ON IMAGINABLE *T*-FUZZY SUBALGEBRAS AND IMAGINABLE *T*-FUZZY CLOSED IDEALS IN BCH-ALGEBRAS

YOUNG BAE JUN and SUNG MIN HONG

(Received 9 December 2000)

ABSTRACT. We inquire further into the properties on fuzzy closed ideals. We give a characterization of a fuzzy closed ideal using its level set, and establish some conditions for a fuzzy set to be a fuzzy closed ideal. We describe the fuzzy closed ideal generated by a fuzzy set, and give a characterization of a finite-valued fuzzy closed ideal. Using a *t*-norm *T*, we introduce the notion of (imaginable) *T*-fuzzy subalgebras and (imaginable) *T*-fuzzy closed ideals, and obtain some related results. We give relations between an imaginable *T*-fuzzy subalgebra and an imaginable *T*-fuzzy closed ideal. We discuss the direct product and *T*-product of *T*-fuzzy subalgebras. We show that the family of *T*-fuzzy closed ideals is a completely distributive lattice.

2000 Mathematics Subject Classification. 06F35, 03G25, 94D05.

1. Introduction. In 1983, Hu et al. introduced the notion of a BCH-algebra which is a generalization of a BCK/BCI-algebra (see [6, 7]). In [4], Chaudhry et al. stated ideals and filters in BCH-algebras, and studied their properties. For further properties on BCH-algebras, we refer to [2, 3, 5]. In [8], the first author considered the fuzzification of ideals and filters in BCH-algebras, and then described the relation among fuzzy subalgebras, fuzzy closed ideals and fuzzy filters in BCH-algebras. In this paper, we inquire further into the properties on fuzzy closed ideals. We give a characterization of a fuzzy closed ideal using its level set, and establish some conditions for a fuzzy set, and give a characterization of a finite-valued fuzzy closed ideal. Using a *t*-norm *T*, we introduce the notion of (imaginable) *T*-fuzzy subalgebras and (imaginable) *T*-fuzzy closed ideals, and obtain some related results. We give relations between an imaginable *T*-fuzzy subalgebra and an imaginable *T*-fuzzy closed ideal. We discuss the direct product and *T*-product of *T*-fuzzy subalgebras. We show that the family of *T*-fuzzy closed ideals is a completely distributive lattice.

2. Preliminaries. By a *BCH-algebra* we mean an algebra (X, *, 0) of type (2,0) satisfying the following axioms:

(H1) x * x = 0,

(H2) x * y = 0 and y * x = 0 imply x = y,

(H3) (x * y) * z = (x * z) * y,

for all $x, y, z \in X$.

In a BCH-algebra *X*, the following statements hold:

(P1) x * 0 = x.

(P2) x * 0 = 0 implies x = 0.

(P3) 0 * (x * y) = (0 * x) * (0 * y).

A nonempty subset *A* of a BCH-algebra *X* is called a *subalgebra* of *X* if $x * y \in A$ whenever $x, y \in A$. A nonempty subset *A* of a BCH-algebra *X* is called a *closed ideal* of *X* if

(i) $0 * x \in A$ for all $x \in A$,

(ii) $x * y \in A$ and $y \in A$ imply that $x \in A$.

In what follows, let *X* denote a BCH-algebra unless otherwise specified. A *fuzzy set* in *X* is a function $\mu : X \to [0,1]$. Let μ be a fuzzy set in *X*. For $\alpha \in [0,1]$, the set $U(\mu; \alpha) = \{x \in X \mid \mu(x) \ge \alpha\}$ is called a *level set* of μ .

A fuzzy set μ in *X* is called a *fuzzy subalgebra* of *X* if

$$\mu(x * y) \ge \min\{\mu(x), \mu(y)\}, \quad \forall x, y \in X.$$
(2.1)

DEFINITION 2.1 (see [1]). By a *t*-norm *T* on [0,1], we mean a function $T : [0,1] \times [0,1] \rightarrow [0,1]$ satisfying the following conditions:

(T1) T(x,1) = x,

- (T2) $T(x, y) \leq T(x, z)$ if $y \leq z$,
- (T3) T(x, y) = T(y, x),
- (T4) T(x,T(y,z)) = T(T(x,y),z), for all $x, y, z \in [0,1]$.

In what follows, let *T* denote a *t*-norm on [0,1] unless otherwise specified. Denote by Δ_T the set of elements $\alpha \in [0,1]$ such that $T(\alpha, \alpha) = \alpha$, that is,

$$\Delta_T := \{ \alpha \in [0,1] \mid T(\alpha, \alpha) = \alpha \}.$$
(2.2)

Note that every *t*-norm *T* has a useful property:

(P4) $T(\alpha, \beta) \le \min(\alpha, \beta)$ for all $\alpha, \beta \in [0, 1]$.

3. Fuzzy closed ideals

DEFINITION 3.1 (see [8]). A fuzzy set μ in *X* is called a *fuzzy closed ideal* of *X* if (F1) $\mu(0 * x) \ge \mu(x)$ for all $x \in X$,

(F2) $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}$ for all $x, y \in X$.

THEOREM 3.2. Let D be a subset of X and let μ_D be a fuzzy set in X defined by

$$\mu_D(x) = \begin{cases} \alpha_1 & \text{if } x \in D, \\ \alpha_2 & \text{if } x \notin D, \end{cases}$$
(3.1)

for all $x \in X$ and $\alpha_1 > \alpha_2$. Then μ_D is a fuzzy closed ideal of X if and only if D is a closed ideal of X.

PROOF. Assume that μ_D is a fuzzy closed ideal of *X*. Let $x \in D$. Then, by (F1), we have $\mu(0 * x) \ge \mu(x) = \alpha_1$ and so $\mu(0 * x) = \alpha_1$. It follows that $0 * x \in D$. Let $x, y \in X$ be such that $x * y \in D$ and $y \in D$. Then $\mu_D(x * y) = \alpha_1 = \mu_D(y)$, and hence

$$\mu_D(x) \ge \min\{\mu_D(x * y), \mu_D(y)\} = \alpha_1.$$
(3.2)

Thus $\mu_D(x) = \alpha_1$, that is, $x \in D$. Therefore *D* is a closed ideal of *X*.

Conversely, suppose that *D* is a closed ideal of *X*. Let $x \in X$. If $x \in D$, then $0 * x \in D$ and thus $\mu_D(0 * x) = \alpha_1 = \mu_D(x)$. If $x \notin D$, then $\mu_D(x) = \alpha_2 \le \mu_D(0 * x)$. Let $x, y \in X$. If $x * y \in D$ and $y \in D$, then $x \in D$. Hence

$$\mu_D(x) = \alpha_1 = \min\{\mu_D(x * y), \mu_D(y)\}.$$
(3.3)

If $x * y \notin D$ and $y \notin D$, then clearly $\mu_D(x) \ge \min\{\mu_D(x * y), \mu_D(y)\}$. If exactly one of x * y and y belong to D, then exactly one of $\mu_D(x * y)$ and $\mu_D(y)$ is equal to α_2 . Therefore, $\mu_D(x) \ge \alpha_2 = \min\{\mu_D(x * y), \mu_D(y)\}$. Consequently, μ_D is a fuzzy closed ideal of X.

Using the notion of level sets, we give a characterization of a fuzzy closed ideal.

THEOREM 3.3. A fuzzy set μ in X is a fuzzy closed ideal of X if and only if the nonempty level set $U(\mu; \alpha)$ of μ is a closed ideal of X for all $\alpha \in [0, 1]$.

We then call $U(\mu; \alpha)$ a *level closed ideal* of μ .

PROOF. Assume that μ is a fuzzy closed ideal of X and $U(\mu; \alpha) \neq \emptyset$ for all $\alpha \in [0, 1]$. Let $x \in U(\mu; \alpha)$. Then $\mu(0 * x) \ge \mu(x) \ge \alpha$, and so $0 * x \in U(\mu; \alpha)$. Let $x, y \in X$ be such that $x * y \in U(\mu; \alpha)$ and $y \in U(\mu; \alpha)$. Then

$$\mu(x) \ge \min\left\{\mu(x*y), \mu(y)\right\} \ge \min\{\alpha, \alpha\} = \alpha, \tag{3.4}$$

and thus $x \in U(\mu; \alpha)$. Therefore $U(\mu; \alpha)$ is a closed ideal of *X*. Conversely, suppose that $U(\mu; \alpha) \neq \emptyset$ is a closed ideal of *X*. If $\mu(0 * a) < \mu(a)$ for some $a \in X$, then $\mu(0 * a) < \alpha_0 < \mu(a)$ by taking $\alpha_0 := 1/2(\mu(0 * a) + \mu(a))$. It follows that $a \in U(\mu; \alpha_0)$ and $0 * a \notin U(\mu; \alpha_0)$, which is a contradiction. Hence $\mu(0 * x) \ge \mu(x)$ for all $x \in X$. Assume that there exist $x_0, y_0 \in X$ such that

$$\mu(x_0) < \min\{\mu(x_0 * y_0), \mu(y_0)\}.$$
(3.5)

Taking $\beta_0 := 1/2(\mu(x_0) + \min\{\mu(x_0 * y_0), \mu(y_0)\})$, we get $\mu(x_0) < \beta_0 < \mu(x_0 * y_0)$ and $\mu(x_0) < \beta_0 < \mu(y_0)$. Thus $x_0 * y_0 \in U(\mu; \beta_0)$ and $y_0 \in U(\mu; \beta_0)$, but $x_0 \notin U(\mu; \beta_0)$. This is impossible. Hence μ is a fuzzy closed ideal of *X*.

