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1. Introduction. Given an operator T and a solution class {u} with the property
that T(u) = 0, when does ||T(v)|| < € for an € > 0 imply that |lu — v| < 6(¢) for
some u and for some 6 > 0? This problem is called the stability of the functional
transformation. A great deal of work has been done in connection with the ordinary
and partial differential equations. If f is a function from a normed vector space into
a Banach space, and || f(x +y) - f(x)—f ()| < & Hyers [3] proved that there exists
an additive map A such that || f(x) —A(x)|| < &. If f(x) is a real continuous function
of x over R, and |f(x+y)— f(x)— f(¥)] < &, it was shown by Hyers and Ulam [4]
that there exists a constant k such that | f(x) — kx| < 2&. Taking these results into
account, we say that the additive Cauchy equation f(x +y) = f(x) + f(y) is stable
in the sense of Hyers and Ulam.

In this paper, we study a generalized Hyers-Ulam stability of a mean value type
functional equation.

Let R be the set of real numbers. For distinct points x1,X>2,...,X, in R, the divided
difference of f: R — R is recursively defined as

flxil = f(x1),

flxt,x2, 0 xn-1] = flx2,%3,...,Xn]
X1—Xn )

(1.1)

flx1,x2,...,xn] =

Bailey [2], generalizing a result of Aczel [1], proved the following result: if f is a
differentiable function satisfying the functional equation

flx1,x2,x3] = h(x1 +x2+x3), Vx1,X2,Xx3€R (1.2)

Wwith x1 + X2, X2 + X3, X3 + X1, then f is a polynomial of degree at most three. In
Bailey’s proof, the differentiability assumption plays a central role. Kannappan and
Sahoo [5] have determined the general solution of f[x1,X2,...,xn] =h(x1+x2+---+
x5 ) without the differentiability assumption. In the next section, we determine the
general solution of (1.2) by an elementary method.
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2. Solution of the functional equation (1.2). Now we give the solution of the func-
tion equation (1.2) using an elementary technique.

THEOREM 2.1. Let f satisfy the functional equation (1.2) for all x1,x2,x3 € R with
X1 # X2, X2 # X3, and x3 + x1. Then f is a polynomial of degree at most three and h
is linear.

PROOF. If f(x) is a solution of (1.2) so is f(x) + ag + a1 x, where ay and a; are
arbitrary constants. This can be verified by direct substitution into the expansion of
the functional equation (1.2), that is,

(x2 = x3) f(x1) + (x3 = x1) f(x2) + (x1 = x2) f (x3)

2.1)
= (x1 —x3) (x1 —x2) (x2 = x3) A (X1 + X2+ X3).
Letting f(x;) +ao+aix; for i =1,2,3 for f(x;) in the expansion (2.1), we get

(x2 = x3)[f(x1) + a0+ arx1] + (x3 —x1) [ f (x2) + ap + a1 x2]
+(x1-x2) [ f(x3) + ao + a1 x3] 2.2)

= (x1—-x3) (x1 —x2) (x2 = x3) W (X1 + X2 + X3).

Each term involving an a( or an a; has an opposite-sign term and therefore cancels by
simple algebraic manipulation. Thus we have again the expanded form (2.1) of (1.2).
Let g(x) = f(x)+ao+aix. Then x = 0 inserted into g(x) yields

f(0) =g(0)—a,. (2.3)

We are free to pick ap = g(0) so that g(x) yields f(0) = 0. In other words, by a suitable
choice for aq, without loss of generality, we may assume that

f(0)=0. (2.4)
Now by setting x = « in the definition of g(x) we get
fle) =g()—ao—-ar«. (2.5)

Letting ap + a; x = g(x) we get f(x) = 0 and we may assume, without loss of gener-
ality, that
fle)=0 (2.6)

for some « # 0 in R. Note that there are many choices for such an «.
First substitute (x,0, x) for (x1,x2,x3) in (2.1) to get

f(x)=—-x(x-—x)h(x+x) (2.7)

(after using (2.4) and (2.6)) for x + 0, «.
Next, we substitute(x,0,y) for (x1,x2,x3) in (2.1) to get

fx)  f)
x(x-y) yx-y)

=h(x+y) Vx,y+0, x+y. (2.8)
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Define
g(x) = % for x € R\ {0}. (2.9)
Then (2.8) reduces to
gx)—gy)=(x-y)h(x+y) Vx,y€R\{0} with x # y. (2.10)

