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ASYMPTOTIC ANALYSIS OF AMERICAN CALL OPTIONS
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ABSTRACT. American call options are financial derivatives that give the holder the right
but not the obligation to buy an underlying security at a pre-determined price. They differ
from European options in that they may be exercised at any time prior to their expiration,
rather than only at expiration. Their value is described by the Black-Scholes PDE together
with a constraint that arises from the possibility of early exercise. This leads to a free
boundary problem for the optimal exercise boundary, which determines whether or not
it is beneficial for the holder to exercise the option prior to expiration. However, an exact
solution cannot be found, and therefore by using asymptotic techniques employed in the
study of boundary layers in fluid mechanics, we find an asymptotic expression for the
location of the optimal exercise boundary and the value of the option near to expiration.

2000 Mathematics Subject Classification. 91B28, 41A58.

1. Introduction. Recently, the financial markets have seen an explosion of “deriv-
ative products” such as options. An option is a contract that allows the holder to buy
or sell a financial asset at a fixed price in the future. Options need not be exercised,
the holder of the option will use it only if this is convenient. A call is an option to
buy an asset and a put is an option to sell it. An option contract specifies the exercise
price and the expiration date of the contract.

Such options exist on many assets (known as underlyers). Options are a special type
of derivative security because their value is derived from the value of some underlying
security. Most options can be grouped into either of two categories: European options
which can be exercised only on their expiration date, and American options which can
be exercised on or before their expiration date. In practice, most options are American.
American options are much harder to deal with than Furopean ones. The problem is
that it may be optimal to use (exercise) the option before the final expiry date. This
optimal exercise policy will affect the value of the option, and the exercise policy needs
to be known when solving the PDE. Holders of American options have this choice of
when to exercise the options.

The main problem of options is how they should be priced in equilibrium with the
price and characteristics of the underlying asset. This problem was solved by Black
and Scholes [1]. Some financial institutions make money by selling large number of
options. They make money on some and lose money on others. This can only happen
if they are selling the options at a correct price. Options can be used as a speculative
medium with small, or relatively small, risk and with unlimited possible profit.

The growth in the availability of financial derivatives has led to (and in part been
driven by) the development of mathematical models which are used to value these
options, with the Black-Scholes model being the best known of these.
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In this paper, a model for pricing American call options on dividend paying assets
is presented, so we will concentrate on American call option but there are also barrier
options, Asian options, and so forth. For American call options on nondividend paying
assets, early exercise is never optimal, and the early exercise premium is zero. For
options on dividend-paying stocks, early exercise may be optimal for some stock-
price paths, making the early exercise premium positive. For the special case of one
dividend payment during the life of an option, an analytical solution is available, due
to Roll, Geske, and Whaley. A first formulation of an analytical call price with dividends
was given by Roll [6]. This had some errors that were partially corrected in Geske [3],
before Whaley [7] gave a final, correct formula. Geske and Johnson [4] used the series
of Bermudan option prices to approximate the price of American options.

Valuation of American options is more complicated, since at each time we have to
determine not only the option value, but also, whether or not it should be exercised
and this leads to a free boundary problem, with the boundary lying between the re-
gions, where early exercise is beneficial and where it is not. The presence of this free
boundary makes the mathematics of American options more complicated than their
European counterparts, and much of the work done to date on American options has
been numerical.

To value American options, the idea is that we should look for a function C(S,t)
that satisfies the Black-Scholes equation in the region of the (S,t)-plane, where the
option should not be exercised and provide additional boundary conditions along the
region where the option should be exercised. To arrive at this region is to impose
the additional conditions on option prices that should hold in the case of American
style options. As long as exercise is not optimal, the payoff condition is C(S,T) =
max (S — E,0) but because the American option can be exercised at any time, we al-
ways have

C(S,t) zmax(S —E,O0). (1.1)

In this case if S > E, then the option is in the money. If S < E, the option is out of
the money. If S = E, the option is at the money. The converse is true for the put
options. The rest of the paper is organized as follows. In Section 2, we describe the
analysis of the American call option using the Black-Scholes model. This analysis is
based on arbitrage arguments. Also, we discuss the optimal exercise boundary x (1),
where x7(T) is not known, therefore, the problem of determining the option price
is then a free boundary problem. In particular, we will discuss the optimal exercise
price for an American call on a dividend-paying asset at times near expiry. We used
asymptotic expansions to find the free boundary. American options have been consid-
ered previously by Jacka [5] from the perspective of optimal stopping-time problems.
Section 3 presents graphical results of the free boundary and the price of the call
option. Section 4 contains a summary for analysis and a brief discussion.

