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Abstract. This paper is concerned with a class of functional differential equations whose
argument transforms are involutions. In contrast to the earlier works in this area, which
have used only involutions with a fixed point, we also admit involutions without a fixed
point. In the first case, an initial value problem for a differential equation with involution is
reduced to an initial value problem for a higher order ordinary differential equation. In our
case, either two initial conditions or two boundary conditions are necessary for a solution;
the equation is then reduced to a boundary value problem for a higher order ODE.
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1. Introduction. When studying the general properties of functional differential

equations, it is always important to find and solve selected classes of equations as

explicitly as possible, using methods that are capable of generalization. Differential

equations with involutions is one of those classes.

A function f(x) �≡ x, that maps a set, G, of real numbers onto itself and satisfies

on G the condition

f
(
f(x)

)= x or f−1(x)= f(x), (1.1)

is called an involution on G. The simplest examples of involutions are

f(x)=−x or f(x)= c−x, x ∈ (−∞,∞), c ∈R,

f (x)= 1
x

or f(x)=− 1
x
, x ∈ (−∞,0)∪(0,∞).

(1.2)

Definition 1.1. A relation of the form

F
(
x,y

(
f1(x)

)
, . . . ,y

(
fm(x)

)
, . . . ,y(n)

(
f1(x)

)
, . . . ,y(n)

(
fm(x)

))= 0, (1.3)

where fi(fi(x)) = x for every i, and fi(x) �≡ x for some i, is called a differential

equation with involutions.

We investigate differential equations of the form

y ′(x)= F(x,y(x),y(f(x))), (1.4)

where f(x) is an involution. The properties of involutions that are key to our discus-

sion are the following.
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Property 1.2. Suppose that f(x) is a continuous involution on an open connected

set, G. Then f has a unique fixed point on G, and f is decreasing on G.

Proof. The function f is monotone, one-to-one, and continuous on G, conse-

quently Φ(x)= f(x)−x is monotone and continuous. Since f(x) �≡ x, there exists x0

such that f(x0)≠ x0. If x0 < f(x0), then Φ(x0) > 0 and Φ(f (x0)) < 0, hence there is

an x1 ∈ (x0,f (x0)) such that Φ(x1) = 0. A similar argument holds when f(x0) < x0.

Therefore, there is a unique fixed point. Suppose f is increasing on G and f(x0) < x0,

then f(f(x0)) < f(x0) or x0 < f(x0), a contradiction. Similarly if f(x0) > x0, then

f(f(x0)) > f(x0) or x0 > f(x0), again a contradiction.

Definition 1.3. If x ∈ �, where � is the domain of an involution f , then the

component �(x) of � is the maximally connected subset of � that contains x. Two

components, �(x1) and �(x2), are said to be f -complements if f(�(x1))=�(x2).

It is observed that f(�(x)) = �(f (x)). Furthermore, whenever f(x1) = x2, then

�(x1) and �(x2) are f -complements. The following statement is a corollary of

Property 1.2. It highlights the fact that when f has no fixed point, the f -complements

are disjoint. This is a key idea in understanding the theorems that follow.

Property 1.4. Suppose that f(x) is a continuous involution on �⊆ R, and f has

no fixed point. Then, for x0 ∈�, f(�(x0))∩�(x0) is empty.

A consequence of Properties 1.2 and 1.4 is that the domain of an increasing invo-

lution is not connected.

The study of differential equations with involution was initiated by Wiener in [12, 13]

and continued by many authors. In [8], Przeworska-Rolewicz developed an algebraic

approach to equations with transformed arguments, including involutions. Castelan

and Infante [3] used the solutions of differential equations with involutions in the

construction of Liapunov functionals to explore the stability of retarded differential

equations. Šharkovskĭı [9] investigated functional differential equations with a finite

group of argument transformations and carried out, in particular, a geometric analysis

of the equation with reflection of the argument,

y ′(x)= F(y(x),y(−x)). (1.5)

Letting y(−x)= z(x) he obtained

dz
dx

=−y ′(−x)=−F(y(−x),y(x))=−F(z(x),y(x)). (1.6)