THEOREM 3.4. Let μ be a fuzzy set in X and $\text{Im}(\mu) = \{\alpha_0, \alpha_1, ..., \alpha_n\}$, where $\alpha_i < \alpha_j$ whenever i > j. Let $\{D_k \mid k = 0, 1, 2, ..., n\}$ be a family of closed ideals of X such that

(i) $D_0 \subseteq D_1 \subseteq \cdots \subseteq D_n = X$,

(ii) $\mu(D_k^*) = \alpha_k$, where $D_k^* = D_k \setminus D_{k-1}$ and $D_{-1} = \emptyset$ for k = 0, 1, ..., n. Then μ is a fuzzy closed ideal of X.

PROOF. For any $x \in X$ there exists $k \in \{0, 1, ..., n\}$ such that $x \in D_k^*$. Since D_k is a closed ideal of X, it follows that $0 * x \in D_k$. Thus $\mu(0 * x) \ge \alpha_k = \mu(x)$. To prove that μ satisfies condition (F2), we discuss the following cases: if $x * y \in D_k^*$ and $y \in D_k^*$, then $x \in D_k$ because D_k is a closed ideal of X. Hence

$$\mu(x) \ge \alpha_k = \min\{\mu(x * y), \mu(y)\}.$$
(3.6)

If $x * y \notin D_k^*$ and $y \notin D_k^*$, then the following four cases arise:

(i) $x * y \in X \setminus D_k$ and $y \in X \setminus D_k$,

(ii) $x * y \in D_{k-1}$ and $y \in D_{k-1}$,

- (iii) $x * y \in X \setminus D_k$ and $y \in D_{k-1}$,
- (iv) $x * y \in D_{k-1}$ and $y \in X \setminus D_k$.

But, in either case, we know that $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}$. If $x * y \in D_k^*$ and $y \notin D_k^*$, then either $y \in D_{k-1}$ or $y \in X \setminus D_k$. It follows that either $x \in D_k$ or $x \in X \setminus D_k$. Thus $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}$. Similarly for the case $x * y \notin D_k^*$ and $y \in D_k^*$, we have the same result. This completes the proof.

THEOREM 3.5. Let Λ be a subset of [0,1] and let $\{D_{\lambda} \mid \lambda \in \Lambda\}$ be a collection of closed ideals of X such that

(i) $X = \bigcup_{\lambda \in \Lambda} D_{\lambda}$,

(ii) $\alpha > \beta$ if and only if $D_{\alpha} \subseteq D_{\beta}$ for all $\alpha, \beta \in \Lambda$.

Define a fuzzy set μ in X by $\mu(x) = \sup\{\lambda \in \Lambda \mid x \in D_{\lambda}\}\$ for all $x \in X$. Then μ is a fuzzy closed ideal of X.

PROOF. Let $x \in X$. Then there exists $\alpha_i \in \Lambda$ such that $x \in D_{\alpha_i}$. It follows that $0 * x \in D_{\alpha_i}$ for some $\alpha_j \ge \alpha_i$. Hence

$$\mu(x) = \sup \{ \alpha_k \in \Lambda \mid \alpha_k \le \alpha_i \} \le \sup \{ \alpha_k \in \Lambda \mid \alpha_k \le \alpha_j \} = \mu(0 \ast x).$$
(3.7)

Let $x, y \in X$ be such that $\mu(x * y) = m$ and $\mu(y) = n$, where $m, n \in [0, 1]$. Without loss of generality we may assume that $m \le n$. To prove μ satisfies condition (F2), we consider the following three cases:

$$(1^{\circ})\lambda \le m, \qquad (2^{\circ})m < \lambda \le n, \qquad (3^{\circ})\lambda > n.$$

$$(3.8)$$

Case (1°) implies that $x * y \in D_{\lambda}$ and $y \in D_{\lambda}$. It follows that $x \in D_{\lambda}$ so that

$$\mu(x) = \sup \left\{ \lambda \in \Lambda \mid x \in D_{\lambda} \right\} \ge m = \min \left\{ \mu(x * y), \mu(y) \right\}.$$
(3.9)

For the case (2°), we have $x * y \notin D_{\lambda}$ and $y \in D_{\lambda}$. Then either $x \in D_{\lambda}$ or $x \notin D_{\lambda}$. If $x \in D_{\lambda}$, then $\mu(x) = n \ge \min\{\mu(x * y), \mu(y)\}$. If $x \notin D_{\lambda}$, then $x \in D_{\delta} - D_{\lambda}$ for some $\delta < \lambda$, and so $\mu(x) > m = \min\{\mu(x * y), \mu(y)\}$. Finally, case (3°) implies $x * y \notin D_{\lambda}$ and $y \notin D_{\lambda}$. Thus we have that either $x \in D_{\lambda}$ or $x \notin D_{\lambda}$. If $x \in D_{\lambda}$ then obviously $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}$. If $x \notin D_{\lambda}$ then $x \in D_{\epsilon} - D_{\lambda}$ for some $\epsilon < \lambda$, and thus $\mu(x) \ge m = \min\{\mu(x * y), \mu(y)\}$. This completes the proof.

Let *D* be a subset of *X*. The least closed ideal of *X* containing *D* is called the closed ideal *generated* by *D*, denoted by $\langle D \rangle$. Note that if *C* and *D* are subsets of *X* and $C \subseteq D$, then $\langle C \rangle \subseteq \langle D \rangle$. Let μ be a fuzzy set in *X*. The least fuzzy closed ideal of *X* containing μ is called a fuzzy closed ideal of *X generated* by μ , denoted by $\langle \mu \rangle$.

LEMMA 3.6. For a fuzzy set μ in X, then

$$\mu(x) = \sup \left\{ \alpha \in [0,1] \mid x \in U(\mu;\alpha) \right\}, \quad \forall x \in X.$$
(3.10)

PROOF. Let $\delta := \sup \{ \alpha \in [0,1] \mid x \in U(\mu; \alpha) \}$ and let $\varepsilon > 0$ be given. Then $\delta - \varepsilon < \alpha$ for some $\alpha \in [0,1]$ such that $x \in U(\mu; \alpha)$, and so $\delta - \varepsilon < \mu(x)$. Since ε is arbitrary, it

follows that $\mu(x) \ge \delta$. Now let $\mu(x) = \beta$. Then $x \in U(\mu; \beta)$ and hence $\beta \in \{\alpha \in [0, 1] \mid x \in U(\mu; \alpha)\}$. Therefore

$$\mu(x) = \beta \le \sup\left\{\alpha \in [0,1] \mid x \in U(\mu;\alpha)\right\} = \delta,\tag{3.11}$$

and consequently $\mu(x) = \delta$, as desired.

THEOREM 3.7. Let μ be a fuzzy set in X. Then the fuzzy set μ^* in X defined by

$$\mu^*(x) = \sup\left\{\alpha \in [0,1] \mid x \in \langle U(\mu;\alpha) \rangle\right\}$$
(3.12)

for all $x \in X$ is the fuzzy closed ideal $\langle \mu \rangle$ generated by μ .