2. Black-Scholes PDE for American options. In their monograph “Option Pricing”
(see [8, pages 110-119]), Wilmott, Dewynne, and Howison, lay the foundation for an
asymptotic analysis of American call options near to expiration. However, they only
take the analysis to first order in order to verify their numerical results, and do not
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pursue it further. In this section, we take their analysis to higher orders. Our x; and ko
were the end result of their analysis. The foundation of our analysis therefore follows
the one in “Option Pricing” very closely.
From “Option Pricing,” an American call option on an underlying that pays a con-
tinuous dividend obeys the following (Black-Scholes) PDE:
oc 1 aic

oC
—_— —_ 2¢2 — _ =
35t + 20' S 352 +(r—-Dg)S rC=0, (2.1)

oS
where
t: time
o volatility of the underlying asset
S: price of underlying stock
C: price of call option
v: interest rate
Dy: dividend vyield.
Because this option can be exercised at any time, we also have the constraint

C(S,t) =z max(S—E,O0). (2.2)

To facilitate our analysis, we make the following change of variables:

T
_ X _T_ — C_
S =Ee¥, t=T 1/2)02" C(S,t)=S—E+Ec(x,T). (2.3)
After transformation we get
oc 0%c oc
g = @—F(kz—l)a—k]C-l-f(X) (24)
for —c < x < o and T > 0, where
f(x)=(ka—ky)e* +k; =k (1—e*0), xozlog<k klk ) (2.5)
1—K2
The two parameters k; and k, are given by
_ r o r—Dy ]
k] —7(1/2)0_2, 3—7(1/2)0_2, k] >kg>0. (2.6)

We must solve these equations together with the boundary condition that

1-e¥, x<0,
¢(x,0) =max (1-¢e¥,0) = 2.7)
0, x =0,
and the constraint on ¢ that
c(x,T) 2 max (1-e¥,0). (2.8)

Because of this, there will be a free boundary, which we suppose to be located at
x = xr(T), where

c(xp(T),T) = g—;(xf(-r),T) =0, (2.9)
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that is to say, both ¢ and dc/dx vanish at the free boundary. The location of the free
boundary is given by xr(7), where xy is an unknown function. The purpose of this
study is to find an asymptotic expression for xr. At expiration, we know that

xr(0) = xo, (2.10)

where x is defined in (2.5) and f(x() = 0. Near to expiration, we expand xr in T

3/ 2

Xp(T) =x0+x1T 2+ 20T + X332+ x4 T2+ X572+ - - (2.11)

We perform a local analysis in the vicinity of x = x¢o and T = 0, and introduce the
rescaled coordinates,

X—x9=vX, T = g, c(x,T)=¢y(X,8),

V2X2  V3X3 x4 (2.12)
+ + +---),

SO~k (VX+ 21 31 4

where v < 1, u <« 1, and ¢ < 1 are small parameters. With these rescaled variables,
the PDE becomes

0y L, 0%y _ oy
19y _ 2 (e, — Yy _
ey 2% EVioLr ey (k2 l)aX ckiy
(2.13)
V2X2 V3X3 V4X4
—k1<vX+ T 3 ST +---),

with y(X,& = 0) = 0 at expiration. If we consider the balance of terms in (2.13), to
leading order we must have
dy _, 0%

~ &V

eu’lﬁ 3% —vkiX. (2.14)

This gives us a relationship between ¢, u, and v, since we require that each term in
(2.14) be of the same order of magnitude. Therefore we must have u = v2 and € = v3,
so that (2.12) becomes

x-xo=vX, T=V¥E  cx,71)=vy(X,5E),
V2X2  y3X3 phxd (2.15)
f(x)~—k1(vX+ o Tt +)

and (2.13) becomes

dy 9%y oy vX? viX3 yixd
E—ﬁ+v(kg—l)a—x—v kiy —k; X+T+ TR

+) (2.16)

Next, we shall expand y as a series in v,

Y~ Yo+t Vyr+Viyatc-. (2.17)
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Substituting this expansion into the governing equation (2.16) yields at successive
powers of v

