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Abstract. We have derived solitary wave solutions of generalized KdV-type equations of
fifth order in terms of certain hyperbolic functions and investigated their stability. It has
been found that the introduction of more dispersive effects increases the stability range.
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1. Introduction. Since the inverse scattering technique was established [5], several

methods of obtaining solitary wave solutions have been developed. Due to the avail-

ability of symbolic manipulation packages such as Maple, Mathematica, and so forth

[6], the search for exact solutions of nonlinear evolution equations became more and

more interesting as well as attractive.

In Section 2, we consider a generalized Korteweg-de Vries equation of third order

[7] which has the maximum nonlinearity term u2pux . This equation is known to have

stable soliton solutions forp < 4. In Section 3, we have a fifth-order KdV-type equation

[4] with the maximum nonlinearity term upux . This equation has been found to have

stable soliton solutions for p ≥ 4 from which it is clear that the fifth-order dispersive

term has increased the stability range. In Section 4, we investigate a generalized fifth-

order KdV-type equation [2] with a maximum nonlinearity term u2pux . It has been

shown for the case p = 1/2, that when the parameter in the highest-order dispersive

term and the traveling wave velocity have both positive signs, the soliton solution is

stable, when they both have negative signs, the soliton solution is unstable and when

both have opposite signs, the solution is stable with a constraint on parameters.

2. Generalized Korteweg-de Vries equations. We consider a generalized Korteweg-

de Vries (gKdV) equation of the form

ut+
(
α+βup)upux+γuxxx = 0, (2.1)

where α, β, γ, and p are real constants. For p = 1, (2.1) is a combined KdV-mKdV

equation and it further simplifies to KdV equation when β = 0. For p = 2, this equa-

tion has been solved by the method of direct integration as well as the series method

[1, 3]. Equation (2.1) with p being any positive integer is often referred to as the gKdV

equation. This equation describes an anharmonic lattice with a nearest-neighbour

interaction force F ∼ ∆p+1, where ∆ is the extension or compression of the spring

between two neighbouring masses. Here, we will discuss the case when p is a positive

real number.
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Traveling wave solutions of (2.1) are of the form u = u(z), where z = x − vt.
Integrating (2.1) with respect to z and using the solitary wave boundary condition

that u→ 0 as z→±∞, we get

−vu+ αu
p+1

p+1
+ βu

2p+1

2p+1
+γuzz = 0. (2.2)

We look for a solution of the form

u= [A+B cosh(mz)
]−1/p. (2.3)

Substituting (2.3) in (2.2) it can be easily shown that

A= α
(p+1)(p+2)v

,

B =
√
(2p+1)α2+(p+1)(p+2)2βv

(p+1)(p+2)v
,

m= p
√
v
γ
.

(2.4)

Assuming v to be positive, we should take γ > 0 for the solution in the form (2.3) to

exist. If β > 0, the solution (2.3) is valid for all v . For β < 0, the solution is valid for all

v but

v =− (2p+1)α2

(p+1)(p+2)2β
. (2.5)

A special case of this equation is when α= 1, β= 0, p = 1/2, given by

ut+u1/2ux+γuxxx = 0, (2.6)

which describes ion-acoustic waves in a cold-ion plasma where the electrons do not

behave isothermally during their passage of the wave. In this case, the solution (2.3)

reduces to the solitary wave solution [7]

u(x,t)= 225v2

64
sech4

[
1
4

√
v
γ
(x−vt)

]
. (2.7)

Another special case is the equation when p = 1/2 with nonzero α and β, given by

ut+
(
α+βu1/2)u1/2ux+γuxxx = 0, (2.8)

whereu refers to the perturbed ion density in a plasma with non-isothermal electrons.

The solitary wave solution (2.3) then becomes

u(x,t)=
[

4α
15v

+
√

75βv+16α2

15v
cosh

(
1
2

√
v
γ
(x−vt)

)]−2

. (2.9)
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As noted earlier, this solution is valid for all positive v when β > 0 and is valid for all

v �= −16α2/75β when β < 0.

To see whether there exists a solitary wave solution for this critical wave velocity,

we consider a solution for (2.2) in the form

u=A[1−tanh(mz)
]1/p. (2.10)

By substituting (2.10) in (2.2) one can show that

A=
(
− α(2p+1)
β(2p+4)

)1/p
,

m2 =− p2(2p+1)α2

(p+1)(2p+4)2βγ
,

v =− 4(2p+1)α2

(p+1)(2p+4)2β
.