Hence, the solutions of (1.5) correspond to the solutions of the system of ordinary

differential equations

dy
dx

= F(y,z), dz
dx

=−F(z,y) (1.7)

with the condition y(0) = z(0). From the qualitative analysis of the solutions of

the system he derived qualitative information about the solutions of the equation

with reflection. Shevelo and Gritsăı [10] considered a class of differential equations

with involutions and studied some of their properties, especially the boundedness of

solutions on [0,∞). The existence of a unique bounded solution of the equation with
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reflection of the argument,

y ′(x)= F(x,y(x),y(−x)), x ∈R (1.8)

has been studied by Aftabizadeh et al. [1]. Boundary value problems for differential

equations with reflection have been explored by Wiener and Aftabizadeh [15] and

their results have been generalized by Gupta [5, 6, 7]. Differential equations with

involutions can be transformed by differentiation to higher order ordinary differential

equations. Therefore they belong to the class of reducible functional differential equa-

tions. Busenberg and Travis [2] used reducible functional differential equations in the

study of certain biological models. For further references see Wiener [14]. Recently,

pantograph equations with involution have been introduced by Derfel and Iserles [4].

2. Main results and examples. The following theorems generalize the correspond-

ing results of [12, 13] (see also [14]).

Theorem 2.1. Let the initial value problem

y ′(x)= F(x,y(x),y(f(x))), y
(
x0
)=y0, (2.1)

satisfy the following hypotheses:

(1) The function f(x) is a continuously differentiable involution on its domain �.

Furthermore, f(�(x0))=�(x0)=�, where �(x0) is the f -complement of x0.

(2) The function F is defined and is continuously differentiable in the whole space of

its arguments, that is, on �×y(�)×y(f(�)).
(3) Equation (2.1) is uniquely solvable with respect to y(f(x)):

y
(
f(x)

)=G(x,y(x),y ′(x)). (2.2)

Then the solution of the ordinary differential equation

y ′′(x)= ∂F
∂x

+ ∂F
∂y(x)

y ′(x)+ ∂F
∂y
(
f(x)

)f ′(x)F(f(x),y(f(x)),y(x)), (2.3)

where y(f(x)) is given by the expression (2.2), with the boundary conditions,

y
(
x0
)=y0, y ′

(
f
(
x0
))= F(f (x0

)
,y
(
f
(
x0
))
,y0

)
, x0 ∈�, (2.4)

is a solution of (2.1) on �.

Proof. Differentiating (2.1) gives

y ′′(x)= ∂F
∂x

+ ∂F
∂y(x)

y ′(x)+ ∂F
∂y
(
f(x)

)f ′(x)y ′(f(x)). (2.5)

But from (2.1) and the relation f(f(x))= x, it follows that

y ′
(
f(x)

)= F(f(x),y(f(x)),y(x)). (2.6)

The second boundary condition (2.4) comes from setting x = f(x0) in (2.1); this is an

implicit compatible condition.
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In Theorem 2.1, f must have a fixed point by Property 1.2. If x0 is the fixed point

of f , then the boundary conditions (2.4) become initial conditions,

y
(
x0
)=y0, y ′

(
x0
)= F(x0,y0,y0

)
, x0 ∈�. (2.7)

This is Wiener’s theorem [12].

Earlier works in this area study cases where the involution has a fixed point, identify

initial conditions at that fixed point and find solutions on the connected domain. We

generalize in two ways, first by considering initial conditions at points different than

the fixed point, and second by considering disjoint domains. The next theorem is a

special case of Theorem 2.1.

Theorem 2.2. Assume that in the problem

y ′(x)= F(y(f(x))), y
(
x0
)=y0, (2.8)

the function f(x) is a continuously differentiable involution on its connected domain,

�; and the function F is defined, continuously differentiable, and strictly monotonic on

y(�). Then the solution of the ordinary differential equation

y ′′(x)= F ′(y(f(x)))F(y(x))f ′(x), y
(
f(x)

)= F−1(y ′(x)) (2.9)

with the boundary conditions

y
(
x0
)=y0, y ′

(
f
(
x0
))= F(y0

)
, (2.10)

is a solution of (2.8).