PROOF. We first show that μ^* is a fuzzy closed ideal of *X*. For any $\gamma \in \text{Im}(\mu^*)$, let $\gamma_n = \gamma - 1/n$ for any $n \in \mathbb{N}$, where N is the set of all positive integers, and let $x \in U(\mu^*; \gamma)$. Then $\mu^*(x) \ge \gamma$, and so

$$\sup\left\{\alpha \in [0,1] \mid x \in \langle U(\mu;\alpha) \rangle\right\} \ge \gamma > \gamma_n, \tag{3.13}$$

for all $n \in \mathbb{N}$. Hence there exists $\beta \in [0,1]$ such that $\beta > \gamma_n$ and $x \in \langle U(\mu;\beta) \rangle$. It follows that $U(\mu;\beta) \subseteq U(\mu;\gamma_n)$ so that $x \in \langle U(\mu;\beta) \rangle \subseteq \langle U(\mu;\gamma_n) \rangle$ for all $n \in \mathbb{N}$. Consequently, $x \in \cap_{n \in \mathbb{N}} \langle U(\mu;\gamma_n) \rangle$. On the other hand, if $x \in \cap_{n \in \mathbb{N}} \langle U(\mu;\gamma_n) \rangle$, then $\gamma_n \in \{\alpha \in [0,1] \mid x \in \langle U(\mu;\alpha) \rangle\}$ for any $n \in \mathbb{N}$. Therefore

$$\gamma - \frac{1}{n} = \gamma_n \le \sup\left\{\alpha \in [0,1] \mid x \in \langle U(\mu;\alpha) \rangle\right\} = \mu^*(x), \tag{3.14}$$

for all $n \in \mathbb{N}$. Since *n* is an arbitrary positive integer, it follows that $y \leq \mu^*(x)$ so that $x \in U(\mu^*; y)$. Hence $U(\mu^*; y) = \bigcap_{n \in \mathbb{N}} \langle U(\mu; y_n) \rangle$, which is a closed ideal of *X*. Using Theorem 3.3, we know that μ^* is a fuzzy closed ideal of *X*. We now prove that μ^* contains μ . For any $x \in X$, let $\beta \in \{\alpha \in [0,1] \mid x \in \langle U(\mu; \alpha) \rangle\}$. Then $x \in U(\mu; \beta)$ and so $x \in \langle U(\mu; \beta) \rangle$. Thus we get $\beta \in \{\alpha \in [0,1] \mid x \in \langle U(\mu; \alpha) \rangle\}$, and so

$$\{\alpha \in [0,1] \mid x \in U(\mu;\alpha)\} \subseteq \{\alpha \in [0,1] \mid x \in \langle U(\mu;\alpha) \rangle\}.$$
(3.15)

It follows from Lemma 3.6 that

$$\mu(x) = \sup \left\{ \alpha \in [0,1] \mid x \in U(\mu;\alpha) \right\}$$

$$\leq \sup \left\{ \alpha \in [0,1] \mid x \in \langle U(\mu;\alpha) \rangle \right\}$$

$$= \mu^*(x).$$
 (3.16)

Hence $\mu \subseteq \mu^*$. Finally let ν be a fuzzy closed ideal of X containing μ and let $x \in X$. If $\mu^*(x) = 0$, then clearly $\mu^*(x) \leq \nu(x)$. Assume that $\mu^*(x) = \gamma \neq 0$. Then $x \in U(\mu^*; \gamma) = \bigcap_{n \in \mathbb{N}} \langle U(\mu; \gamma_n) \rangle$, that is, $x \in U(\mu; \gamma_n)$ for all $n \in \mathbb{N}$. It follows that $\nu(x) \geq \mu(x) \geq \gamma_n = \gamma - 1/n$ for all $n \in \mathbb{N}$ so that $\nu(x) \geq \gamma = \mu^*(x)$ since n is arbitrary. This shows that $\mu^* \subseteq \mu$, completing the proof.

DEFINITION 3.8. A fuzzy closed ideal μ of *X* is said to be *n*-valued if Im(μ) is a finite set of *n* elements. When no specific *n* is intended, we call μ a *finite-valued fuzzy* closed ideal.

THEOREM 3.9. Let μ be a fuzzy closed ideal of X. Then μ is finite valued if and only if there exists a finite-valued fuzzy set ν in X which generates μ . In this case, the range sets of μ and ν are identical.

PROOF. If $\mu : X \to [0,1]$ is a finite-valued fuzzy closed ideal of *X*, then we may choose $\nu = \mu$. Conversely, assume that $\nu : X \to [0,1]$ is a finite-valued fuzzy set. Let $\alpha_1, \alpha_2, ..., \alpha_n$ be distinct elements of $\nu(X)$ such that $\alpha_1 > \alpha_2 > \cdots > \alpha_n$, and let $C_i = \nu^{-1}(\alpha_i)$ for i = 1, 2, ..., n. Clearly, $\bigcup_{i=1}^{j} C_i \subseteq \bigcup_{i=1}^{k} C_i$ whenever $j < k \le n$. Hence if we let $D_j = \langle \bigcup_{i=1}^{j} C_i \rangle$, then we have the following chain:

$$D_1 \subseteq D_2 \subseteq \cdots \subseteq D_n = X. \tag{3.17}$$

Define a fuzzy set μ : $X \rightarrow [0,1]$ as follows:

$$\mu(x) = \begin{cases} \alpha_1 & \text{if } x \in D_1, \\ \alpha_j & \text{if } x \in D_j \setminus D_{j-1}. \end{cases}$$
(3.18)

We claim that μ is a fuzzy closed ideal of X generated by ν . Clearly $\mu(0 * x) \ge \mu(x)$ for all $x \in X$. Let $x, y \in X$. Then there exist i and j in $\{1, 2, ..., n\}$ such that $x * y \in D_i$ and $y \in D_j$. Without loss of generality, we may assume that i and j are the smallest integers such that $i \ge j$, $x * y \in D_i$, and $y \in D_j$. Since D_i is a closed ideal of X, it follows from $D_j \subseteq D_i$ that $x \in D_i$. Hence $\mu(x) \ge \alpha_i = \min\{\mu(x * y), \mu(y)\}$, and so μ is a fuzzy closed ideal of X. If $\nu(x) = \alpha_j$ for every $x \in X$, then $x \in C_j$ and thus $x \in D_j$. But we have $\mu(x) \ge \alpha_j = \nu(x)$. Therefore μ contains ν . Let $\delta : X \to [0,1]$ be a fuzzy closed ideal of X containing ν . Then $U(\nu; \alpha_j) \subseteq U(\delta; \alpha_j)$ for every j. Hence $U(\delta; \alpha_j)$, being a closed ideal, contains the closed ideal generated by $U(\nu; \alpha_j) = \bigcup_{i=1}^j C_i$. Consequently, $D_j \subseteq U(\delta; \alpha_j)$. It follows that μ is contained in δ and that μ is generated by ν . Finally, note that $|\operatorname{Im}(\mu)| = n = |\operatorname{Im}(\nu)|$. This completes the proof.

THEOREM 3.10. Let $D_1 \supseteq D_2 \supseteq \cdots$ be a descending chain of closed ideals of X which terminates at finite step. For a fuzzy closed ideal μ of X, if a sequence of elements of Im(μ) is strictly increasing, then μ is finite valued.

PROOF. Suppose that μ is infinite valued. Let $\{\alpha_n\}$ be a strictly increasing sequence of elements of Im(μ). Then $0 \le \alpha_1 < \alpha_2 < \cdots \le 1$. Note that $U(\mu; \alpha_t)$ is a closed ideal of X for $t = 1, 2, 3, \ldots$. Let $x \in U(\mu; \alpha_t)$ for $t = 2, 3, \ldots$. Then $\mu(x) \ge \alpha_t > \alpha_{t-1}$, which implies that $x \in U(\mu; \alpha_{t-1})$. Hence $U(\mu; \alpha_t) \subseteq U(\mu; \alpha_{t-1})$ for $t = 2, 3, \ldots$. Since $\alpha_{t-1} \in \text{Im}(\mu)$, there exists $x_{t-1} \in X$ such that $\mu(x_{t-1}) = \alpha_{t-1}$. It follows that $x_{t-1} \in U(\mu; \alpha_{t-1})$, but $x_{t-1} \notin U(\mu; \alpha_t)$. Thus $U(\mu; \alpha_t) \subsetneq U(\mu; \alpha_{t-1})$, and so we obtain a strictly descending chain $U(\mu; \alpha_1) \supseteq U(\mu; \alpha_2) \supseteq \cdots$ of closed ideals of X which is not terminating. This is impossible and the proof is complete.

Now we consider the converse of Theorem 3.10.

THEOREM 3.11. Let μ be a finite-valued fuzzy closed ideal of X. Then every descending chain of closed ideals of X terminates at finite step.

PROOF. Suppose there exists a strictly descending chain $D_0 \supseteq D_1 \supseteq D_2 \supseteq \cdots$ of closed ideals of *X* which does not terminate at finite step. Define a fuzzy set μ in *X* by

$$\mu(x) = \begin{cases} \frac{n}{n+1} & \text{if } x \in D_n \setminus D_{n+1}, \ n = 0, 1, 2, \dots, \\ 1 & \text{if } x \in \bigcap_{n=0}^{\infty} D_n, \end{cases}$$
(3.19)

where D_0 stands for *X*. Clearly, $\mu(0 * x) \ge \mu(x)$ for all $x \in X$. Let $x, y \in X$. Assume that $x * y \in D_n \setminus D_{n+1}$ and $y \in D_k \setminus D_{k+1}$ for n = 0, 1, 2, ...; k = 0, 1, 2, ... Without loss of generality, we may assume that $n \le k$. Then clearly $y \in D_n$, and so $x \in D_n$ because D_n is a closed ideal of *X*. Hence

$$\mu(x) \ge \frac{n}{n+1} = \min\{\mu(x * y), \mu(y)\}.$$
(3.20)

If $x * y \in \bigcap_{n=0}^{\infty} D_n$ and $y \in \bigcap_{n=0}^{\infty} D_n$, then $x \in \bigcap_{n=0}^{\infty} D_n$. Thus $\mu(x) = 1 = \min\{\mu(x * y), \mu(y)\}$. If $x * y \notin \bigcap_{n=0}^{\infty} D_n$ and $y \in \bigcap_{n=0}^{\infty} D_n$, then there exists a positive integer k such that $x * y \in D_k \setminus D_{k+1}$. It follows that $x \in D_k$ so that

$$\mu(x) \ge \frac{k}{k+1} = \min\{\mu(x * y), \mu(y)\}.$$
(3.21)

Finally suppose that $x * y \in \bigcap_{n=0}^{\infty} D_n$ and $y \notin \bigcap_{n=0}^{\infty} D_n$. Then $y \in D_r \setminus D_{r+1}$ for some positive integer r. It follows that $x \in D_r$, and hence

$$\mu(x) \ge \frac{r}{r+1} = \min\{\mu(x \ast y), \mu(y)\}.$$
(3.22)

Consequently, we conclude that μ is a fuzzy closed ideal of *X* and μ has an infinite number of different values. This is a contradiction, and the proof is complete.

