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ON MAPPINGS WITH DIMINISHING ORBITAL DIAMETERS
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Abstract. We introduce the concepts of ∗-diminishing orbital diameters and diminishing
orbital diameters for a pair (f ,g) of self mappings in metric spaces and prove common
fixed point theorems for these mappings. The results obtained in this paper extend prop-
erly the result of Fisher (1978).
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1. Introduction. Let f be a self mapping of a metric space (X,d). For x ∈ X and

A,B ⊂X, Ā denotes the closure of A and let

δ(A,B)= sup
{
d(x,y) | x ∈A,y ∈ B},

δ(A)= δ(A,A), O(x,f )= {fnx |n∈ω}, (1.1)

where ω denotes the set of nonnegative integers. The concept of diminishing orbital

diameters was introduced by Belluce and Kirk [1]. A self mapping f of (X,d) is said

to have diminishing orbital diameters (d.o.d.) if

lim
n→∞δ

(
O
(
fnx,f

))
< δ

(
O(x,f )

)
, (1.2)

for all x ∈ X with δ(O(x,f )) > 0. In compact metric spaces, Kirk [4] established the

existence of fixed point for a continuous mapping with d.o.d., and Fisher [2] obtained

a common fixed point theorem for a pair of contractive mappings.

Motivated by Belluce and Kirk [1] and Kirk [4], we introduce the following concepts.

Definition 1.1. A pair (f ,g) of self mappings of a metric space (X,d) is said to

have ∗-diminishing orbital diameters (∗-d.o.d.) if

lim
n→∞δ

(
O
(
fnx,f

)
,O
(
gny,g

))
< δ

(
O(x,f ),O(y,g)

)
, (1.3)

for all x,y ∈X with δ(O(x,f ),O(y,g)) > 0.

Definition 1.2. A pair (f ,g) of self mappings of a metric space (X,d) is said to

have diminishing orbital diameters (d.o.d.) if

lim
n→∞δ

(
O
(
fnx,f

)
,O
(
gnx,g

))
< δ

(
O(x,f ),O(x,g)

)
, (1.4)

for all x ∈X with δ(O(x,f ),O(x,g)) > 0.
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We note that (f ,g) has d.o.d. if (f ,g) has ∗-d.o.d. and that (f ,f ) has d.o.d. if and

only if f has d.o.d.

The purpose of this paper is to investigate the existence of common fixed points

for a pair (f ,g) of self mappings in compact metric spaces with either of ∗-d.o.d. and

d.o.d. Our results generalize properly the result of Fisher [2]. In the sequel, N denotes

the set of positive integers. Let f be a self mapping of a metric space (X,d). Define

Hf =
{
h | h :X �→X, h∩n∈NfnX ⊆∩n∈NfnX

}
,

L(x,f )=
{
w | ∃ a subsequence

{
fnix

}
i∈N of

{
fnx

}
n∈N : lim

i→∞
fnix =w

}
,

(1.5)

for x ∈X. Clearly

Hf ⊇ Cf =
{
h | h :X �→X, hf = fh}⊇ {fn |n∈ω}. (1.6)

2. Lemmas. Leader [5] proved the following lemma.

Lemma 2.1. Let f be a continuous self mapping of a compact metric space (X,d). If
A=∩n∈NfnX, then A is a nonempty compact subset of X and fA=A.

Lemma 2.2. Let f and g be continuous self mappings of a compact metric space

(X,d). If A=∩n∈NfnX and B =∩n∈NgnX, then δ(fnX,gnX)→ δ(A,B) as n→∞.

Proof. For each n∈N, we have the following corollary.

δ
(
fnX,gnX

)≥ δ(fn+1X,gn+1X
)≥ δ(A,B) (2.1)

by fnX ⊇ fn+1X ⊇ A and gnX ⊇ gn+1X ⊇ B. Thus δ(fnX,gnX) converges to some

r ≥ δ(A,B). Note that fnX and gnX are compact. There exist an ∈ fnX and bn ∈ gnX
with δ(fnX,gnX) = d(an,bn). By the compactness of X, we can extract two subse-

quences {ani}i∈N ⊂ {an}n∈N and {bni}i∈N ⊂ {bn}n∈N such that ani → a and bni → b
as i → ∞. For each m ∈ N, there exists im ∈ N such that nim > m. Consequently,

{anj ,anj+1 , . . .} ⊂ fnimX ⊂ fmX for each j ≥ im. This implies that a is in fmX by the

compactness of fmX. Hence a∈A. Similarly we have b ∈ B. Thus

r = lim
n→∞δ

(
fnX,gnX

)= lim
i→∞

δ
(
fniX,gniX

)

= lim
n→∞d

(
ani , bni

)= d(a,b)
≤ δ(A,B)≤ r .

(2.2)

Therefore, r = δ(A,B). This completes the proof.

