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1. Introduction. Given an operator T and a solution class {u} with the property

that T(u) = 0, when does ‖T(v)‖ ≤ ε for an ε > 0 imply that ‖u−v‖ ≤ δ(ε) for

some u and for some δ > 0? This problem is called the stability of the functional

transformation. A great deal of work has been done in connection with the ordinary

and partial differential equations. If f is a function from a normed vector space into

a Banach space, and ‖f(x+y)−f(x)−f(y)‖ ≤ ε, Hyers [3] proved that there exists

an additive map A such that ‖f(x)−A(x)‖ ≤ ε. If f(x) is a real continuous function

of x over R, and |f(x+y)−f(x)−f(y)| ≤ ε, it was shown by Hyers and Ulam [4]

that there exists a constant k such that |f(x)−kx| ≤ 2ε. Taking these results into

account, we say that the additive Cauchy equation f(x+y) = f(x)+f(y) is stable

in the sense of Hyers and Ulam.

In this paper, we study a generalized Hyers-Ulam stability of a mean value type

functional equation.

Let R be the set of real numbers. For distinct points x1,x2, . . . ,xn in R, the divided

difference of f :R→R is recursively defined as

f
[
x1
]= f (x1

)
,

f
[
x1,x2, . . . ,xn

]= f
[
x1,x2, . . . ,xn−1

]−f [x2,x3, . . . ,xn
]

x1−xn
.

(1.1)

Bailey [2], generalizing a result of Aczel [1], proved the following result: if f is a

differentiable function satisfying the functional equation

f
[
x1,x2,x3

]= h(x1+x2+x3
)
, ∀x1,x2,x3 ∈R (1.2)

with x1 ≠ x2, x2 ≠ x3, x3 ≠ x1, then f is a polynomial of degree at most three. In

Bailey’s proof, the differentiability assumption plays a central role. Kannappan and

Sahoo [5] have determined the general solution of f[x1,x2, . . . ,xn]= h(x1+x2+···+
xn) without the differentiability assumption. In the next section, we determine the

general solution of (1.2) by an elementary method.
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2. Solution of the functional equation (1.2). Now we give the solution of the func-

tion equation (1.2) using an elementary technique.

Theorem 2.1. Let f satisfy the functional equation (1.2) for all x1,x2,x3 ∈ R with

x1 ≠ x2, x2 ≠ x3, and x3 ≠ x1. Then f is a polynomial of degree at most three and h
is linear.

Proof. If f(x) is a solution of (1.2) so is f(x)+a0+a1x, where a0 and a1 are

arbitrary constants. This can be verified by direct substitution into the expansion of

the functional equation (1.2), that is,

(
x2−x3

)
f
(
x1
)+(x3−x1

)
f
(
x2
)+(x1−x2

)
f
(
x3
)

= (x1−x3
)(
x1−x2

)(
x2−x3

)
h
(
x1+x2+x3

)
.

(2.1)

Letting f(xi)+a0+a1xi for i= 1,2,3 for f(xi) in the expansion (2.1), we get

(
x2−x3

)[
f
(
x1
)+a0+a1x1

]+(x3−x1
)[
f
(
x2
)+a0+a1x2

]

+(x1−x2
)[
f
(
x3
)+a0+a1x3

]

= (x1−x3
)(
x1−x2

)(
x2−x3

)
h
(
x1+x2+x3

)
.

(2.2)

Each term involving an a0 or an a1 has an opposite-sign term and therefore cancels by

simple algebraic manipulation. Thus we have again the expanded form (2.1) of (1.2).

Let g(x)= f(x)+a0+a1x. Then x = 0 inserted into g(x) yields

f(0)= g(0)−a0. (2.3)

We are free to pick a0 = g(0) so that g(x) yields f(0)= 0. In other words, by a suitable

choice for a0, without loss of generality, we may assume that

f(0)= 0. (2.4)

Now by setting x =α in the definition of g(x) we get

f(α)= g(α)−a0−a1α. (2.5)

Letting a0+a1α = g(α) we get f(α) = 0 and we may assume, without loss of gener-

ality, that

f(α)= 0 (2.6)

for some α≠ 0 in R. Note that there are many choices for such an α.