THEOREM 3.12. The following are equivalent:

- (i) *Every ascending chain of closed ideals of X terminates at finite step.*
- (ii) The set of values of any fuzzy closed ideal of X is a well-ordered subset of [0,1].

PROOF. (i) \Rightarrow (ii). Let μ be a fuzzy closed ideal of *X*. Suppose that the set of values of μ is not a well-ordered subset of [0, 1]. Then there exists a strictly decreasing sequence $\{\alpha_n\}$ such that $\mu(x_n) = \alpha_n$. It follows that

$$U(\mu; \alpha_1) \subsetneq U(\mu; \alpha_2) \subsetneq U(\mu; \alpha_3) \subsetneq \cdots$$
(3.23)

is a strictly ascending chain of closed ideals of *X*. This is impossible.

 $(ii) \Rightarrow (i)$. Assume that there exists a strictly ascending chain

$$D_1 \subsetneq D_2 \subsetneq D_3 \subsetneq \cdots \tag{3.24}$$

of closed ideals of *X*. Note that $D := \bigcup_{n \in \mathbb{N}} D_n$ is a closed ideal of *X*. Define a fuzzy set μ in *X* by

$$\mu(x) = \begin{cases} 0 & \text{if } x \notin D_n, \\ \frac{1}{k} & \text{where } k = \min\{n \in \mathbf{N} \mid x \in D_n\}. \end{cases}$$
(3.25)

We claim that μ is a fuzzy closed ideal of *X*. Let $x \in X$. If $x \notin D_n$, then obviously $\mu(0*x) \ge 0 = \mu(x)$. If $x \in D_n \setminus D_{n-1}$ for n = 2, 3, ..., then $0*x \in D_n$. Hence $\mu(0*x) \ge 1/n = \mu(x)$. Let $x, y \in X$. If $x * y \in D_n \setminus D_{n-1}$ and $y \in D_n \setminus D_{n-1}$ for n = 2, 3, ..., then $x \in D_n$. It follows that

$$\mu(x) \ge \frac{1}{n} = \min\{\mu(x * y), \mu(y)\}.$$
(3.26)

Suppose that $x * y \in D_n$ and $y \in D_n \setminus D_m$ for all m < n. Then $x \in D_n$, and so $\mu(x) \ge 1/n \ge 1/m + 1 \ge \mu(y)$. Hence $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}$. Similarly for the case $x * y \in D_n \setminus D_m$ and $y \in D_n$, we get $\mu(x) \ge \min\{\mu(x * y), \mu(y)\}$. Therefore μ is a fuzzy closed ideal of *X*. Since the chain (3.24) is not terminating, μ has a strictly descending sequence of values. This contradicts that the value set of any fuzzy closed ideal is well ordered. This completes the proof.

4. *T*-fuzzy subalgebras and *T*-fuzzy closed ideals

DEFINITION 4.1. A fuzzy set μ in *X* is said to satisfy *imaginable property* if $\text{Im}(\mu) \subseteq \Delta_T$.

DEFINITION 4.2. A fuzzy set μ in X is called a *fuzzy subalgebra* of X with respect to a *t*-norm T (briefly, T-*fuzzy subalgebra* of X) if $\mu(x * y) \ge T(\mu(x), \mu(y))$ for all $x, y \in X$. A T-fuzzy subalgebra of X is said to be *imaginable* if it satisfies the imaginable property.

EXAMPLE 4.3. Let T_m be a *t*-norm defined by $T_m(\alpha, \beta) = \max(\alpha + \beta - 1, 0)$ for all $\alpha, \beta \in [0, 1]$ and let $X = \{0, a, b, c, d\}$ be a BCH-algebra with the following Cayley table:

*	0	а	b	С	d
0	0	0	0	0	d
а	а	0	0	а	d
b	b	b	0	0	d
С	С	С	С	0	d
d	d	d	d	d	0

(1) Define a fuzzy set μ : $X \rightarrow [0, 1]$ by

$$\mu(x) = \begin{cases} 0.9 & \text{if } x \in \{0, d\}, \\ 0.09 & \text{otherwise.} \end{cases}$$
(4.1)

Then μ is a T_m -fuzzy subalgebra of X, which is not imaginable.

(2) Let v be a fuzzy set in *X* defined by

$$\nu(x) = \begin{cases} 1 & \text{if } x \in \{0, d\}, \\ 0 & \text{otherwise.} \end{cases}$$
(4.2)

Then v is an imaginable T_m -fuzzy subalgebra of X.

PROPOSITION 4.4. Let A be a subalgebra of X and let μ be a fuzzy set in X defined by

$$\mu(x) := \begin{cases} \alpha_1 & \text{if } x \in A, \\ \alpha_2 & \text{otherwise,} \end{cases}$$
(4.3)

for all $x \in X$, where $\alpha_1, \alpha_2 \in [0,1]$ with $\alpha_1 > \alpha_2$. Then μ is a T_m -fuzzy subalgebra of X. In particular, if $\alpha_1 = 1$ and $\alpha_2 = 0$ then μ is an imaginable T_m -fuzzy subalgebra of X, where T_m is the t-norm in Example 4.3.

PROOF. Let $x, y \in X$. If $x \in A$ and $y \in A$ then

$$T_{m}(\mu(x),\mu(y)) = T_{m}(\alpha_{1},\alpha_{1}) = \max(2\alpha_{1}-1,0)$$

$$= \begin{cases} 2\alpha_{1}-1 & \text{if } \alpha_{1} \ge \frac{1}{2} \\ 0 & \text{if } \alpha_{1} < \frac{1}{2} \end{cases}$$

$$\leq \alpha_{1} = \mu(x * y).$$
(4.4)

If $x \in A$ and $y \notin A$ (or, $x \notin A$ and $y \in A$) then

$$T_{m}(\mu(x),\mu(y)) = T_{m}(\alpha_{1},\alpha_{2}) = \max(\alpha_{1} + \alpha_{2} - 1,0)$$
$$= \begin{cases} \alpha_{1} + \alpha_{2} - 1 & \text{if } \alpha_{1} + \alpha_{2} \ge 1\\ 0 & \text{otherwise} \end{cases}$$
$$\leq \alpha_{2} \le \mu(x \ast \gamma).$$
(4.5)

If $x, y \notin A$ then

$$T_m(\mu(x),\mu(y)) = T_m(2\alpha_2 - 1,0)$$

$$= \begin{cases} 2\alpha_2 - 1 & \text{if } \alpha_2 \ge \frac{1}{2} \\ 0 & \text{if } \alpha_2 < \frac{1}{2} \end{cases}$$

$$\leq \alpha_2 \le \mu(x \ast y).$$
(4.6)

Hence μ is a T_m -fuzzy subalgebra of X. Assume that $\alpha_1 = 1$ and $\alpha_2 = 0$. Then

$$T_m(\alpha_1, \alpha_1) = \max(\alpha_1 + \alpha_1 - 1, 0) = 1 = \alpha_1, T_m(\alpha_2, \alpha_2) = \max(\alpha_2 + \alpha_2 - 1, 0) = 0 = \alpha_2.$$
(4.7)

Thus $\alpha_1, \alpha_2 \in \Delta_{T_m}$, that is, $\text{Im}(\mu) \subseteq \Delta_{T_m}$ and so μ is imaginable. This completes the proof.

PROPOSITION 4.5. If μ is an imaginable *T*-fuzzy subalgebra of *X*, then $\mu(0 * x) \ge \mu(x)$ for all $x \in X$.

PROOF. For any $x \in X$ we have

$$\mu(0 * x) \ge T(\mu(0), \mu(x))$$

$$= T(\mu(x * x), \mu(x)) \quad [by (H1)]$$

$$\ge T(T(\mu(x), \mu(x)), \mu(x)) \quad [by (T2) \text{ and } (T3)]$$

$$= \mu(x), \quad [\text{since } \mu \text{ satisfies the imaginable property]}.$$
(4.8)

This completes the proof.