3. Fixed point theorems and examples. Our main results are as follows.

Theorem 3.1. Let f and g be continuous self mapping of a compact metric space

(X,d). If (f ,g) has∗-d.o.d., then each of f and g has a unique fixed point and these two

points coincide. Furthermore, for each x,y ∈X, there exist subsequences {fnix}i∈N ⊂
{fnx}n∈N and {gmiy}i∈N ⊂ {gny}n∈N such that {fnix}i∈N and {gmiy}i∈N converge

to the unique fixed point of f .
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Proof. Let x,y ∈ X. Since X is compact, L(x,f ) �= ∅. For each t ∈ L(x,f ), there

exists a subsequence {fnix}i∈N of {fnx}n∈N such that fnix → t as i → ∞. By the

continuity of f , we have fni+1x → ft ∈ L(x,f ). Consequently, fL(x,f ) ⊆ L(x,f ).
Note that L(x,f ) is closed. A Zorn’s lemma argument establishes that there exists

a minimal f -invariant nonempty closed subset A of L(x,f ). Similarly, we can find

a minimal g-invariant nonempty closed subset B of L(y,g). Note that f -invariance

ensures that fO(p,f )⊆O(p,f )⊆A for each p ∈A. It follows from the continuity of

f that fO(p,f ) ⊆ fO(p,f ) ⊆ O(p,f ) for p ∈ A. By the minimality of A, we obtain

A=O(p,f ).ThusA=O(fnp,f ) forp ∈A andn∈ω. Similarly, we haveO(q,g)= B =
O(gnq,g) for q ∈ B and n∈ω. We now claim that δ(A,B)= 0. Otherwise, δ(A,B) > 0.

Since (f ,g) has ∗-d.o.d., we have

δ(A,B)= δ(O(p,f ),O(q,g))

> lim
n→∞δ

(
O
(
fnp,f

)
,O
(
gnq,g

))

= δ(A,B),
(3.1)

which is impossible. Hence δ(A,B)= 0, which implies that A= B = a singleton= {w},
say. It is clear that w is a common fixed point of f and g.

If u is a fixed point of f and u �=w. Then we obtain

d(u,w)= δ(O(u,f),O(w,g))

> lim
n→∞δ

(
O
(
fnu,f

)
,O
(
gnw,g

))

= d(u,w),
(3.2)

which is a contradiction. Hencew is a unique fixed point of f . Similarly, we may show

that w is also a unique fixed point of g.

Note thatw ∈A∩B ⊆ L(x,f )∩L(y,g). Thus there exist subsequences {fnix}i∈N ⊂
{fnx}n∈N and {gmiy}i∈N ⊂ {gny}n∈N such that fnix →w and gmiy →w as i→∞.

This completes the proof.

Remark 3.2. The following example shows that if the condition that (f ,g) has

∗-d.o.d. is omitted or is replaced by the condition that (f ,g) has d.o.d. in Theorem 3.1,

then it no longer assures the existence of a common fixed point for f and g.

Example 3.3. Let X = {1,2,3,4} and d(x,y)= |x−y| for x,y ∈ X. Then (X,d) is

a compact metric space. Define f ,g :X →X as follows:

f1= f2= g1= 2, f3= 1, f4= g3= g4= 3, g2= 4. (3.3)

Clearly, f and g are continuous. Since

lim
n→∞δ

(
O
(
fn2,f

)
,O
(
gn3,g

))= 1= δ(O(2,f ),O(3,g)), (3.4)

it follows that (f ,g) has no ∗-d.o.d. Note that

lim
n→∞δ

(
O
(
fnx,f

)
,O
(
gnx,g

))= δ({2},{3})= 1< 2≤ δ(O(x,f ),O(x,g)), (3.5)

for all x ∈X. That is, (f ,g) has d.o.d. But f and g do not have a common fixed point.
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As a particular case of Theorem 3.1 we have the following corollary.

Corollary 3.4. Let f be a continuous self mapping of a compact metric space

(X,d). If (f ,f ) has ∗-d.o.d., then f has a unique fixed point. Furthermore, for each

x ∈ X there exists some subsequence of {fnx}n∈N converges to the unique fixed point

of f .

Question 3.5. Let f satisfy all the conditions of Corollary 3.4 and C =∩n∈NfnX.

Does C contain exactly one point?

Theorem 3.6. Let f and g be continuous self mappings of a compact metric space

(X,d) satisfying for some r ,s ∈N,

d
(
f rx,gsy

)
< δ

(∪h∈Hf hO(x,f ),∪t∈HgtO(y,g)
)
, (3.6)

for all x,y ∈X for which the right-hand side of (3.6) is positive. Then

(i) each of f and g has a uniformly contractive fixed point and these two points

coincide.

(ii) Hf and Hg have a unique common fixed point.

(iii) (f ,g) has both ∗-d.o.d. and d.o.d.