Note that (2.10) is valid even for x = y.
Now we consider the equation

gx)—gy)=(x-y)h(x+y) Vx,ycR\{0}. (2.11)
Put y = —x in (2.10) to get
gx)—g(—=x)=2xh(0) Vx=0. (2.12)
Next, replace y by —y in (2.10) to get
g(x)-g(=y)=(x+y)h(x-y) forx,y e R\{0} withx+y #0. (2.13)

Again (2.13) holds if x + y = 0. Thus we conclude that (2.13) holds for x,y € R\ {0}.
Subtract (2.10) from (2.13) and use (2.12) to get

(x+y)[hix-=y)-h(0)] = (x-y)[h(x+y)-h(0)] Vx,ycR\{0}. (2.14)

Fix anonzero u in R. Choose av € R such that (u+v)/2 +# 0 and (u—v)/2 # 0. There
are plenty of choices for such v. Let

u+v u-v
X = 2 ’ y - 2 ’ (2-15)
so that
u=x+y, vV=x-)y. (2.16)
Letting (2.16) into (2.14), we get
ulh(v)-h0)] =v[ih(u)-h(0)] Vv=+u,—u. (2.17)

(Here note that v can be zero since x = y is allowed.) Hence for fixed u = u;, we get
h(v)=a,v+b; forveR\{u,-u}. (2.18)
Again u = u», we get
h(v) =av+by Vv eR\{uz —u}. (2.19)
Since the sets {u;,—u;1} and {u2,—u;} are disjoint, we get
h(v)=av+b Vv eR. (2.20)
Now using (2.20) in (2.7), we have

fx) = (x> -xx)h(x+o0o) = (x*> —xx)[a(x+x) +b] = ax? +bx? +cx, (2.21)
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where ¢ = —ax? — bx. Removing the assumption that f(0) = 0, we get
f(x)=ax?+bx’+cx+d VYx=+0,ax. (2.22)
By (2.4), (2.6), and (2.22), we conclude that f is a polynomial of degree at most three
for all x € R. This proof is now complete. O
For a more general result, the interested reader should refer to Kannappan and

Sahoo [5].

3. Stability of the functional equation (1.2). Let G be an additive subgroup of C
and let @ : G® — [0,) be a control function. In the following theorem, the stability
of (1.2) for cubic polynomials will be investigated in a modified form (3.1).

THEOREM 3.1. Let x € G\ {0} and B € G\ {—&,0,} be fixed. If the functions
f,h:G — C satisfy the inequality

|(y—2)f(x)+(z—x)f () +(x-¥)f(z)

—(x-2)(x-Y)(y-2)h(ix+y+2)| <@(x,¥,2), Vx,v,z€G, 3-1)
then there exist constants a,b,c,d such that
| f(x)—ax3-bx*—cx—d]| < oel] (x,B,-B)
=20B1[p2 -] VP 52
+M(p(xo(—(x) Vx eaG .
2loel | B2 — 2| T ’
o |x*—B*| +|B*— o] B
lh(x)—ax h‘s2|o<||32—o<2||x2—o<2|(p(x’0(’ ) -
) .
+m(p()€,3,*ﬁ) VXEG\{*O(,O(}.
Moreover, the constants a,b,c,d are explicitly given by
B -FB f-f-
C2B(BP-o?)  2x(BP-o?)
po SB B fle+f(-)
- 2(Br-«a?) 2(B2~0)
(3.4)
C:f(tX)—f(—tX)Bz_f(B)—f(—B)0(2
2 (B? — &%) 2B(B2—a?)
S+ f(=) o SB+S(=B) »
=) P e
PROOF. If we define a function g: G — C by

2x 2
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then g(x) = g(—«) = 0 and g satisfies the inequality

[(y-2)g(x)+(z-x)g(¥)+ (x-¥)g(2)

-(x-2)(x-y)(y-2)h(x+y+2)| <@(x,v,2) Vx,y,z€C. (3.6)
If we substitute (x, &, —«x) for (x,y,z) in (3.6), then we have
|g(x)—(x?-a®)h(x)]| < i(p(x,(x,—(x) Vx in G. (3.7)