Example 2.3. Silberstein [11] solved the equation

y ′(x)=y
(

1
x

)
, 0<x <∞, (2.11)

by assuming a solution of the form

y(x)= xk+λxm, (2.12)

where k, m, and λ are constants. Wiener [12] obtained a solution by differentiat-

ing (2.11),

y ′′(x)=− 1
x2
y ′
(

1
x

)
=− 1

x2
y(x), (2.13)

whence,

x2y ′′(x)+y(x)= 0. (2.14)

This is a Cauchy-Euler equation, with the general solution of the form

y(x)=A1xr1+A2xr2 . (2.15)

Hence r1 and r2 are the roots of

r 2−r +1= 0. (2.16)
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Suppose we seek a solution of Silbertein’s equation (2.11) satisfying the initial

condition

y
(
x0
)=y0. (2.17)

Since (2.11) implies that y ′(1/x)=y(x), we have the additional initial condition

y ′
(

1
x0

)
=y0. (2.18)

Therefore A1 and A2 are uniquely determined by the system of equations,

xr1
0 A1+xr2

0 A2 =y0, r1x
r2
0 A1+r2x

r1
0 A2 =y0. (2.19)

In contrast to the previous example where f has a connected domain, the next

example considers a disconnected domain. By modifying the domain in Silberstein’s

problem we begin to see the significance of a disconnected domain.

Example 2.4. Consider the differential equation

y ′(x)=y(f(x)), f (x)= 1
x
, x ∈ (0,1)∪(1,∞), (2.20)

with the initial conditions

y(2)=y2, y ′(2)= ỹ2. (2.21)

It is important that the two components of the domain are f -complements. That

means that compatible conditions generated from the initial conditions are in the

other component and hence do not affect the continuity of the solution in the original

component. Therefore, we seek a solution of the form

y(x)=


C1xr1+C2xr2 , x ∈ (0,1),
D1xr1+D2xr2 , x ∈ (1,∞).

(2.22)

The initial conditions uniquely determine D1 and D2 by the system of equations

y(2)=y2 = 2r1D1+2r2D2, y ′(2)= ỹ2 = r12−r2D1+r22−r1D2. (2.23)

The determinant of this system is r2 − r1 hence there is a unique solution for D1

and D2. The differential equation implies that y ′(1/x) = y(x), therefore the initial

conditions in (2.21) generate compatible conditions

y
(

1
2

)
= ỹ2, y ′

(
1
2

)
=y2, (2.24)

which produce the system of equations

y
(

1
2

)
= ỹ2 = 2−r1C1+2−r2C2, y ′

(
1
2

)
=y2 = r12r2C1+r22r1C2, (2.25)

which also has a unique solution.

This last example is rather contrived because the involution could be extended

to a continuous involution on a connected domain. It does, however, emphasize the
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significance of the connectedness of the domain f , showing that the disconnected do-

main admits solutions that the connected domain does not. In the case that �(x0) is

its own f -complement, the solution of the differential equation is a continuous func-

tion on a connected set. One initial condition generates a second compatible boundary

condition (or a second initial condition in the case that x0 is a fixed point). The original

condition and the compatible condition then determine the coefficients in the solution

of the second order ODE. In contrast, when the domain of f is the union of two disjoint

compatible components, two initial conditions are necessary, because the generated

compatible conditions are in the other component and we need two conditions in each

component to determine a solution. The following theorems clarify the idea.

Theorem 2.5. Let the initial value problem

y ′(x)= F(x,y(x),y(f(x))), y
(
x0
)=y0, y ′

(
x0
)= ỹ0, (2.26)

satisfy the following hypotheses:

(1) The function f(x) is a continuously differentiable involution on its domain, �.

Furthermore, f(�(x0))∪�(x0)=� and f(�(x0))∩�(x0) is empty.