First substitute (x,0,α) for (x1,x2,x3) in (2.1) to get

f(x)=−x(α−x)h(x+α) (2.7)

(after using (2.4) and (2.6)) for x ≠ 0,α.

Next, we substitute(x,0,y) for (x1,x2,x3) in (2.1) to get

f(x)
x(x−y) −

f(y)
y(x−y) = h(x+y) ∀x,y ≠ 0, x ≠y. (2.8)
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Define

g(x)= f(x)
x

for x ∈R\{0}. (2.9)

Then (2.8) reduces to

g(x)−g(y)= (x−y)h(x+y) ∀x,y ∈R\{0} with x ≠y. (2.10)

Note that (2.10) is valid even for x =y .

Now we consider the equation

g(x)−g(y)= (x−y)h(x+y) ∀x,y ∈R\{0}. (2.11)

Put y =−x in (2.10) to get

g(x)−g(−x)= 2xh(0) ∀x ≠ 0. (2.12)

Next, replace y by −y in (2.10) to get

g(x)−g(−y)= (x+y)h(x−y) for x,y ∈R\{0} with x+y ≠ 0. (2.13)

Again (2.13) holds if x+y = 0. Thus we conclude that (2.13) holds for x,y ∈R\{0}.
Subtract (2.10) from (2.13) and use (2.12) to get

(x+y)[h(x−y)−h(0)]= (x−y)[h(x+y)−h(0)] ∀x,y ∈R\{0}. (2.14)

Fix a nonzero u in R. Choose a v ∈R such that (u+v)/2≠ 0 and (u−v)/2≠ 0. There

are plenty of choices for such v . Let

x = u+v
2

, y = u−v
2

, (2.15)

so that

u= x+y, v = x−y. (2.16)

Letting (2.16) into (2.14), we get

u
[
h(v)−h(0)]= v[h(u)−h(0)] ∀v ≠u,−u. (2.17)

(Here note that v can be zero since x =y is allowed.) Hence for fixed u=u1, we get

h(v)= a1v+b1 for v ∈R\{u1,−u1
}
. (2.18)

Again u=u2, we get

h(v)= a2v+b2 ∀v ∈R\{u2,−u2
}
. (2.19)

Since the sets {u1,−u1} and {u2,−u2} are disjoint, we get

h(v)= av+b ∀v ∈R. (2.20)

Now using (2.20) in (2.7), we have

f(x)= (x2−xα)h(x+α)= (x2−xα)[a(x+α)+b]= ax3+bx2+cx, (2.21)
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where c =−aα2−bα. Removing the assumption that f(0)= 0, we get

f(x)= ax3+bx2+cx+d ∀x ≠ 0,α. (2.22)

By (2.4), (2.6), and (2.22), we conclude that f is a polynomial of degree at most three

for all x ∈R. This proof is now complete.

For a more general result, the interested reader should refer to Kannappan and

Sahoo [5].

3. Stability of the functional equation (1.2). Let G be an additive subgroup of C
and let ϕ : G3 → [0,∞) be a control function. In the following theorem, the stability

of (1.2) for cubic polynomials will be investigated in a modified form (3.1).

Theorem 3.1. Let α ∈ G \ {0} and β ∈ G \ {−α,0,α} be fixed. If the functions

f ,h :G→ C satisfy the inequality

∣
∣(y−z)f(x)+(z−x)f(y)+(x−y)f(z)

−(x−z)(x−y)(y−z)h(x+y+z)
∣
∣≤ϕ(x,y,z), ∀x,y,z ∈G, (3.1)

then there exist constants a,b,c,d such that

∣
∣f(x)−ax3−bx2−cx−d

∣
∣≤

∣
∣x2−α2

∣
∣

2|β|
∣
∣β2−α2

∣
∣ϕ(x,β,−β)

+
∣
∣x2−β2

∣
∣

2|α|
∣
∣β2−α2

∣
∣ϕ(x,α,−α) ∀x ∈G,

(3.2)

|h(x)−ax−b| ≤
∣
∣x2−β2

∣
∣+

∣
∣β2−α2

∣
∣

2|α|
∣
∣β2−α2

∣
∣
∣
∣x2−α2

∣
∣ϕ(x,α,−α)

+ 1
2|β|

∣
∣β2−α2

∣
∣ϕ(x,β,−β) ∀x ∈G\{−α,α}.