THEOREM 4.6. Let μ be a *T*-fuzzy subalgebra of *X* and let $\alpha \in [0,1]$ be such that $T(\alpha, \alpha) = \alpha$. Then $U(\mu; \alpha)$ is either empty or a subalgebra of *X*, and moreover $\mu(0) \ge \mu(x)$ for all $x \in X$.

PROOF. Let $x, y \in U(\mu; \alpha)$. Then

$$\mu(x * y) \ge T(\mu(x), \mu(y)) \ge T(\alpha, \alpha) = \alpha, \tag{4.9}$$

which implies that $x * y \in U(\mu; \alpha)$. Hence $U(\mu; \alpha)$ is a subalgebra of *X*. Since x * x = 0 for all $x \in X$, we have $\mu(0) = \mu(x * x) \ge T(\mu(x), \mu(x)) = \mu(x)$ for all $x \in X$.

Since T(1,1) = 1, we have the following corollary.

COROLLARY 4.7. If μ is a *T*-fuzzy subalgebra of *X*, then $U(\mu; 1)$ is either empty or a subalgebra of *X*.

THEOREM 4.8. Let μ be a *T*-fuzzy subalgebra of *X*. If there is a sequence $\{x_n\}$ in *X* such that $\lim_{n\to\infty} T(\mu(x_n), \mu(x_n)) = 1$, then $\mu(0) = 1$.

PROOF. Let $x \in X$. Then $\mu(0) = \mu(x * x) \ge T(\mu(x), \mu(x))$. Therefore $\mu(0) \ge T(\mu(x_n), \mu(x_n))$ for each $n \in \mathbb{N}$. Since $1 \ge \mu(0) \ge \lim_{n \to \infty} T(\mu(x_n), \mu(x_n)) = 1$, it follows that $\mu(0) = 1$, this completes the proof.

Let $f : X \to Y$ be a mapping of BCH-algebras. For a fuzzy set μ in Y, the *inverse image* of μ under f, denoted by $f^{-1}(\mu)$, is defined by $f^{-1}(\mu)(x) = \mu(f(x))$ for all $x \in X$.

THEOREM 4.9. Let $f: X \to Y$ be a homomorphism of BCH-algebras. If μ is a T-fuzzy subalgebra of Y, then $f^{-1}(\mu)$ is a T-fuzzy subalgebra of X.

PROOF. For any $x, y \in X$, we have

$$f^{-1}(\mu)(x * y) = \mu(f(x * y)) = \mu(f(x) * f(y))$$

$$\geq T(\mu(f(x)), \mu(f(y)))$$

$$= T(f^{-1}(\mu)(x), f^{-1}(\mu)(y)).$$
(4.10)

This completes the proof.

If μ is a fuzzy set in X and f is a mapping defined on X. The fuzzy set $f(\mu)$ in f(X) defined by $f(\mu)(y) = \sup\{\mu(x) \mid x \in f^{-1}(y)\}$ for all $y \in f(X)$ is called the *image* of μ under f. A fuzzy set μ in X is said to have *sup property* if, for every subset $T \subseteq X$, there exists $t_0 \in T$ such that $\mu(t_0) = \sup\{\mu(t) \mid t \in T\}$.

278

THEOREM 4.10. An onto homomorphic image of a fuzzy subalgebra with sup property is a fuzzy subalgebra.

PROOF. Let $f : X \to Y$ be an onto homomorphism of BCH-algebras and let μ be a fuzzy subalgebra of X with sup property. Given $u, v \in Y$, let $x_0 \in f^{-1}(u)$ and $y_0 \in f^{-1}(v)$ be such that

$$\mu(x_0) = \sup \{ \mu(t) \mid t \in f^{-1}(u) \}, \qquad \mu(y_0) = \sup \{ \mu(t) \mid t \in f^{-1}(v) \}, \qquad (4.11)$$

respectively. Then

$$f(\mu)(u * v) = \sup \{\mu(z) \mid z \in f^{-1}(u * v)\}$$

$$\geq \min \{\mu(x_0), \mu(y_0)\}$$

$$= \min \{\sup \{\mu(t) \mid t \in f^{-1}(u)\}, \sup \{\mu(t) \mid t \in f^{-1}(v)\}\}$$

$$= \min \{f(\mu)(u), f(\mu)(v)\}.$$
(4.12)

Hence $f(\mu)$ is a fuzzy subalgebra of *Y*.

Theorem 4.10 can be strengthened in the following way. To do this we need the following definition.

DEFINITION 4.11. A *t*-norm *T* on [0,1] is called a *continuous t-norm* if *T* is a continuous function from $[0,1] \times [0,1]$ to [0,1] with respect to the usual topology.

Note that the function "min" is a continuous *t*-norm.

THEOREM 4.12. Let T be a continuous t-norm and let $f : X \to Y$ be an onto homomorphism of BCH-algebras. If μ is a T-fuzzy subalgebra of X, then $f(\mu)$ is a T-fuzzy subalgebra of Y.

PROOF. Let $A_1 = f^{-1}(y_1)$, $A_2 = f^{-1}(y_2)$, and $A_{12} = f^{-1}(y_1 * y_2)$, where $y_1, y_2 \in Y$. Consider the set

$$A_1 * A_2 := \{ x \in X \mid x = a_1 * a_2 \text{ for some } a_1 \in A_1, a_2 \in A_2 \}.$$

$$(4.13)$$

If $x \in A_1 * A_2$, then $x = x_1 * x_2$ for some $x_1 \in A_1$ and $x_2 \in A_2$ and so

$$f(x) = f(x_1 * x_2) = f(x_1) * f(x_2) = y_1 * y_2,$$
(4.14)

that is, $x \in f^{-1}(y_1 * y_2) = A_{12}$. Thus $A_1 * A_2 \subseteq A_{12}$. It follows that

$$f(\mu)(y_{1} * y_{2}) = \sup \{\mu(x) \mid x \in f^{-1}(y_{1} * y_{2})\} = \sup \{\mu(x) \mid x \in A_{12}\}$$

$$\geq \sup \{\mu(x) \mid x \in A_{1} * A_{2}\}$$

$$\geq \sup \{\mu(x_{1} * x_{2}) \mid x_{1} \in A_{1}, x_{2} \in A_{2}\}$$

$$\geq \sup \{T(\mu(x_{1}), \mu(x_{2})) \mid x_{1} \in A_{1}, x_{2} \in A_{2}\}.$$
(4.15)

Since *T* is continuous, for every $\varepsilon > 0$ there exists a number $\delta > 0$ such that if $\sup\{\mu(x_1) \mid x_1 \in A_1\} - x_1^* \le \delta$ and $\sup\{\mu(x_2) \mid x_2 \in A_2\} - x_2^* \le \delta$ then

$$T(\sup\{\mu(x_1) \mid x_1 \in A_1\}, \sup\{\mu(x_2) \mid x_2 \in A_2\}) - T(x_1^*, x_2^*) \le \varepsilon.$$
(4.16)

Choose $a_1 \in A_1$ and $a_2 \in A_2$ such that $\sup\{\mu(x_1) \mid x_1 \in A_1\} - \mu(a_1) \le \delta$ and $\sup\{\mu(x_2) \mid x_2 \in A_2\} - \mu(a_2) \le \delta$. Then

$$T(\sup\{\mu(x_1) \mid x_1 \in A_1\}, \sup\{\mu(x_2) \mid x_2 \in A_2\}) - T(\mu(a_1), \mu(a_2)) \le \varepsilon.$$
(4.17)

Consequently

$$f(\mu)(y_1 * y_2) \ge \sup \{T(\mu(x_1), \mu(x_2)) \mid x_1 \in A_1, x_2 \in A_2\}$$

$$\ge T(\sup \{\mu(x_1) \mid x_1 \in A_1\}, \sup \{\mu(x_2) \mid x_2 \in A_2\})$$

$$= T(f(\mu)(y_1), f(\mu)(y_2)),$$
(4.18)

which shows that $f(\mu)$ is a *T*-fuzzy subalgebra of *Y*.

LEMMA 4.13 (see [1]). *For all* $\alpha, \beta, \gamma, \delta \in [0, 1]$,

$$T(T(\alpha,\beta),T(\gamma,\delta)) = T(T(\alpha,\gamma),T(\beta,\delta)).$$
(4.19)

THEOREM 4.14. Let $X = X_1 \times X_2$ be the direct product BCH-algebra of BCH-algebras X_1 and X_2 . If μ_1 (resp., μ_2) is a T-fuzzy subalgebra of X_1 (resp., X_2), then $\mu = \mu_1 \times \mu_2$ is a T-fuzzy subalgebra of X defined by

$$\mu(x_1, x_2) = (\mu_1 \times \mu_2)(x_1, x_2) = T(\mu_1(x_1), \mu_2(x_2)), \tag{4.20}$$

for all $(x_1, x_2) \in X_1 \times X_2$.