(2) The function F is defined and is continuously differentiable in the whole space of

its arguments, that is, on �×y(�)×y(f(�)).
(3) Equation (2.26) is uniquely solvable with respect to y(f(x)):

y
(
f(x)

)=G(x,y(x),y ′(x)). (2.27)

Then the solution of the ordinary differential equation

y ′′(x)= ∂F
∂x

+ ∂F
∂y(x)

y ′(x)+ ∂F
∂y
(
f(x)

)f ′(x)F(f(x),y(f(x)),y(x)), (2.28)

where y(f(x)) is given by the expression (2.27), with the boundary conditions

y
(
x0
)=y0, y ′

(
x0
)= ỹ0,

y ′
(
f
(
x0
))= F(f (x0

)
,y
(
f
(
x0
))
,y0

)
, y

(
f
(
x0
))=G(x0,y0, ỹ0

)
,

(2.29)

is a solution of problem (2.26) on �.

Proof. The assertion follows from the arguments of Theorem 2.1. Setting x =
f(x0) in (2.6) we obtain

y ′
(
f
(
x0
))= F(f (x0

)
,y
(
f
(
x0
))
,y0

)
. (2.30)

The other compatibility condition in (2.29) is obtained by setting x=x0 in (2.27).

As a special case consider the following theorem.

Theorem 2.6. Assume that in the initial value problem

y ′(x)= F(y(f(x))), y
(
x0
)=y0, y ′

(
x0
)= ỹ0, (2.31)

the function f(x) is a continuously differentiable involution on its domain, �; f(�(x))∪
�(x)=�; f(�(x))∩�(x) is empty; and the function F is defined, continuously differ-

entiable, and strictly monotonic on y(�). Then the solution of the ordinary differential
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equation

y ′′(x)= F ′(y(f(x)))F(y(x))f ′(x), y
(
f(x)

)= F−1(y ′(x)) (2.32)

with the initial conditions

y
(
x0
)=y0, y ′

(
x0
)= ỹ0,

y ′
(
f
(
x0
))= F(y0

)
, y

(
f
(
x0
))= F−1(ỹ0

)
,

(2.33)

is a solution of problem (2.31).

Example 2.7. The involution in this example is strictly increasing and has a domain

which is the union of two complementary components,

�= (−∞,0)∪(0,∞). (2.34)

Furthermore, there is no way to extend the involution to a continuous function on

a connected domain (which is always the case with an increasing involution). The

equation

y ′(x)= ay
(
− 1
x

)
(2.35)

involves an increasing involution. This transforms to

y ′′(x)= a
2

x2
y(x) or x2y ′′(x)−a2y(x)= 0. (2.36)

We look for a solution of the form y(x)= |x|r and obtain the characteristic equation

r 2−r −a2 = 0, with the roots

r1 = 1+
√

1+4a2

2
, r2 = 1−

√
1+4a2

2
. (2.37)

Therefore, the general solution of (2.36) is

y(x)=



C1(−x)r1+C2(−x)r2 , x < 0,

D1xr1+D2xr2 , x > 0.
(2.38)

Furthermore, because r1+r2 = 1,

y ′(x)=



−r2C2(−x)−r1−r1C1(−x)−r2 , x < 0,

r2D2x−r1+r1D1x−r2 , x > 0.
(2.39)

Note,

y
(
− 1
x

)
=



D1(−x)−r1+D2(−x)−r2 , x < 0,

C1x−r1+C2x−r2 , x > 0.
(2.40)

Substituting y(x) into (2.35), we obtain

C1 =− ar1
D2 = r2

a
D2, C2 =− ar2

D1 = r1

a
D1, (2.41)
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hence,

y(x)=



r2a−1D2(−x)r1+r1a−1D1(−x)r2 , x < 0,

D1xr1+D2xr2 , x > 0.
(2.42)

Equation (2.38) has four undetermined coefficients. We see in (2.42) that there is

some “coupling” of coefficients. Since there are still two undetermined coefficients,

we need either two initial conditions (as stated in the theorem) or boundary condi-

tions that are not compatibly related. That is, y(x0) = y0 and y ′(x0) = ỹ0 uniquely

determine D1 and D2, but there are other conditions that determine the coefficients

as illustrated in the next examples.