9o _ *yo
og ~ oxe kX
oy _ 1 0 kX
ot ~oxe Ty~
(2.18)
W _2yo g oy kX
0F T ox2 T\eT gy TR T
oys _3ys 32 kX
a§ - axz +(k2 ]-) aX klyl 41 ]
subject to the condition that at expiration
Yo(X,E=0)=y1(X,§=0) =y2(X,E=0)=--- =0. (2.19)

Condition (2.9) on the free boundary at x = x¢(T), where both ¢ and dc/dx vanish,
must also be tackled. We can also rewrite the expansion of x s near expiration (2.11)
as follows:

Xp(T) =x0+Vvx1E2 +v2xE+v3x3 832+ - . (2.20)

Thus the free boundary is located at
X&) =vH(xp(1)—x0) = x18 2+ VX8 +vix3 832+ -+ - (2.21)

and the boundary condition that ¢ vanish at the free boundary becomes

Yo(Xr(8),8) +vy1(Xr(8),E) +vZy2 (Xf(8),8) +- -+ =0. (2.22)

Similarly, the boundary condition that oc/dx vanish becomes

Yox (X5 (8),8) +vyix (Xf(8),8) + v yax (Xf(8),8) +-- - = 0. (2.23)
At leading order 0(v?), we have from (2.18)

3o _ 9%y
08 X2

-ki X, (2.24)

while substituting the expansion (2.21) into the conditions on c at the free boundary
(2.22), (2.23) yields at leading order

Yo(x1EY%,E) = yox (x1EY2,€) = 0. (2.25)

Since (2.24) is the diffusion equation together with a nonhomogeneous term, this
suggests introducing the similarity variable

n=Xg12, (2.26)

Accordingly, we write yo = £3/°k(n), and substituting this into (2.24) gives

3 1

2Ko  2NKop = Kom = 227
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together with the conditions at the free boundary
Ko (x1) = Kkon(x1) = 0. (2.28)

This has the solution

ko(n) = —kin+C¥ (n3+6n)+C <e”72/4(n2+4) +?(n3+6n)erfc (—ﬂ)). (2.29)

2

We also need to apply condition (2.19) that y, vanish at expiration. Since we set
n=X& Y2 and X < 0, the limit £ — 0 corresponds to the limit n — —oo. Taking this
limit, we get

Ko(n) — —kin+Ci” (n*+6n),
(2.30)
yo=E"ko(n) — —kiEX +C” (X +6EX) — C1” X7,

and thus the condition that yy vanishes in this limit tells us that C{O) = 0, and the
solution (2.29) becomes

JTT
)+

Ko(n)z—k1n+C§°)(e*”2/4(n2+4 +5 n3+6n)erfc(—ﬂ)>. (2.31)

2

The condition (2.28) at the free boundary enables us to find x; and CéO), where x; is
given implicitly by the equation

(4-2x%) = \/ﬁxfexf/‘*erfc(—%). (2.32)
Numerically, we find
=0.9034465979,  C” =0.07536083707k;. (2.33)

Thus CéO) is proportional to the constant k;. x; and ko were found by Wilmott et al.
[8], however, their analysis stopped there, whilst we shall proceed to higher orders.
At the next order 0(v), we get an equation for y,

9~ 0x?

oX 2!

2 2
ayl 0 Y1 _ (kz_l)aYO kIX ) (234)

Again we make use of the similarity variable (2.26) and write y; = £2k; (7). Substituting
this into (2.34) yields,
1 k
2K1—§rIK1n—K1nn = (k2—1)K0n_?1’72v (2.35)

which has the solution

ki) == sk (ko +0?) + €V (7 + 120 +12)
: 2
cc k) (e (2 DY e ( T erte(- 1)) 236)
2 4 2 2
+C§”(e’”2/4(20'7+2f1 )+t +12n2+12 erfc(—7)>

where again C{l) must vanish because of the condition at expiry.
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The boundary conditions at the free boundary are
K1 (x1) =0, K1n (x1) + X2Konn (x1) = 0. (2.37)
Applying these boundary conditions to k¢ and k; enables us to find x, and C él),

x%kz

2
x3eX1/ 4k (x3 +2 +x%k2)
2 ’ .
xi+2

cv_
2 96 (x? +2)

X2 = (2.38)

Using the value of x; found earlier, these become
x»=-0.2898271391k>, Cé” =0.009420104644k1+0.002730201979k 1 k>. (2.39)