PROOF. Let $x = (x_1, x_2)$ and $y = (y_1, y_2)$ be any elements of $X = X_1 \times X_2$. Then

$$\mu(x * y) = \mu((x_1, x_2) * (y_1, y_2)) = \mu(x_1 * y_1, x_2 * y_2)$$

$$= T(\mu_1(x_1 * y_1), \mu_2(x_2 * y_2))$$

$$\geq T(T(\mu_1(x_1), \mu_1(y_1)), T(\mu_2(x_2), \mu_2(y_2)))$$

$$= T(T(\mu_1(x_1), \mu_2(x_2)), T(\mu_1(y_1), \mu_2(y_2)))$$

$$= T(\mu(x_1, x_2), \mu(x_2, y_2))$$

$$= T(\mu(x), \mu(y)).$$

(4.21)

Hence μ is a *T*-fuzzy subalgebra of *X*.

We will generalize the idea to the product of *n T*-fuzzy subalgebras. We first need to generalize the domain of *T* to $\prod_{i=1}^{n} [0,1]$ as follows:

DEFINITION 4.15 (see [1]). The function $T_n : \prod_{i=1}^n [0,1] \to [0,1]$ is defined by

$$T_{n}(\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}) = T(\alpha_{i}, T_{n-1}(\alpha_{1}, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_{n})),$$
(4.22)

for all $1 \le i \le n$, where $n \ge 2$, $T_2 = T$, and $T_1 = id$ (identity).

LEMMA 4.16 (see [1]). *For every* $\alpha_i, \beta_i \in [0, 1]$ *where* $1 \le i \le n$ *and* $n \ge 2$ *,*

$$T_n(T(\alpha_1,\beta_1),T(\alpha_2,\beta_2),\ldots,T(\alpha_n,\beta_n)) = T(T_n(\alpha_1,\alpha_2,\ldots,\alpha_n),T_n(\beta_1,\beta_2,\ldots,\beta_n)).$$
(4.23)

280

THEOREM 4.17. Let $\{X_i\}_{i=1}^n$ be the finite collection of BCH-algebras and $X = \prod_{i=1}^n X_i$ the direct product BCH-algebra of $\{X_i\}$. Let μ_i be a *T*-fuzzy subalgebra of X_i , where $1 \le i \le n$. Then $\mu = \prod_{i=1}^n \mu_i$ defined by

$$\mu(x_1, x_2, \dots, x_n) = \left(\prod_{i=1}^n \mu_i\right)(x_1, x_2, \dots, x_n)$$

= $T_n(\mu_1(x_1), \mu_2(x_2), \dots, \mu_n(x_n)),$ (4.24)

is a T-fuzzy subalgebra of the BCH-algebra X.

PROOF. Let $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$ be any elements of $X = \prod_{i=1}^n X_i$. Then

$$\mu(x * y) = \mu(x_1 * y_1, x_2 * y_2, ..., x_n * y_n)$$

= $T_n(\mu_1(x_1 * y_1), \mu_2(x_2 * y_2), ..., \mu_n(x_n * y_n))$
 $\geq T_n(T(\mu_1(x_1), \mu_1(y_1)), T(\mu_2(x_2), \mu_2(y_2)), ..., T(\mu_n(x_n), \mu_n(y_n)))$
= $T(T_n(\mu_1(x_1), \mu_2(x_2), ..., \mu_n(x_n)), T_n(\mu_1(y_1), \mu_2(y_2), ..., \mu_n(y_n)))$
= $T(\mu(x_1, x_2, ..., x_n), \mu(y_1, y_2, ..., y_n))$
= $T(\mu(x), \mu(y)).$
(4.25)

Hence μ is a *T*-fuzzy subalgebra of *X*.

DEFINITION 4.18. Let μ and ν be fuzzy sets in *X*. Then the *T*-product of μ and ν , written $[\mu \cdot \nu]_T$, is defined by $[\mu \cdot \nu]_T(x) = T(\mu(x), \nu(x))$ for all $x \in X$.

THEOREM 4.19. Let μ and ν be *T*-fuzzy subalgebras of *X*. If T^* is a *t*-norm which dominates *T*, that is,

$$T^*(T(\alpha,\beta),T(\gamma,\delta)) \ge T(T^*(\alpha,\gamma),T^*(\beta,\delta)), \tag{4.26}$$

for all $\alpha, \beta, \gamma, \delta \in [0,1]$, then the T^* -product of μ and ν , $[\mu \cdot \nu]_{T^*}$, is a T-fuzzy subalgebra of X.

PROOF. For any $x, y \in X$ we have

$$[\mu \cdot \nu]_{T^*}(x * y) = T^*(\mu(x * y), \nu(x * y))$$

$$\geq T^*(T(\mu(x), \mu(y)), T(\nu(x), \nu(y)))$$

$$\geq T(T^*(\mu(x), \nu(x)), T^*(\mu(y), \nu(y)))$$

$$= T([\mu \cdot \nu]_{T^*}(x), [\mu \cdot \nu]_{T^*}(y)).$$
(4.27)

Hence $[\mu \cdot \nu]_{T^*}$ is a *T*-fuzzy subalgebra of *X*.

Let $f : X \to Y$ be an onto homomorphism of BCH-algebras. Let T and T^* be tnorms such that T^* dominates T. If μ and ν are T-fuzzy subalgebras of Y, then
the T^* -product of μ and ν , $[\mu \cdot \nu]_{T^*}$, is a T-fuzzy subalgebra of Y. Since every onto
homomorphic inverse image of a T-fuzzy subalgebra is a T-fuzzy subalgebra, the

inverse images $f^{-1}(\mu)$, $f^{-1}(\nu)$, and $f^{-1}([\mu \cdot \nu]_{T^*})$ are *T*-fuzzy subalgebras of *X*. The next theorem provides that the relation between $f^{-1}([\mu \cdot \nu]_{T^*})$ and the *T**-product $[f^{-1}(\mu) \cdot f^{-1}(\nu)]_{T^*}$ of $f^{-1}(\mu)$ and $f^{-1}(\nu)$.

THEOREM 4.20. Let $f : X \to Y$ be an onto homomorphism of BCH-algebras. Let T^* be a t-norm such that T^* dominates T. Let μ and ν be T-fuzzy subalgebras of Y. If $[\mu \cdot \nu]_{T^*}$ is the T^* -product of μ and ν and $[f^{-1}(\mu) \cdot f^{-1}(\nu)]_{T^*}$ is the T^* -product of $f^{-1}(\mu)$ and $f^{-1}(\nu)$, then

$$f^{-1}([\mu \cdot \nu]_{T^*}) = [f^{-1}(\mu) \cdot f^{-1}(\nu)]_{T^*}.$$
(4.28)

PROOF. For any $x \in X$ we get

$$f^{-1}([\mu \cdot \nu]_{T^*})(x) = [\mu \cdot \nu]_{T^*}(f(x))$$

= $T^*(\mu(f(x)), \nu(f(x)))$
= $T^*(f^{-1}(\mu)(x), f^{-1}(\nu)(x))$
= $[f^{-1}(\mu) \cdot f^{-1}(\nu)]_{T^*}(x),$ (4.29)

This completes the proof.

DEFINITION 4.21. A fuzzy set μ in *X* is called a *fuzzy closed ideal* of *X* under a *t*-norm *T* (briefly, *T*-*fuzzy closed ideal* of *X*) if

- (F1) $\mu(0 * x) \ge \mu(x)$ for all $x \in X$,
- (F3) $\mu(x) \ge T(\mu(x * y), \mu(y))$ for all $x, y \in X$.

A *T*-fuzzy closed ideal of *X* is said to be *imaginable* if it satisfies the imaginable property.

EXAMPLE 4.22. Let T_m be a *t*-norm in Example 4.3. Consider a BCH-algebra $X = \{0, a, b, c\}$ with Cayley table as follows:

*	0	а	b	С
0	0	С	0	С
а	а	0	С	b
b	b	С	0	а
С	С	0	С	0

(1) Define a fuzzy set $\mu : X \to [0,1]$ by $\mu(0) = \mu(c) = 0.8$ and $\mu(a) = \mu(b) = 0.3$. Then μ is a T_m -fuzzy closed ideal of X which is not imaginable.

(2) Let v be a fuzzy set in *X* defined by

$$\nu(x) = \begin{cases} 1 & \text{if } x \in \{0, c\}, \\ 0 & \text{otherwise.} \end{cases}$$
(4.30)

Then ν is an imaginable T_m -fuzzy closed ideal of X.

THEOREM 4.23. *Every imaginable T-fuzzy subalgebra satisfying (F3) is an imaginable T-fuzzy closed ideal.*

PROOF. Using Proposition 4.5, it is straightforward.

PROPOSITION 4.24. If μ is an imaginable *T*-fuzzy closed ideal of *X*, then $\mu(0) \ge \mu(x)$ for all $x \in X$.