Example 2.8. Consider a particular case of (2.35) with boundary conditions

y ′(x)=
√

3
2
y
(
− 1
x

)
, y(1)= 1, y(4)= 1. (2.43)

Then r1 = 3/2 and r2 =−1/2, so when x > 0,

y(x)=D1x3/2+D2x1/2. (2.44)

The boundary conditions imply thatD1 =−1/6 andD2 = 7/6. From (2.42) the solution

of (2.43) is

y(x)=




−7
√

3
18

(−x)3/2−
√

3
6
(−x)−1/2, x < 0,

−1
6
x3/2+ 7

6
x−1/2, x > 0.

(2.45)

Boundary conditions y(A) = yA and y(B) = yB yield a unique solution of (2.35).

There are three cases: either A > B > 0, or A < B < 0, or A < 0 and B > 0. In the first

and second cases D1 and D2 can be found by using only half of (2.42). As illustrated

above, if A> B > 0, then the system

Ar1D1+Ar2D2 =yA, Br1D1+Br2D2 =yB, (2.46)

has a unique solution. Similarly, if A< B < 0, then

r2a−1(−A)r1D2+r1a−1(−A)r2D1 =yA, (2.47)

r2a−1(−B)r1D2+r1a−1(−B)r2D1 =yB, (2.48)

has a unique solution. In the case that A< 0 and B > 0, (2.42) produces the system

r1a−1(−A)r2D1+r2a−1(−A)r1D2 =yA, Br1D1+Br2D2 =yB, (2.49)

which also has a unique solution.

Care must be taken in choosing boundary conditions. The next two examples show

that some choices of boundary conditions allow no solution while other choices pro-

duce an infinite number of solutions.
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Example 2.9. The boundary value problem

y ′(x)= ay
(
− 1
x

)
, y(1)=y1, y ′(−1)= by1, a≠ b, (2.50)

has no solution because the differential equation implies the compatible condition

y ′(−1)= ay(1).
Example 2.10. On the other hand,

y ′(x)= ay
(
− 1
x

)
, y(1)=y1, y ′(−1)= ay1, (2.51)

has many solutions. These (compatible) boundary conditions imply one another by

the differential equation and therefore do not give sufficient information to reduce

the number of coefficients.

One safe choice of boundary conditions is y(x0)= y0 and y(f(x0))= ỹ0 as illus-

trated in the next example.

Example 2.11. Consider

y ′(x)=
√

3
2
y
(
− 1
x

)
, y(−1)= 1, y(1)= 1. (2.52)

Then r1 = 3/2 and r2 = −1/2, and the boundary conditions applied to (2.42) gives

D1 = (
√

3+1)/4 and D2 = (
√

3−3)/4 for the solution,

y(x)=




√
3−1
4

(−x)3/2+ 3+√3
4

(−x)−1/2, x < 0,
√

3+1
4

x3/2+
√

3−3
4

x−1/2, x > 0.
(2.53)

Example 2.12. The final example considers the class of equations

xmy ′(x)= ay
(
− 1
x

)
, (2.54)

with the integer m > 0. Interestingly enough, the solutions differ depending on m
being even or odd. Differentiating gives

xmy ′′(x)+mxm−1y ′(x)= a
x2
y ′
(
− 1
x

)
. (2.55)

Replacing x with −1/x in (2.54) shows that y ′(−1/x) = (−1)maxmy(x) converting

(2.55) to

x2y ′′(x)+mxy ′(x)−(−1)ma2y(x)= 0, (2.56)

which has the characteristic equation

r 2+(m−1)r −(−1)ma2 = 0. (2.57)

In the case that m is even, the roots of (2.57) are real, hence all twice-differentiable

solutions of (2.54) do not oscillate. On the other hand, whenm is odd and (m−1)/2<
|a| the solutions oscillate.
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