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Abstract. We consider the intuitionistic fuzzification of the concept of interior ideals in
a semigroup S, and investigate some properties of such ideals. For any homomorphism
f from a semigroup S to a semigroup T , if B = (µB,γB) is an intuitionistic fuzzy interior
ideal of T , then the preimage f−1(B)= (f−1(µB),f−1(γB)) of B under f is an intuitionistic
fuzzy interior ideal of S.
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1. Introduction. The idea of “intuitionistic fuzzy set” was first published by

Atanassov [1, 2], as a generalization of the notion of fuzzy set. Jun et al. consid-

ered the fuzzification of interior ideals in semigroups [3]. In this paper, we intro-

duce the notion of an intuitionistic fuzzy interior ideal of a semigroup S, and then

some related properties are investigated. Characterizations of intuitionistic fuzzy

interior ideals are given. Also for any homomorphism f from a semigroup S to a

semigroup T , if B = (µB,γB) is an intuitionistic fuzzy interior ideal of T , then the

preimage f−1(B)= (f−1(µB),f−1(γB)) of B under f is an intuitionistic fuzzy interior

ideal of S.

2. Preliminaries. Let X be a nonempty fixed set. An intuitionistic fuzzy set (IFS for

short) A is an object having the form

A= {(x,µA(x),γA(x)
)

: x ∈X}, (2.1)

where the functions µA : X → [0,1] and γA : X → [0,1] denote the degree of mem-

bership (namely µA(x)) and the degree of nonmembership (namely γA(x)) of each

element x ∈X to the set A, respectively, and 0≤ µA(x)+γA(x)≤ 1 for all x ∈X (see

Atanassov [1, 2]). For the sake of simplicity, we use the symbol A = (µA,γA) for the

IFS A= {(x,µA(x),γA(x)) : x ∈X}.
Let S be a semigroup. By a subsemigroup of S we mean a nonempty subset A of S

such that A2 ⊆A. A subsemigroup A of a semigroup S is called an interior ideal of S if

SAS ⊆A. A mapping f from a semigroup S to a semigroup T is called a homomorphism

if f(xy)= f(x)f(y) for all x,y ∈ S.

A fuzzy set µ in a semigroup S is called a fuzzy subsemigroup of S (see [3]) if

µ(xy)≥ µ(x)∧µ(y) for all x,y ∈ S.

A fuzzy subsemigroup µ of a semigroup S is called a fuzzy interior ideal of S (see

[3]) if µ(xay)≥ µ(a) for all a,x,y ∈ S.
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3. Intuitionistic fuzzy interior ideals. In what follows, S denotes a semigroup

unless otherwise specified.

Definition 3.1. An IFS A = (µA,γA) in S is called an intuitionistic fuzzy subsemi-

group of S if it satisfies

(IF1) µA(xy)≥ µA(x)∧µA(y),
(IF2) γA(xy)≤ γA(x)∨γA(y),

for all x,y ∈ S.

Example 3.2. Let S = {0,e,f ,a,b} be a set with the following Cayley table:

· 0 e f a b
0 0 0 0 0 0

e 0 e 0 a 0

f 0 0 f 0 b
a 0 a 0 0 e
b 0 0 b f 0

Then S is a semigroup (see [4]). Define an IFS A= (µA,γA) in S by µA(0)= µA(e)=
µA(f) = 1, µA(a) = µA(b) = 0, γA(0) = γA(e) = γA(f) = 0, and γA(a) = γA(b) = 1. By

routine calculations we know thatA= (µA,γA) is an intuitionistic fuzzy subsemigroup

of S.

Definition 3.3. An intuitionistic fuzzy subsemigroup A = (µA,γA) of S is called

an intuitionistic fuzzy interior ideal of S if

(IF3) µA(xay)≥ µA(a),
(IF4) γA(xay)≤ γA(a),

for all x,y,a∈ S.

Example 3.4. The IFS A= (µA,γA) in Example 3.2 is an intuitionistic fuzzy interior

ideal of S.

Theorem 3.5. If {Ai}i∈Λ is a family of intuitionistic fuzzy interior ideals of S, then

∩Ai is an intuitionistic fuzzy interior ideal of S, where ∩Ai = (∧µAi ,∨γAi) and ∧µAi
and ∨γAi are defined as follows:

∧µAi(x)= inf
{
µAi(x) | i∈Λ, x ∈ S

}
,

∨γAi(x)= sup
{
γAi(x) | i∈Λ, x ∈ S

}
.