PROOF. Using (F1), (F3), and (T2), we have

$$\mu(0) \ge T(\mu(0 * x), \mu(x)) \ge T(\mu(x), \mu(x)) = \mu(x)$$
(4.31)

for all $x \in X$, completing the proof.

THEOREM 4.25. Every *T*-fuzzy closed ideal is a *T*-fuzzy subalgebra.

PROOF. Let μ be a *T*-fuzzy closed ideal of *X* and let $x, y \in X$. Then

$$\mu(x * y) \ge T(\mu((x * y) * x), \mu(x)) \quad [by (F3)]$$

= $T(\mu((x * x) * y), \mu(x)) \quad [by (H3)]$
= $T(\mu(0 * y), \mu(x)) \quad [by (H1)]$
 $\ge T(\mu(x), \mu(y)) \quad [by (F1), (T2), and (T3)].$
(4.32)

Hence μ is a *T*-fuzzy subalgebra of *X*.

The converse of Theorem 4.25 may not be true. For example, the T_m -fuzzy subalgebra μ in Example 4.3(1) is not a T_m -fuzzy closed ideal of X since

$$\mu(a) = 0.09 < 0.9 = T_m(\mu(a * d), \mu(d)).$$
(4.33)

We give a condition for a *T*-fuzzy subalgebra to be a *T*-fuzzy closed ideal.

THEOREM 4.26. Let μ be a *T*-fuzzy subalgebra of *X*. If μ satisfies the imaginable property and the inequality

$$\mu(x * y) \le \mu(y * x) \quad \forall x, y \in X, \tag{4.34}$$

then μ is a *T*-fuzzy closed ideal of *X*.

PROOF. Let μ be an imaginable *T*-fuzzy subalgebra of *X* which satisfies the inequality

$$\mu(x * y) \le \mu(y * x) \quad \forall x, y \in X.$$
(4.35)

It follows from Proposition 4.5 that $\mu(0 * x) \ge \mu(x)$ for all $x \in X$. Let $x, y \in X$. Then

$$\mu(x) = \mu(x*0) \ge \mu(0*x) = \mu((y*y)*x) = \mu((y*x)*y) \ge T(\mu(y*x),\mu(y)) \ge T(\mu(x*y),\mu(y)).$$
(4.36)

Hence μ is a *T*-fuzzy closed ideal of *X*.

PROPOSITION 4.27. Let T_m be a t-norm in Example 4.3. Let D be a closed ideal of X and let μ be a fuzzy set in X defined by

$$\mu(x) = \begin{cases} \alpha_1 & \text{if } x \in D, \\ \alpha_2 & \text{otherwise,} \end{cases}$$
(4.37)

for all $x \in X$.

(i) If $\alpha_1 = 1$ and $\alpha_2 = 0$, then μ is an imaginable T_m -fuzzy closed ideal of X.

(ii) If $\alpha_1, \alpha_2 \in (0, 1)$ and $\alpha_1 > \alpha_2$, then μ is a T_m -fuzzy closed ideal of X which is not imaginable.

PROOF. (i) If $x \in D$, then $0 * x \in D$ and so $\mu(0 * x) = 1 = \mu(x)$. If $x \notin D$, then clearly $\mu(x) = 0 \le \mu(0 * x)$. Now obviously if $x \in D$, then

$$\mu(x) = 1 \ge T_m(\mu(x * y), \mu(y)), \tag{4.38}$$

for all $y \in X$. Assume that $x \notin D$. Then $x * y \notin D$ or $y \notin D$, that is, $\mu(x * y) = 0$ or $\mu(y) = 0$. It follows that

$$T_m(\mu(x*y),\mu(y)) = 0 = \mu(x).$$
(4.39)

Hence $\mu(x) \ge T_m(\mu(x * y), \mu(y))$ for all $x, y \in X$. Clearly $\text{Im}(\mu) \subseteq \Delta_{T_m}$.

(ii) Similar to (i), we know that μ is a T_m -fuzzy closed ideal of X. Taking $\alpha_1 = 0.7$, then

$$T_m(\alpha_1, \alpha_1) = T_m(0.7, 0.7) = \max(0.7 + 0.7 - 1, 0) = 0.4 \neq \alpha_1.$$
(4.40)

Hence $\alpha_1 \notin \Delta_{T_m}$, that is, $\text{Im}(\mu) \notin \Delta_{T_m}$, and so μ is not imaginable.

PROPOSITION 4.28. Let μ be an imaginable *T*-fuzzy closed ideal of *X*. If μ satisfies the inequality $\mu(x) \ge \mu(0 * x)$ for all $x \in X$, then it satisfies the equality $\mu(x * y) = \mu(y * x)$ for all $x, y \in X$.

PROOF. Let μ be an imaginable *T*-fuzzy closed ideal of *X* satisfying the inequality $\mu(x) \ge \mu(0 * x)$ for all $x \in X$. For every $x, y \in X$, we have

$$\mu(y*x) \ge \mu(0*(y*x)) \quad \text{[by assumption]} \\ \ge T(\mu((0*(y*x))*(x*y)), \mu(x*y)) \quad \text{[by (F3)]} \\ = T(\mu(((0*y)*(0*x))*(x*y)), \mu(x*y)) \quad \text{[by (P3)]} \\ = T(\mu(((0*y)*(x*y))*(0*x)), \mu(x*y)) \quad \text{[by (H3)]} \\ = T(\mu((((0*(x*y))*y)*(0*x)), \mu(x*y)) \quad \text{[by (H3)]} \\ = T(\mu((((0*x)*(0*y))*y)*(0*x)), \mu(x*y)) \quad \text{[by (P3)]} \\ = T(\mu((((0*x)*(0*y))*(0*x))*y), \mu(x*y)) \quad \text{[by (H3)]} \\ = T(\mu((((0*x)*(0*x))*(0*y))*y), \mu(x*y)) \quad \text{[by (H3)]} \\ = T(\mu((((0*x)*(0*x))*(0*y))*y), \mu(x*y)) \quad \text{[by (H3)]} \\ = T(\mu(((0*(x*y))*y), \mu(x*y)) \quad \text{[by (H1)]} \\ = T(\mu((0, \mu(x*y)) \quad \text{[by (H3) and (H1)]} \\ = T(\mu((x*y), \mu(x*y)), \mu(x*y)) \quad \text{[by Proposition 4.24 and (T2)]} \\ = \mu(x*y) \quad \text{[since μ is imaginable].} \end{cases}$$

(4.41)

Similarly we have $\mu(x * y) \ge \mu(y * x)$ for all $x, y \in X$, completing the proof. \Box

THEOREM 4.29. Every imaginable *T*-fuzzy closed ideal is a fuzzy closed ideal.

PROOF. Let μ be an imaginable *T*-fuzzy closed ideal of *X*. Then

$$\mu(x) \ge T(\mu(x * y), \mu(y)) \quad \forall x, y \in X.$$

$$(4.42)$$

Since μ is imaginable, we have

$$\min(\mu(x * y), \mu(y)) = T(\min(\mu(x * y), \mu(y)), \min(\mu(x * y), \mu(y)))$$

$$\leq T(\mu(x * y), \mu(y))$$

$$\leq \min(\mu(x * y), \mu(y)).$$
(4.43)

It follows that $\mu(x) \ge T(\mu(x * y), \mu(y)) = \min(\mu(x * y), \mu(y))$ so that μ is a fuzzy closed ideal of *X*.

Combining Theorems 3.3, 4.29, we have the following corollary.

COROLLARY 4.30. If μ is an imaginable *T*-fuzzy closed ideal of *X*, then the nonempty level set of μ is a closed ideal of *X*.

Noticing that the fuzzy set μ in Example 4.22(1) is a fuzzy closed ideal of *X*, we know from Example 4.22(1) that there exists a *t*-norm such that the converse of Theorem 4.29 may not be true.

PROPOSITION 4.31. Every imaginable *T*-fuzzy closed ideal is order reversing.

PROOF. Let μ be an imaginable *T*-fuzzy closed ideal of *X* and let $x, y \in X$ be such that $x \leq y$. Using (P4), (T2), Theorem 4.29, Proposition 4.24, and the definition of a fuzzy closed ideal, we get

$$\mu(x) \ge \min\{\mu(x * y), \mu(y)\} \ge T(\mu(x * y), \mu(y))$$

= $T(\mu(0), \mu(y)) \ge T(\mu(y), \mu(y)) = \mu(y).$ (4.44)

This completes the proof.

PROPOSITION 4.32. Let μ be a *T*-fuzzy closed ideal of *X*, where *T* is a diagonal *t*-norm on [0,1], that is, $T(\alpha, \alpha) = \alpha$ for all $\alpha \in [0,1]$. If (x * a) * b = 0 for all $a, b, x \in X$, then $\mu(x) \ge T(\mu(a), \mu(b))$.