At the next order 0(v?), we find an equation for y»,

oy» 52}’27(,(2_1)33/1 ki X3

& T oX? ax s ke (240
Using y» = £°/%k2(n) in (2.40), we get
2 kg = ko — K = (ko 1)k L —kk (2.41)
222n2n 2nn = (K2 1n61'7 1Ko- -

The solution k»; is given in the appendix.
The boundary conditions on k» at the free boundary are

2
X
72K0rm(X1) +K2(x1) =0,
(2.42)

1
EX% Konnn (x1) +x3 Konn (x1) + K2n (x1) + X2Kinn (x1) =0,
which enable us to find x3 and C§2). Numerically, we find

x3 =0.08352705033k» —0.1670541006k,
-0.01960251625 +0.0965932214k3,

(2.43)
C$? =0.0008901468022k  k, +0.001931411733k,
—0.0001421724195k3 —0.0004594870885k k3.
At 0(v3), y3 obeys the equation
dys d%ys dy2 kix*
Writing y3 = £3k3(n), we get
1 1,
3K3— 5 MK3n = Kany = (ko —1)Kkop — ﬂkln —kik1(n). (2.45)

The solution k3 is given in the appendix. The boundary conditions on k3 at the free
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boundary are

1 1
*XSKomm (x1) +x2x3K0nn (x1) + Ex§Klrm(x1)

6

+x3K1p(xX1) +X1K3(X1) +X2K27 (X1) =0,

) ) (2.46)

EXSKOrmrm(Xl) +X2X3Konnn (X1) +X4Konn (X1) + Exlnglnrm (x1)
+X3K1nn (Xl) +X2Kann (Xl) + K3p (Xl) =0.
Using these boundary conditions, we can find x4 and C§3),
x4 = 0.004173449415k, —0.03134069092k3

+0.002104860402k3 +0.06268138183k; k2,

C$¥ =0.0001887470540k k> —0.00004739080649k? (2.47)

+0.0003298004233k; —0.0001854489478k, k3
+0.00006457317010k; k3 +0.0000553581598k k3.

Following the same procedure at O(v*) and after applying the boundary conditions,
the value of x5 and Cf) can be written as

x5 = —0.003558807857k, +0.007117615715k; +0.01940343468k]
+0.005720713541k3 —0.01940393468k; k2 —0.003010435594k; k3
—0.0001404406593k3 +0.0007732477173 +0.001505467797k3,

¥ = 0.00003122771752k1 ko —0.000009566207702k3 —0.0000006665142604k3
—0.00004508455720k k3 +0.00002372836074k7 k> —0.00001481303829k3 k3

—0.000005222446464k1 k3 +0.00004808832947k; +0.00002717729053k k3.
(2.48)

Thus we have an asymptotic expression (2.11) for the location of the free boundary
xr(T), with the coefficients xo,...,xs given by (2.5), (2.33), (2.38), (2.43), (2.47), and
(2.48). We also have a local expression for the value c(x,T) of the option when we are
both near to expiry and near to the optimal exercise boundary. This is given by (2.15)
and (2.17) together with the expressions for yy,...,y3 contained in the text.

3. Graphics. In Figures 2.1 and 2.2 we plot the location of the free boundary for
several values of (0.102,0.104,0.108, and 0.110) and of the dividend yield Dy (0.02,
0.021, and 0.025). The shape of all the curves appears to be very similar. Figure 2.3
shows the solution of the price option ¢ (X, T). The solution increases as long as we
move away from the free boundary. Figures 2.1 and 2.2 were produced by including
terms up to xg and Figure 2.3 by including terms up to ys.
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FIGURE 2.1. Location of the free boundary for » = 0.1, Dg = 0.02.
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FIGURE 2.2. Location of the free boundary for several values of + and Dy.
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FIGURE 2.3. Solution of the price option c(X, T).
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4. Summary and conclusions. In the previous sections, we have presented an
asymptotic analysis of the valuation of an American call option on a dividend-paying
asset, using as a starting point the Black-Scholes model, which expresses the price of
a call option as a function of the underlying asset price, exercise price, the time to
expiration, the interest rate, and the volatility of the underlying asset price.

The Black-Scholes model applies to both European and American options as long
as no dividends are paid. When dividends are paid, the possibility of early exercise
exists to obtain the dividend payment for a call option. (Cox et al. [2] developed some
arbitrage conditions for call option.)