(3.1)

Proof. Let x,y,a∈ S. Then

∧µAi(xy)≥∧
(
µAi(x)∧µAi(y)

)= (∧µAi(x)
)∧(∧µAi(y)

)
,

∨γAi(xy)≤∨
(
γAi(x)∨γAi(y)

)= (∨γAi(x)
)∨(∨γAi(y)

)
,

∧µAi(xay)≥∧µAi(a), ∨γAi(xay)≤∨γAi(a).
(3.2)

Hence ∩Ai is an intuitionistic fuzzy interior ideal of S.
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Theorem 3.6. If an IFS A= (µA,γA) in S is an intuitionistic fuzzy interior ideal of S,

then so is �A := (µA,µ̄A), µ̄A = 1−µA.

Proof. It is sufficient to show that µ̄A satisfies conditions (IF2) and (IF4). For any

a,x,y ∈ S, we have

µ̄A(xy)= 1−µA(xy)≤ 1−(µA(x)∧µA(y)
)

= (1−µA(x)
)∨(1−µA(y)

)= µ̄A(x)∨ µ̄A(y)
(3.3)

and µ̄A(xay) = 1−µA(xay) ≤ 1−µA(a) = µ̄A(a). Therefore, A is an intuitionistic

fuzzy interior ideal of S.

Definition 3.7. Let A= (µA,γA) be an IFS in S and let α∈ [0,1]. Then the sets

µ≥A,α := {x ∈ S : µA(x)≥α
}
, γ≤A,α := {x ∈ S : γA(x)≤α

}
(3.4)

are called a µ-level α-cut and a γ-level α-cut of A, respectively.

Theorem 3.8. If an IFS A= (µA,γA) in S is an intuitionistic fuzzy interior ideal of S,

then the µ-level α-cut µ≥A,α and γ-level α-cut γ≤A,α of A are interior ideals of S for every

α∈ Im(µA)∩ Im(γA)⊆ [0,1].

Proof. Let α ∈ Im(µA)∩ Im(γA) ⊆ [0,1] and let x,y ∈ µ≥A,α. Then µA(x) ≥ α and

µA(y)≥α. It follows from (IF1) that

µA(xy)≥ µA(x)∧µA(y)≥α so that xy ∈ µ≥A,α. (3.5)

If x,y ∈ γ≤A,α, then γA(x)≤α and γA(y)≤α, and so

γA(xy)≤ γA(x)∨γA(y)≤α, that is, xy ∈ γ≤A,α. (3.6)

Hence µ≥A,α and γ≤A,α are subsemigroups of S. Now let x,y ∈ S and a ∈ µ≥A,α. Then

µA(xay)≥ µA(a)≥α and so xay ∈ µ≥A,α. If a∈ γ≤A,α, then γA(xay)≤ γA(a)≤α and

thus xay ∈ γ≤A,α. Therefore µ≥A,α and γ≤A,α are interior ideals of S.

Theorem 3.9. Let A= (µA,γA) be an IFS in S such that the nonempty sets µ≥A,α and

γ≤A,α are interior ideals of S for all α∈ [0,1]. Then A= (µA,γA) is an intuitionistic fuzzy

interior ideal of S.

Proof. Letα∈ [0,1] and suppose that µ≥A,α(	= ∅) and γ≤A,α(	= ∅) are interior ideals

of S. We must show that A= (µA,γA) satisfies conditions (IF1)–(IF4). If condition (IF1)

is false, then there exist x0,y0 ∈ S such that µA(x0y0) < µA(x0)∧µA(y0). Taking

α0 := 1
2

(
µA
(
x0y0

)+µA
(
x0
)∧µA

(
y0
))
, (3.7)

we have µA(x0y0) < α0 < µA(x0)∧µA(y0). It follows that x0,y0 ∈ µ≥A,α0
and x0y0 ∉

µ≥A,α0
, which is a contradiction. Hence condition (IF1) is true. The proof of other con-

ditions are similar to the case (IF1), we omit the proof.
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Theorem 3.10. Let M be an interior ideal of S and let A = (µA,γA) be an IFS in S
defined by

µA(x) :=


α0 if x ∈M,
α1 otherwise,

γA(x) :=


β0 if x ∈M,
β1 otherwise,

(3.8)

for all x ∈ S and αi,βi ∈ [0,1] such that α0 >α1, β0 < β1, and αi+βi ≤ 1 for i= 0,1.

Then A= (µA,γA) is an intuitionistic fuzzy interior ideal of S and µ≥A,α0
=M = γ≤A,β0

.

Proof. Let x,y ∈ S. If anyone of x and y does not belong to M , then

µA(xy)≥α1 = µA(x)∧µA(y),
γA(xy)≤ β1 = γA(x)∨γA(y).

(3.9)

Other cases are trivial, and we omit the proof. Hence A = (µA,γA) is an intuitionistic

fuzzy subsemigroup of S. Now let x,y,a ∈ S. If a ∉M , then µA(xay) ≥ α1 = µA(a)
and γA(xay) ≤ β1 = γA(a). Assume that a ∈ M . Since M is an interior ideal of S,

it follows that xay ∈M . Hence µA(xay) = α0 = µA(a) and γA(xay) = β0 = γA(a).
Therefore A= (µA,γA) is an intuitionistic fuzzy interior ideal of S. Obviously µ≥A,α0

=
M = γ≤A,β0

.