(2.11)

For the special case, p = 1/2, we get the solution

u(x,t)= 4α2

25β2

[
1−tanh

(
α
15

√
− 3
βγ
(x−vt)

)]2

, (2.12)

which is valid for all v with v =−16α2/75β.

3. Fifth-order KdV-type equations. We consider a fifth-order KdV-type equation in

the form

∂u
∂t
+αup ∂u

∂x
+β∂

3u
∂x3

+γ ∂
5u
∂x5

= 0, (3.1)

with p > 0. The last term in the equation describes higher-order dispersive effects

which influences the properties of the solitons. The equation with p = 1 is the fifth-

order KdV equation and the equation with p = 2 is a fifth-order modified KdV equation

both of which have applications in fluid mechanics, plasma physics, and so forth. The

equation with p ≥ 4 has great theoretical interest in the general problem of collapse

of nonlinear waves.

Without loss of generality, we assume α = β = 1. Traveling wave solutions of (3.1)

in the form u = u(z), where z = x−vt with the solitary wave boundary conditions

give rise to the equation

−vu+ u
p+1

p+1
+ d

2u
dz2

+γd
4u
dz4

= 0. (3.2)

We look for a solution of the form

u(z)=Asech4/p(mz). (3.3)



218 E. V. KRISHNAN AND Q. J. A. KHAN

By substituting (3.3) in (3.2), we can easily show that,

u(z)=
[
v
8
(p+1)(p+4)(3p+4)

p+2

]1/p
sech4/p


pz

√
v(p2+4p+8)
4(p+2)


, (3.4)

A=
[
v(p+1)(p+4)(3p+4)

8(p+2)

]1/p
, (3.5)

m=
p
√
v(p2+4p+8)

4(p+2)
, (3.6)

with v > 0 and γ < 0.

Equation (3.1) is a Hamiltonian system for which the momentum is given by

M = 1
2

∫∞
−∞
u2dx, (3.7)

For the solution (3.4), we can show that

M = A
228/pΓ 2(4/p)
4mΓ(8/p)

, (3.8)

where A and m are given by (3.5) and (3.6).

The sufficient condition for soliton stability is,

∂M
∂v

> 0. (3.9)

Here, we have
∂M
∂v

= 1
v

(
2
p
− 1

2

)
M, (3.10)

so that
∂M
∂v

> 0 iff p < 4. (3.11)

The γ = 0 soliton was only stable for p ≥ 4 and so it is evident that the fifth-order

term has increased the stability range.

4. Generalized fifth-order KdV-type equations. We introduce higher-order disper-

sive effects into (2.1) and write the equation in the form

ut+(α+βup)upux+γuxxx+δuxxxxx = 0. (4.1)

Traveling wave solutions of (4.1) in the form u = u(z), where z = x−vt, with the

solitary wave boundary conditions give rise to the equation

−vu+ αu
p+1

p+1
+ βu

2p+1

2p+1
+γuzz+δuzzzz = 0. (4.2)

We look for a solution of (4.2) in the form

u=A[1+cosh(mz)
]−1/p. (4.3)
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Substituting (4.3) in (4.2), we get

m=

− γp2±p2

√
γ2+4vδ

2δ




1/2

,

A=
[
−m

4δ(3p+2)(2p+1)(p+2)(p+1)
p4β

]1/2p
.

(4.4)

Now, we will consider the problem of stability of the soliton solution of (4.3) for

different values of p. Equation (4.1) is a Hamiltonian system for which the momentum

is given by

M = 1
2

∫∞
−∞
u2dx, (4.5)

For p = 1/2, we have,

m=

−γ±√γ2+4vδ

2δ




1/2

, (4.6)

A=
√
−90δ
β
m2. (4.7)

Thus the momentum M is given by

M = 2
3

(
− 90δ

β

)
m3. (4.8)

The sufficient condition for soliton stability is,

∂M
∂v

> 0. (4.9)

We assume δ to be positive so that β should be negative from (4.7). Now, we can easily

see that
∂M
∂v

=−90
mδ

β
√
γ2+4vδ

> 0 (4.10)

for positive v and any real value of γ and so is stable.

When δ and v have opposite signs, the solution is stable with the condition that

|γ| ≥
√
−4vδ.

When both δ and v have negative signs, the solution is unstable for all real values

of γ.
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