PROOF. Let $a, b, x \in X$ be such that (x * a) * b = 0. Then

$$\mu(x) \ge T(\mu(x * a), \mu(a)) \ge T(T(\mu((x * a) * b), \mu(b)), \mu(a)) = T(T(\mu(0), \mu(b)), \mu(a)) \ge T(T(\mu(b), \mu(b)), \mu(a)) = T(\mu(a), \mu(b)),$$
(4.45)

completing the proof.

COROLLARY 4.33. Let μ be a *T*-fuzzy closed ideal of *X*, where *T* is a diagonal *t*-norm on [0,1]. If $(\cdots ((x * a_1) * a_2) * \cdots) * a_n = 0$ for all $x, a_1, a_2, \dots, a_n \in X$, then

$$\mu(x) \ge T_n(\mu(a_1), \mu(a_2), \dots, \mu(a_n)).$$
(4.46)

PROOF. Using induction on *n*, the proof is straightforward.

THEOREM 4.34. There exists a *t*-norm *T* such that every closed ideal of *X* can be realized as a level closed ideal of a *T*-fuzzy closed ideal of *X*.

PROOF. Let *D* be a closed ideal of *X* and let μ be a fuzzy set in *X* defined by

$$\mu(x) = \begin{cases} \alpha & \text{if } x \in D, \\ 0 & \text{otherwise,} \end{cases}$$
(4.47)

where $\alpha \in (0,1)$ is fixed. It is clear that $U(\mu; \alpha) = D$. We will prove that μ is a T_m -fuzzy closed ideal of X, where T_m is a t-norm in Example 4.3. If $x \in D$, then $0 * x \in D$ and so $\mu(0 * x) = \alpha = \mu(x)$. If $x \notin D$, then clearly $\mu(x) = 0 \le \mu(0 * x)$. Let $x, y \in X$. If $x \in D$, then $\mu(x) = \alpha \ge T_m(\mu(x * y), \mu(y))$. If $x \notin D$, then $x * y \notin D$ or $y \notin D$. It follows that $\mu(x) = 0 = T_m(\mu(x * y), \mu(y))$. This completes the proof. \Box

For a family $\{\mu_{\alpha} \mid \alpha \in \Lambda\}$ of fuzzy sets in *X*, define the join $\lor_{\alpha \in \Lambda} \mu_{\alpha}$ and the meet $\land_{\alpha \in \Lambda} \mu_{\alpha}$ as follows:

$$(\vee_{\alpha\in\Lambda}\mu_{\alpha})(x) = \sup\{\mu_{\alpha}(x) \mid \alpha\in\Lambda\}, \quad (\wedge_{\alpha\in\Lambda}\mu_{\alpha})(x) = \inf\{\mu_{\alpha}(x) \mid \alpha\in\Lambda\}, \quad (4.48)$$

for all $x \in X$, where Λ is any index set.

THEOREM 4.35. The family of *T*-fuzzy closed ideals in *X* is a completely distributive lattice with respect to meet " \land " and the join " \lor ".

PROOF. Since [0,1] is a completely distributive lattice with respect to the usual ordering in [0,1], it is sufficient to show that $\vee_{\alpha \in \Lambda} \mu_{\alpha}$ and $\wedge_{\alpha \in \Lambda} \mu_{\alpha}$ are *T*-fuzzy closed ideals of *X* for a family of *T*-fuzzy closed ideals { $\mu_{\alpha} \mid \alpha \in \Lambda$ }. For any $x \in X$, we have

$$(\vee_{\alpha\in\Lambda}\mu_{\alpha})(0*x) = \sup \{\mu_{\alpha}(0*x) \mid \alpha\in\Lambda\}$$

$$\geq \sup \{\mu_{\alpha}(x) \mid \alpha\in\Lambda\}$$

$$= (\vee_{\alpha\in\Lambda}\mu_{\alpha})(x),$$

$$(\wedge_{\alpha\in\Lambda}\mu_{\alpha})(0*x) = \inf \{\mu_{\alpha}(0*x) \mid \alpha\in\Lambda\}$$

$$\geq \inf \{\mu_{\alpha}(x) \mid \alpha\in\Lambda\}$$

$$= (\wedge_{\alpha\in\Lambda}\mu_{\alpha})(x).$$

(4.49)

Let $x, y \in X$. Then

$$\begin{aligned} (\lor_{\alpha\in\Lambda}\mu_{\alpha})(x) &= \sup \left\{ \mu_{\alpha}(x) \mid \alpha\in\Lambda \right\} \\ &\geq \sup \left\{ T(\mu_{\alpha}(x*y),\mu_{\alpha}(y)) \mid \alpha\in\Lambda \right\} \\ &\geq T(\sup \left\{ \mu_{\alpha}(x*y) \mid \alpha\in\Lambda \right\}, \sup \left\{ \mu_{\alpha}(y) \mid \alpha\in\Lambda \right\}) \\ &= T((\lor_{\alpha\in\Lambda}\mu_{\alpha})(x*y),(\lor_{\alpha\in\Lambda}\mu_{\alpha})(y)), \end{aligned}$$

$$(\wedge_{\alpha\in\Lambda}\mu_{\alpha})(x) = \inf \{\mu_{\alpha}(x) \mid \alpha \in \Lambda\}$$

$$\geq \inf \{T(\mu_{\alpha}(x * y), \mu_{\alpha}(y)) \mid \alpha \in \Lambda\}$$

$$\geq T(\inf \{\mu_{\alpha}(x * y) \mid \alpha \in \Lambda\}, \inf \{\mu_{\alpha}(y) \mid \alpha \in \Lambda\})$$

$$= T((\wedge_{\alpha\in\Lambda}\mu_{\alpha})(x * y), (\wedge_{\alpha\in\Lambda}\mu_{\alpha})(y)).$$

(4.50)

Hence $\lor_{\alpha \in \Lambda} \mu_{\alpha}$ and $\land_{\alpha \in \Lambda} \mu_{\alpha}$ are *T*-fuzzy closed ideals of *X*, completing the proof. \Box

5. Conclusions and future works. We inquired into further properties on fuzzy closed ideals in BCH-algebras, and using a *t*-norm *T*, we introduced the notion of (imaginable) *T*-fuzzy subalgebras and (imaginable) *T*-fuzzy closed ideals, and obtained some related results. Moreover, we discussed the direct product and *T*-product of *T*-fuzzy subalgebras. We finally showed that the family of *T*-fuzzy closed ideals is a completely distributive lattice. These ideas enable us to define the notion of (imaginable) *T*-fuzzy filters in BCH-algebras, and to discuss the direct products and *T*-products of *T*-fuzzy filters. It also gives us possible problems to discuss relations among *T*-fuzzy subalgebras, *T*-fuzzy closed ideals and *T*-fuzzy filters, and to construct the normalizations. We may also use these ideas to introduce the notion of interval-valued fuzzy subalgebras/closed ideals.

ACKNOWLEDGEMENT. This work was supported by Korea Research Foundation Grant (KRF-99-015-DP0003).

References

- M. T. Abu Osman, On some product of fuzzy subgroups, Fuzzy Sets and Systems 24 (1987), no. 1, 79-86. MR 88h:20107. Zbl 638.20020.
- B. Ahmad, On classification of BCH-algebras, Math. Japon. 35 (1990), no. 5, 801–804. MR 91h:06035. Zbl 0729.06014.
- [3] M. A. Chaudhry, On BCH-algebras, Math. Japon. 36 (1991), no. 4, 665–676. MR 92e:06042. Zbl 733.06008.
- [4] M. A. Chaudhry and H. Fakhar-Ud-Din, *Ideals and filters in BCH-algebras*, Math. Japon. 44 (1996), no. 1, 101–111. CMP 1 402 806. Zbl 880.06013.
- W. A. Dudek and J. Thomys, On decompositions of BCH-algebras, Math. Japon. 35 (1990), no. 6, 1131-1138. MR 91j:06040. Zbl 723.06014.
- [6] Q. P. Hu and X. Li, On BCH-algebras, Math. Sem. Notes Kobe Univ. 11 (1983), no. 2, 313–320. MR 86a:06016. Zbl 579.03047.
- [7] _____, On proper BCH-algebras, Math. Japon. 30 (1985), no. 4, 659–661. MR 87d:06042.
 Zbl 583.03050.
- [8] Y. B. Jun, Fuzzy closed ideals and fuzzy filters in BCH-algebras, J. Fuzzy Math. 7 (1999), no. 2, 435-444. CMP 1 697 759. Zbl 939.06018.

YOUNG BAE JUN: DEPARTMENT OF MATHEMATICS EDUCATION, GYEONGSANG NATIONAL UNIVERSITY, CHINJU 660-701, KOREA

E-mail address: ybjun@nongae.gsnu.ac.kr

Sung Min Hong: Department of Mathematics, Gyeongsang National University, Chinju 660-701, Korea

E-mail address: smhong@nongae.gsnu.ac.kr