Proof. Let A = ∩n∈NfnX and B = ∩n∈NgnX. We assert that δ(A,B) = 0. If not,

then δ(A,B) > 0. By Lemma 2.1, fA=A �= ∅, gB = B �= ∅, A and B are compact. Thus

there exist a,u ∈ A and b,v ∈ B such that δ(A,B) = d(a,b), a = f ru and b = gsv .

Clearly a∈∪h∈Hf hO(u,f ) and b ∈∪t∈HgtO(v,g). Using (3.6) we have

δ(A,B)= d(f ru,gsv)

< δ
(∪h∈Hf hO(u,f ),∪t∈HgtO(v,g)

)

≤ δ(A,B),
(3.7)

which is absurd. Hence δ(A,B) = 0. This implies that A = B = a singleton. Thus (i)

follows from Theorem 1 of Leader [5].

We now show that (ii) holds. Let A= B = {w}. It is easy to see that Hf and Hg have

a common fixed point w. Suppose that v is a common fixed point of Hf and Hg and

v �=w. From (3.6) we get

d(v,w)= d(f rv,gsw)

< δ
(∪h∈Hf hO(v,g),∪t∈HgtO(w,g)

)

= d(v,w),
(3.8)

which is a contradiction. Hence Hf and Hg have a unique common fixed point.

We next show that (iii) holds. Assume thatx,y are inX with δ(O(x,f ),O(y,g)) > 0.

Since O(fnx,f )⊂ fnX and O(gny,g)⊂ gnX, we have by Lemma 2.2

δ
(
O
(
fnx,f

)
,O
(
gny,g

))≤ δ(fnX,gnX)

�→ δ(A,B)
= 0

(3.9)
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as n→∞. It follows that

lim
n→∞δ

(
O
(
fnx,f

)
,O
(
gny,g

))= 0< δ
(
O(x,f ),O(y,g)

)
. (3.10)

Hence (f ,g) has ∗-d.o.d. This implies that (f ,g) has also d.o.d. This completes the

proof.

As in the proof of Theorem 3.6, we obtain the following theorem.

Theorem 3.7. Let f be a continuous self mapping of a compact metric space (X,d)
satisfying for some r ,s ∈N,

d
(
f rx,f sy

)
< δ

(∪h∈Hf h
(
O(x,f )∪O(y,f))), (3.11)

for all x,y ∈X for which the right-hand side of (3.11) is positive. Then

(i) f has a uniformly contractive fixed point w. In fact, w = hw for h∈Hf .

(ii) (f ,f ) has both ∗-d.o.d. and d.o.d.

Remark 3.8. Corollary 4.3 of Jungck [3] is a special case of Theorem 3.7(i).

From Theorem 3.6 we have the following corollary.

Corollary 3.9. Let f and g be continuous self mappings of a compact metric space

(X,d) satisfying

d
(
f 2x,g2y

)
< δ

(∪h∈Hf hO(x,f ),∪t∈HgtO(y,g)
)
, (3.12)

for all x,y ∈ X for which the right-hand side of (3.12) is positive. Then (i), (ii), and (iii)

of Theorem 3.6 hold.

Fisher [2] obtained the following result.

Theorem 3.10. Suppose that f and g are continuous self mappings of a compact

metric space (X,d) satisfying either

d
(
f 2x,g2y

)
<max

{
d(x,gy),d(y,fx),d(x,y)

}

if max
{
d(x,gy),d(y,fx),d(x,y)

} �= 0,
(3.13)

or

d
(
f 2x,g2y

)= 0 if max
{
d(x,gy),d(y,fx),d(x,y)

}= 0, (3.14)

for all x,y ∈X. Then f and g have a unique common fixed point.

Remark 3.11. Note that max{d(x,gy),d(y,fx),d(x,y)} = 0 implies x = y =
fx = gy = f 2x = g2y . Hence condition (3.14) of Theorem 3.10 can be omitted. It is

easy to see that (3.13) implies (3.12). The following example reveals that Corollary 3.9

extend properly Theorem 3.10.
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Example 3.12. Let X = {1,2,3,4,5} with the usual metric. Define f ,g :X →X by

f3= g3= 2, g4= 3, f2= g1= 4,

f1= f4= f5= g2= g5= 5.
(3.15)

Then f and g are continuous self mappings of a compact metric space (X,d). It is

easy to see that

δ
(∪h∈Hf hO(x,f ),∪t∈HgtO(y,g)

)= 0 (3.16)

if and only if (x,y)= (5,5). It is now a simple matter to show that

d
(
f 2x,g2y

)≤ 3< 4= δ(∪h∈Hf hO(x,f ),∪t∈HgtO(y,g)
)
, (3.17)

for (x,y) �= (5,5). Thus the assumptions of Corollary 3.9 are satisfied. But Theorem

3.10 is not applicable since

d
(
f 2f ,g2g

)= 1=max
{
d(3,g3),d(3,f3),d(3,3)

}
, (3.18)

that is, f and g do not satisfy (3.13) for x =y = 3.
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