The aim of this paper was to use the techniques outlined by Wilmott et al. [8] to solve
the free boundary problem arising from early exercise. Using asymptotic techniques,
we obtained a series solution for the location of this free boundary near to expiry,
and this solution is plotted in Figures 2.1 and 2.2 for several values of v, the risk
free rate, and Dy, the dividend yield on the underlying. Using similarity solutions, we
were also able to solve a series of partial differential equations to find a local solution
for the value c(x,T) of the option when we are both near to expiration and near
to the optimal exercise boundary and a sample solution was plotted in Figure 2.3.
Wilmott et al. [8] had begun this analysis, but stopped at first order, whereas our
analysis is pursued to higher orders. This analysis allows for valuation of American
call options near to expiry at much lower computational cost than numerical solution
of the full problem, and our solution could probably even be programmed into a
financial calculator, allowing traders to obtain reasonable valuations quickly.

Appendix

Details of the analysis. The solution to (2.41) is

K2(n) = kgkln—fkln +C¥n(n*+20n%+60)
12
+ %kzcg”—ﬁkzcg‘” 96(‘ +§C§°)+64C§2)——k16§°’
5 5 5 5 5
3
+§k§C§°) 0" 2k2C2°’+ koCsVn? - Ok1n2C§0)
+§k§C§O) n2kgcs + 2 ke Cyn? - k n*cy”
ke —dewpz 3pe@pz s L p2e© 2 paem
5 2 572 2 10 570 72

1 o 1 0 2
5 €Y =g tke G + 20 0 - Stk Gy
20 0 - 2
+%n4k§C2( )-‘r%f'ﬁklcé )>e( 17407
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1 .
+ﬁ<— Sk cn 12k cVn- 1200+ iy

1 50,1 5.0 15 o 1 5 o
+40n k2C2 +4Or] Cz Sr] kZCZ 20’7 k2C2

+ %nsklc‘éo) +Cn(n*+20n? +60)> erfc(— %n)

(A1)

The condition at expiration tells us that C{Z) =0.
The solution to (2.45) is

1 1 1 1 1
Kk3(n) =§k2k% - gklké - Zk%klflz + Zkfnz - ﬂklrl4
+C1Y (n® +30n* +180n% +120)

1

L 1
60

3 ~(0)
G+
n-cC; 10

+<20”3k2c§) C'n+2Ca''n
2 2
- 153G =560y n - 5GP’ +56C7 0

3 1 2
+264C" - ke G - 1 nKIC - ok G

56 1 1 1
— ?k1C§l)n — ?On3k§C£O) — %rfleéO) + gklnCEO)
4 1 1
+ ﬁn3k2C§” +56k,C - g1<21<1;7c§‘” + 35k Pk, C3Y

8 2 4 2
sk G+ Sk G0+ Sk3C - ok

1 350 15, @ 1 5. o, 1 5. 0
+60rl k2C2 3'7 k2C2 4077 k2C2 +60n k1C2

3 2 1 - 1
+Enkgcém_EnskZCSI)_‘_TSnDleé”+En5k§C£O)

1 5.0 1 550, 1 55,0 1 5 0
- —n°k5Cy) — —n’k3C —n°k3C,") — —n’kak,C

120 22 Tyt skt m gkt
+LnSC(O)+in5C(“+1n5C(2>+2C(3)n5 o(~1/4n2)

120" 72 T15°7 72 T30 2
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+ ﬁ(—Skzcé“ +k1CY +4csV — 400 —30C52 n?

(3) (16 4 2 1 s~0, 1 6~
+C57 (n°+30n*+180n +120)+240n C; +30" G

IR TIPS VR S-S (1) NS SNSRI () S SN o (1)
15’7 k2C2 + 120’7 k1C2 80’7 kZCZ +80r’ k2C2

1630
240n k3G +

1
30

1

1
gk - en'ka

6k2c(1) +
n K30, 6

_ b

50 n%kaok1CS + lnﬁcg” +40k,CS? +4ko2C5Y

6

, 1
—kaki C =8k, SV — 6k, V2 + 30k2C§2>n2) erfc (— E”)'

(A.2)

The condition at expiration tells us that C {3) =0.

(1]
(2]
(3]
[4]

[5]
(6]

(7]

(8]
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