2| x|
Replace z by —y in (3.6) to get
[2yg(x) = (x+ ) g () + (x =) g(-¥) -2y (x? - y*)h(x) | < @(x,y,-y) (3.8)

for every x,y € G.
By making use of (3.7) and (3.8), we obtain

2 _ 4,2
‘Zyg(x) —(x+2)g() + (x =) g(-¥) - Zyx(’z‘faf)g(x)‘

<2yg(x)— (x+¥)g(¥) + (x=¥)g(-¥) =2y (x* = y?)h(x)|

> 2_ A2 (3.9)
- \2y(x2—y2)h<x)—“§fog)g<x>\
oy -2 _
sQXx,y,-y)+ ol | x2— o2 | @ (x,x,—0)
or equivalently
Y2 o2
2y a2 9 —(x+ ) g(y) + (x - y)g(-y)
. (3.10)
<@(x,y —y)+wq9(x o,—-x), VxeG\{-aa}, Vyeaq.
b b |0(||x2—0(2| b ’ ’ b y
Multiply both sides by
2= o
2|yl|y?-oc| GAD
to get
(x2 =) (x+y) (x?— o) (x-y)
g(x) Tov(vi-od) g(y)+—2y(y2_a2) g(=y)
2 _ 2
e~ o @x,y,-y) (3.12)

37
2|y|]y?—oc]

|x? -2

ATy e[ P %@ VX E€G, v € G\ -x,0,a.

(We note that the inequality holds true also for x € {—&, «}.)

If we replace y in the last inequality by a constant 8 € G\ {—«,0,«} and if we
consider definition (3.5), then we can easily show the validity of inequality (3.2) by
making a tedious calculation.
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By using (3.2), (3.5), and (3.7), we may obtain
[ (x2 - o) h(x)—ax®—bx*+*ax + o]
< |(x?=0®)h(x)—g(x)]

flo)—f(l-a)  flx)+f(-x)
2 X+ 2 (3.13)

+|f(x)—ax?—bx?-cx—d|

+]gx)—f(x)+

|x% - B*| +[B*— o |x% - o
X,0,—0)+ i @(x,B,— Vx €G,
Arara=ra @( ) 2|ﬁ||,82—(x2|q?( B,—B)
from which we can deduce inequality (3.3). O

COROLLARY 3.2. Assume that the control function @ : G3 — [0,00) satisfies the
asymptotic condition

‘li‘m Ix1?@(x,y,—y) =0 foreach fixedy € G. (3.14)
X|— 00

If the functions f,h : G — C satisfy inequality (3.1) for any x,y,z € G, then there exist
uniquely determined constants a,b,c,d such that inequalities (3.2) and (3.3) are valid
for all x € G and for all x € G\ {—«&, &}, respectively.

COROLLARY 3.3. Suppose that the control function @ : G3 — [0, ) is given by
px,yv,z)=¢lx—y|ly—-z|lz-=x| for some given & > 0. (3.15)

If the functions f,h: G — C satisfy inequality (3.1) for any x,v,z € G, then there exist
constants a,b,c,d such that

2¢
- \ﬁz
o] |x2-B%| Vx ofG.

|f(x)—ax®-bx?—cx—-d| < o] [x2—o?||x?-B?],

(3.16)
|[h(x)—ax-b|<e++5—5+

|32

We remark here that the last inequality is also valid for x = —x or x = «.
Given a control function  : G3 — [0, «), we can also prove the Hyers-Ulam-Rassias
stability of the functional equation (1.2) in the original setting:

THEOREM 3.4. Let x € G\ {0} and B € G\ {—«,0,x} be given. If the functions
f,h:G — C satisfy the inequality

| flx,v,z]1-h(x+y+2z)| <@(x,v,z) Vx,v,zeGwithx=y, y+z, z+x, (3.17)

then there exist constants a,b,c,d such that

x| x|

| f(x)—ax®-bx?—cx—d| < (P(x,0,—c)+@(x,B,-B)), (3.18)

| B2—oc|
2_g2
|h(x)—ax—-b|<yp(x,x,—-x)+ ’;2 & ~| (wx,0,—c) +@(x,B,—B)), (3.19)

for all x € G, where a,b,c,d are explicitly given in Theorem 3.1.
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PROOF. If we multiply both sides of (3.17) by |[x —y ||y —z||z— x|, then f satisfies
inequality (3.1) with

@x,y,2)=Ix-ylly-zllz-xlp(x,y,z) Vx,y,z€G. (3.20)

(We note that (3.1) is also true for x,y,z € G with x = y, v = z, or z = x for our case
with (3.20).)

According to Theorem 3.1, there exist constants a,b,c,d such that inequalities
(3.18) and (3.19) are valid for all x € G and for all x € G\ {—«, «}, respectively.
The only reason for excepting —« and « from the domain of validity of inequality
(3.3) is that the denominator of the first term on the right-hand side contains a fac-
tor |x2 — «?|. However, inequality (3.19) contains no denominator which vanishes at

X = « or x = —«. Therefore, we can include —« and « in the domain of validity of
inequality (3.19), which completes the proof. O
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