(3.3)

Moreover, the constants a,b,c,d are explicitly given by

a= f(β)−f(−β)
2β
(
β2−α2

) − f(α)−f(−α)
2α
(
β2−α2

) ,

b = f(β)+f(−β)
2
(
β2−α2

) − f(α)+f(−α)
2
(
β2−α2

) ,

c = f(α)−f(−α)
2α
(
β2−α2

) β2− f(β)−f(−β)
2β
(
β2−α2

) α2,

d= f(α)+f(−α)
2
(
β2−α2

) β2− f(β)+f(−β)
2
(
β2−α2

) α2.

(3.4)

Proof. If we define a function g :G→ C by

g(x)= f(x)− f(α)−f(−α)
2α

x− f(α)+f(−α)
2

, (3.5)
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then g(α)= g(−α)= 0 and g satisfies the inequality
∣
∣(y−z)g(x)+(z−x)g(y)+(x−y)g(z)

−(x−z)(x−y)(y−z)h(x+y+z)
∣
∣≤ϕ(x,y,z) ∀x,y,z ∈G. (3.6)

If we substitute (x,α,−α) for (x,y,z) in (3.6), then we have

∣
∣g(x)−(x2−α2)h(x)

∣
∣≤ 1

2|α|ϕ(x,α,−α) ∀x in G. (3.7)

Replace z by −y in (3.6) to get

∣
∣2yg(x)−(x+y)g(y)+(x−y)g(−y)−2y

(
x2−y2)h(x)

∣
∣≤ϕ(x,y,−y) (3.8)

for every x,y ∈G.

By making use of (3.7) and (3.8), we obtain

∣
∣
∣
∣2yg(x)−(x+y)g(y)+(x−y)g(−y)−

2y
(
x2−y2

)

x2−α2
g(x)

∣
∣
∣
∣

≤
∣
∣2yg(x)−(x+y)g(y)+(x−y)g(−y)−2y

(
x2−y2)h(x)

∣
∣

+
∣
∣
∣
∣2y

(
x2−y2)h(x)− 2y

(
x2−y2

)

x2−α2
g(x)

∣
∣
∣
∣

≤ϕ(x,y,−y)+ |y|
∣
∣x2−y2

∣
∣

|α|
∣
∣x2−α2

∣
∣ϕ(x,α,−α)

(3.9)

or equivalently

∣
∣
∣
∣2y

y2−α2

x2−α2
g(x)−(x+y)g(y)+(x−y)g(−y)

∣
∣
∣
∣

≤ϕ(x,y,−y)+ |y|
∣
∣x2−y2

∣
∣

|α|
∣
∣x2−α2

∣
∣ϕ(x,α,−α), ∀x ∈G\{−α,α}, ∀y ∈G.

(3.10)

Multiply both sides by ∣
∣x2−α2

∣
∣

2|y|
∣
∣y2−α2

∣
∣ (3.11)

to get

∣
∣
∣
∣g(x)−

(
x2−α2

)
(x+y)

2y
(
y2−α2

) g(y)+
(
x2−α2

)
(x−y)

2y
(
y2−α2

) g(−y)
∣
∣
∣
∣

≤
∣
∣x2−α2

∣
∣

2|y|
∣
∣y2−α2

∣
∣ϕ(x,y,−y)

+
∣
∣x2−y2

∣
∣

2|α|
∣
∣y2−α2

∣
∣ϕ(x,α,−α) ∀x ∈G, y ∈G\{−α,0,α}.