Corollary 3.11. Let χM be the characteristic function of an interior ideal M of S.

Then the IFS M̃ = (χM,χ̄M) is an intuitionistic fuzzy interior ideal of S.

Theorem 3.12. If an IFSA=(µA,γA) is an intuitionistic fuzzy interior ideal of S, then

µA(x) := sup
{
α∈ [0,1] | x ∈ µ≥A,α

}
,

γA(x) := inf
{
α∈ [0,1] | x ∈ γ≤A,α

}
,

(3.10)

for all x ∈ S.

Proof. Let δ := sup
{
α ∈ [0,1] | x ∈ µ≥A,α

}
and let ε > 0 be given. Then δ−ε < α

for some α∈ [0,1] such that x ∈ µ≥A,α. It follows that δ−ε < µA(x) so that δ≤ µA(x)
since ε is arbitrary. We now show that µA(x)≤ δ. Let µA(x)= β. Then x ∈ µ≥A,β and so

β∈ {α∈ [0,1] | x ∈ µ≥A,α
}
. (3.11)

Hence µA(x)= β≤ sup
{
α∈ [0,1] | x ∈ µ≥A,α

}= δ. Therefore

µA(x)= δ= sup
{
α∈ [0,1] | x ∈ µ≥A,α

}
. (3.12)

Now let η= inf
{
α∈ [0,1] | x ∈ γ≤A,α

}
. Then

inf
{
α∈ [0,1] | x ∈ γ≤A,α

}
< η+ε for any ε < 0, (3.13)

and so α< η+ε for some α∈ [0,1] with x ∈ γ≤A,α. Since γA(x)≤α and ε is arbitrary,

it follows that γA(x)≤ η. To prove γA(x)≥ η, let γA(x)= ζ. Then x ∈ γ≤A,ζ and thus

ζ ∈ {α∈ [0,1] | x ∈ γ≤A,α
}
. Hence

inf
{
α∈ [0,1] | x ∈ γ≤A,α

}≤ ζ, that is, η≤ ζ = γA(x). (3.14)
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Consequently,

γA(x)= η= inf
{
α∈ [0,1] | x ∈ γ≤A,α

}
. (3.15)

This completes the proof.

Theorem 3.13. Let
{
Cα |α∈Λ

}
be a collection of interior ideals of S such that

(i) S =∪α∈ΛCα,

(ii) β >α if and only if Cβ ⊂ Cα for all β,α∈Λ.

Then an IFS A= (µA,γA) in S defined by

µA(x) := sup
{
α∈Λ | x ∈ Cα

}
,

γA(x) := inf
{
α∈Λ | x ∈ Cα

}
,

(3.16)

for all x ∈ S, is an intuitionistic fuzzy interior ideal of S.

Proof. Following Theorem 3.9, it is sufficient to show that the nonempty level
sets µ≥A,α and γ≤A,α are interior ideals of S for every α ∈ [0,1]. In order to prove that

µ≥A,α(	= ∅) is an interior ideal, we have the following two cases:

(i) α= sup{δ∈Λ | δ <α} and

(ii) α 	= sup{δ∈Λ | δ <α}.
Case (i) implies that

x ∈ µ≥A,α⇐⇒ x ∈ Cδ ∀δ <α⇐⇒ x ∈∩δ<αCδ, (3.17)

so that µ≥A,α = ∩δ<αCδ, which is an interior ideal of S. For the case (ii), we claim that

µ≥A,α =∪δ≥αCδ. Ifx ∈∪δ≥αCδ, thenx ∈Cδ for some δ≥α. It follows that µA(x)≥δ≥α,

so that x ∈ µ≥A,α. This proves that ∪δ≥αCδ ⊆ µ≥A,α. Now assume that x 	∈ ∪δ≥αCδ. Then

x 	∈ Cδ for all δ ≥ α. Since α 	= sup{δ ∈ Λ | δ < α}, there exists ε > 0 such that

(α− ε,α)∩Λ = ∅. Hence x 	∈ Cδ for all δ > α− ε, which means that if x ∈ Cδ then

δ ≤ α− ε. Thus µA(x) ≤ α− ε < α, and so x 	∈ µ≥A,α. Therefore µ≥A,α ⊆ ∪δ≥αCδ, and

thus µ≥A,α =∪δ≥αCδ which is an interior ideal of S. Next we prove that γ≤A,α(	= ∅) is an

interior ideal of S for all α∈ [0,1]. We consider the following two cases:

(iii) β= inf{δ∈Λ | β < δ} and

(iv) β 	= inf{δ∈Λ | β < δ}.
For the case (iii) we have

x ∈ γ≤A,β⇐⇒ x ∈ Cδ ∀β < δ⇐⇒ x ∈∩β<δCδ, (3.18)

and hence γ≤A,β =∩β<δCδ which is an interior ideal of S. For the case (iv), there exists

ε > 0 such that (β,β+ε)∩Λ = ∅. We show that γ≤A,β = ∪β≥δCδ. If x ∈ ∪β≥δCδ, then

x ∈ Cδ for some β≥ δ. It follows that γA(x)≤ δ≤ β so that x ∈ γ≤A,β. Hence ∪β≥δCδ ⊆
γ≤A,β. Conversely, if x ∉∪β≥δCδ then x ∉ Cδ for all δ≤ β, which implies that x ∉ Cδ for

all δ < β+ε, that is, if x ∈ Cδ then δ≥ β+ε. Thus γA(x)≥ β+ε > β, that is, x ∉ γ≤A,β.

Therefore γ≤A,β ⊆∪β≥δCδ and consequently γ≤A,β =∪β≥δCδ which is an interior ideal of

S. This completes the proof.

Theorem 3.14. An IFS A = (µA,γA) is an intuitionistic fuzzy interior ideal of S if

and only if the fuzzy sets µA and γ̄A are fuzzy interior ideals of S.
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Proof. Let A= (µA,γA) be an intuitionistic fuzzy interior ideal of S. Then clearly

µA is a fuzzy interior ideal of S. Let x,a,y ∈ S. Then

γ̄A(xy)= 1−γA(xy)≥ 1−γA(x)∨γA(y)
= (1−γA(x)

)∧(1−γA(y)
)= γ̄A(x)∧ γ̄A(y),

γ̄A(xay)= 1−γA(xay)≥ 1−γA(a)= γ̄A(a).
(3.19)

Hence γ̄A is a fuzzy interior ideal of S.

Conversely, suppose that µA and γ̄A are fuzzy interior ideals of S. Let a,x,y ∈ S.

Then

1−γA(xy)= γ̄A(xy)≥ γ̄A(x)∧ γ̄A(y)
= (1−γA(x)

)∧(1−γA(y)
)

= 1−γA(x)∨γA(y),

1−γA(xay)= γ̄A(xay)≥ γ̄A(a)= 1−γA(a),

(3.20)

which imply that γA(xy)≤ γA(x)∨γA(y) and γA(xay)≤ γA(a). This completes the

proof.

Corollary 3.15. An IFS A= (µA,γA) is an intuitionistic fuzzy interior ideal of S if

and only if �A= (µA,µ̄A) and ♦A= (γ̄A,γA) are intuitionistic fuzzy interior ideals of S.

Proof. The proof is straightforward by Theorem 3.14.

Let f be a map from a set X to a set Y . If A = (µA,γA) and B = (µB,γB) are IFSs in

X and Y , respectively, then the preimage of B under f , denoted by f−1(B), is an IFS

in X defined by

f−1(B)= (f−1(µB
)
,f−1(γB

))
, where f−1(µB

)= µB(f). (3.21)

Theorem 3.16. Let f : S → T be a homomorphism of semigroups. If B = (µB,γB) is an

intuitionistic fuzzy interior ideal of T , then the preimage f−1(B)= (f−1(µB),f−1(γB))
of B under f is an intuitionistic fuzzy interior ideal of S.

Proof. Assume that B = (µB,γB) is an intuitionistic fuzzy interior ideal of T and

let x,y ∈ S. Then

f−1(µB
)
(xy)= µB(f(xy)

)

= µB
(
f(x)f(y)

)

≥ µB
(
f(x)

)∧µB
(
f(y)

)

= f−1(µB(x)
)∧f−1(µB(y)

)
,

f−1(γB
)
(xy)= γB

(
f(xy)

)

= γB
(
f(x)f(y)

)

≤ γB
(
f(x)

)∨γB
(
f(y)

)

= f−1(γB(x)
)∨f−1(γB(y)

)
.

(3.22)
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Hence f−1(B) = (f−1(µB),f−1(γB)) is an intuitionistic fuzzy subsemigroup of S. For

any a,x,y ∈ S, we have

f−1(µB
)
(xay)= µB

(
f(xay)

)

= µB
(
f(x)f(a)f(y)

)

≥ µB
(
f(a)

)

= f−1(µB(a)
)
,

f−1(γB
)
(xay)= γB

(
f(xay)

)

= γB
(
f(x)f(a)f(y)

)

≤ γB
(
f(a)

)

= f−1(γB(a)
)
.

(3.23)

Therefore f−1(B) = (f−1(µB),f−1(γB)) is an intuitionistic fuzzy interior ideal of S.
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