(N)

11

)
F(N)11 +···+

(
P(N)1τ1

+Q(N)
1τ1

)
F(N)1τ1

]
+···

+a(N)l

[(
P(N)l1 +Q(N)

l1

)
F(N)l1 +···+

(
P(N)lτl +Q

(N)
lτl

)
F(N)lτl

]
= 0,

(3.10)

where the F(N)ij (x) are made of factors of derivatives of the component of Xα, α 
= β.

P(N)ij (x) is a polynomial and Q(N)
ij is a polynomial in x, S(N), and derivatives of S(N).

Each term of Q(N)
ij contains a S(N) or a derivative of S(N) as a factor. Since S(N) is

analytic on (−1−δ,1+δ), (3.10) holds for all points of (−1−δ,1+δ). On the boundary

of (−1−δ,1+δ), S(N) and all its derivatives are zero hence for all points of (−1,1)

a(N)1

[
P(N)11 F

(N)
11 +···+P(N)1τ1

F(N)1τ1

]
+···+a(N)l

[
P(N)l1 F(N)l1 +···+P(N)lτl F

(N)
lτl

]
= 0. (3.11)

Equation (3.8) then holds when X̂(N)β is replaced by Xβ. There is then an epimorphism

m̂(N) →m taking X̂(N)β to Xβ and Xα to Xα for α 
= β. Now let N →∞ and use the local

maximality of the dimension of
∑N
k=1 m̂k for all N .

Let l̂ = 〈L̂αp :α∈ I, p ∈N〉 be a graded Lie algebra with kth grade l̂k constructed as

was m and such that the dimension of
∑N
k=1 l̂k is locally maximum for allN . We can use

Theorem 3.4 to show that there is an ε > 0 such that for all such l̂ with ρ(L̂αp,Xαp) < ε
for all α∈ I,p ∈N we have an epimorphism l̂ →m.
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