(3.12)

(We note that the inequality holds true also for x ∈ {−α,α}.)
If we replace y in the last inequality by a constant β ∈ G \ {−α,0,α} and if we

consider definition (3.5), then we can easily show the validity of inequality (3.2) by

making a tedious calculation.
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By using (3.2), (3.5), and (3.7), we may obtain
∣
∣(x2−α2)h(x)−ax3−bx2+α2ax+α2b

∣
∣

≤
∣
∣(x2−α2)h(x)−g(x)

∣
∣

+
∣
∣
∣
∣g(x)−f(x)+

f(α)−f(−α)
2α

x+ f(α)+f(−α)
2

∣
∣
∣
∣

+
∣
∣f(x)−ax3−bx2−cx−d

∣
∣

≤
∣
∣x2−β2

∣
∣+

∣
∣β2−α2

∣
∣

2|α|
∣
∣β2−α2

∣
∣ ϕ(x,α,−α)+

∣
∣x2−α2

∣
∣

2|β|
∣
∣β2−α2

∣
∣ϕ(x,β,−β) ∀x ∈G,

(3.13)

from which we can deduce inequality (3.3).

Corollary 3.2. Assume that the control function ϕ : G3 → [0,∞) satisfies the

asymptotic condition

lim
|x|→∞

|x|2ϕ(x,γ,−γ)= 0 for each fixed γ ∈G. (3.14)

If the functions f ,h :G→ C satisfy inequality (3.1) for any x,y,z ∈G, then there exist

uniquely determined constants a,b,c,d such that inequalities (3.2) and (3.3) are valid

for all x ∈G and for all x ∈G\{−α,α}, respectively.

Corollary 3.3. Suppose that the control function ϕ :G3 → [0,∞) is given by

ϕ(x,y,z)= ε|x−y||y−z||z−x| for some given ε > 0. (3.15)

If the functions f ,h :G→ C satisfy inequality (3.1) for any x,y,z ∈G, then there exist

constants a,b,c,d such that

∣
∣f(x)−ax3−bx2−cx−d

∣
∣≤ 2ε

∣
∣β2−α2

∣
∣
∣
∣x2−α2

∣
∣
∣
∣x2−β2

∣
∣,

∣
∣h(x)−ax−b

∣
∣≤ ε+ 2ε

∣
∣β2−α2

∣
∣
∣
∣x2−β2

∣
∣ ∀x of G.

(3.16)

We remark here that the last inequality is also valid for x =−α or x =α.

Given a control function ψ :G3 → [0,∞), we can also prove the Hyers-Ulam-Rassias

stability of the functional equation (1.2) in the original setting:

Theorem 3.4. Let α ∈ G \ {0} and β ∈ G \ {−α,0,α} be given. If the functions

f ,h :G→ C satisfy the inequality

∣
∣f[x,y,z]−h(x+y+z)

∣
∣≤ψ(x,y,z) ∀x,y,z∈G with x≠y, y≠z, z≠x, (3.17)

then there exist constants a,b,c,d such that

∣
∣f(x)−ax3−bx2−cx−d

∣
∣≤

∣
∣x2−α2

∣
∣
∣
∣x2−β2

∣
∣

∣
∣β2−α2

∣
∣

(
ψ(x,α,−α)+ψ(x,β,−β)), (3.18)

|h(x)−ax−b| ≤ψ(x,α,−α)+
∣
∣x2−β2

∣
∣

∣
∣β2−α2

∣
∣
(
ψ(x,α,−α)+ψ(x,β,−β)), (3.19)

for all x ∈G, where a,b,c,d are explicitly given in Theorem 3.1.
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Proof. If we multiply both sides of (3.17) by |x−y||y−z||z−x|, then f satisfies

inequality (3.1) with

ϕ(x,y,z)= |x−y||y−z||z−x|ψ(x,y,z) ∀x,y,z ∈G. (3.20)

(We note that (3.1) is also true for x,y,z ∈G with x =y , y = z, or z = x for our case

with (3.20).)

According to Theorem 3.1, there exist constants a,b,c,d such that inequalities

(3.18) and (3.19) are valid for all x ∈ G and for all x ∈ G \ {−α,α}, respectively.

The only reason for excepting −α and α from the domain of validity of inequality

(3.3) is that the denominator of the first term on the right-hand side contains a fac-

tor |x2−α2|. However, inequality (3.19) contains no denominator which vanishes at

x = α or x = −α. Therefore, we can include −α and α in the domain of validity of

inequality (3.19), which completes the proof.
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