ON FUZZY DOT SUBALGEBRAS OF BCH-ALGEBRAS

SUNG MIN HONG, YOUNG BAE JUN, SEON JEONG KIM, and GWANG IL KIM

(Received 21 December 2000)

ABSTRACT. We introduce the notion of fuzzy dot subalgebras in BCH-algebras, and study its various properties.

2000 Mathematics Subject Classification. 06F35, 03G25, 03E72.

1. Introduction. In [4], Hu and Li introduced the notion of BCH-algebras which are a generalization of BCK/BCI-algebras. In 1965, Zadeh [6] introduced the concept of fuzzy subsets. Since then several researchers have applied this notion to various mathematical disciplines. Jun [5] applied it to BCH-algebras, and he considered the fuzzification of ideals and filters in BCH-algebras. In this paper, we introduce the notion of a fuzzy dot subalgebra of a BCH-algebra as a generalization of a fuzzy subalgebra, and then we investigate several basic properties related to fuzzy dot subalgebras.

2. Preliminaries. A BCH-algebra is an algebra (X, *, 0) of type (2, 0) satisfying the following conditions:

(i) x * x = 0,

(ii) x * y = 0 = y * x implies x = y,

(iii) (x * y) * z = (x * z) * y for all $x, y, z \in X$.

In any BCH-algebra *X*, the following hold (see [2]):

- (P1) x * 0 = x,
- (P2) x * 0 = 0 implies x = 0,
- (P3) 0 * (x * y) = (0 * x) * (0 * y).

A BCH-algebra *X* is said to be *medial* if x * (x * y) = y for all $x, y \in X$. A nonempty subset *S* of a BCH-algebra *X* is called a *subalgebra* of *X* if $x * y \in S$ whenever $x, y \in S$. A map *f* from a BCH-algebra *X* to a BCH-algebra *Y* is called a *homomorphism* if f(x * y) = f(x) * f(y) for all $x, y \in X$.

We now review some fuzzy logic concepts. A fuzzy subset of a set *X* is a function $\mu: X \rightarrow [0,1]$. For any fuzzy subsets μ and ν of a set *X*, we define

$$\mu \subseteq \nu \iff \mu(x) \le \nu(x) \quad \forall x \in X,$$

$$(\mu \cap \nu)(x) = \min \{\mu(x), \nu(x)\} \quad \forall x \in X.$$
(2.1)

Let $f : X \to Y$ be a function from a set *X* to a set *Y* and let μ be a fuzzy subset of *X*.

The fuzzy subset v of Y defined by

$$\nu(\gamma) := \begin{cases} \sup_{x \in f^{-1}(\gamma)} \mu(x) & \text{if } f^{-1}(\gamma) \neq \emptyset, \ \forall \gamma \in Y, \\ 0 & \text{otherwise,} \end{cases}$$
(2.2)

is called the *image* of μ under f, denoted by $f[\mu]$. If ν is a fuzzy subset of Y, the fuzzy subset μ of X given by $\mu(x) = \nu(f(x))$ for all $x \in X$ is called the *preimage* of ν under f and is denoted by $f^{-1}[\nu]$.

A fuzzy relation μ on a set X is a fuzzy subset of $X \times X$, that is, a map $\mu : X \times X \rightarrow [0,1]$. A fuzzy subset μ of a BCH-algebra X is called a *fuzzy subalgebra* of X if $\mu(x * y) \ge \min\{\mu(x), \mu(y)\}$ for all $x, y \in X$.

3. Fuzzy product subalgebras. In what follows let *X* denote a BCH-algebra unless otherwise specified.

DEFINITION 3.1. A fuzzy subset μ of X is called a *fuzzy dot subalgebra* of X if $\mu(x * y) \ge \mu(x) \cdot \mu(y)$ for all $x, y \in X$.

EXAMPLE 3.2. Consider a BCH-algebra $X = \{0, a, b, c\}$ having the following Cayley table (see [1]):

*	0	а	b	С
0	0	0	0	0
а	a	0	0	а
b	b	С	0	С
С	С	0	0	0

Define a fuzzy set μ in X by $\mu(0) = 0.5$, $\mu(a) = 0.6$, $\mu(b) = 0.4$, $\mu(c) = 0.3$. It is easy to verify that μ is a fuzzy dot subalgebra of X.

Note that every fuzzy subalgebra is a fuzzy dot subalgebra, but the converse is not true. In fact, the fuzzy dot subalgebra μ in Example 3.2 is not a fuzzy subalgebra since

$$\mu(a * a) = \mu(0) = 0.5 < 0.6 = \mu(a) = \min\{\mu(a), \mu(a)\}.$$
(3.1)

PROPOSITION 3.3. If μ is a fuzzy dot subalgebra of X, then

$$\mu(0) \ge (\mu(x))^2, \quad \mu(0^n * x) \ge (\mu(x))^{2n+1},$$
(3.2)

for all $x \in X$ and $n \in \mathbb{N}$ where $0^n * x = 0 * (0 * (\cdots (0 * x) \cdots))$ in which 0 occurs n times.

PROOF. Since x * x = 0 for all $x \in X$, it follows that

$$\mu(0) = \mu(x * x) \ge \mu(x) \cdot \mu(x) = (\mu(x))^{2}$$
(3.3)

for all $x \in X$. The proof of the second part is by induction on n. For n = 1, we have $\mu(0 * x) \ge \mu(0) \cdot \mu(x) \ge (\mu(x))^3$ for all $x \in X$. Assume that $\mu(0^k * x) \ge (\mu(x))^{2k+1}$ for

all $x \in X$. Then

$$\mu(0^{k+1} * x) = \mu(0 * (0^{k} * x)) \ge \mu(0) \cdot \mu(0^{k} * x)$$

$$\ge (\mu(x))^{2} \cdot (\mu(x))^{2k+1} = (\mu(x))^{2(k+1)+1}.$$
(3.4)

Hence $\mu(0^n * x) \ge (\mu(x))^{2n+1}$ for all $x \in X$ and $n \in \mathbb{N}$.

PROPOSITION 3.4. Let μ be a fuzzy dot subalgebra of X. If there exists a sequence $\{x_n\}$ in X such that $\lim_{n\to\infty} (\mu(x_n))^2 = 1$, then $\mu(0) = 1$.

PROOF. According to Proposition 3.3, $\mu(0) \ge (\mu(x_n))^2$ for each $n \in \mathbb{N}$. Since $1 \ge \mu(0) \ge \lim_{n \to \infty} (\mu(x_n))^2 = 1$, it follows that $\mu(0) = 1$.

THEOREM 3.5. If μ and ν are fuzzy dot subalgebras of *X*, then so is $\mu \cap \nu$.

PROOF. Let $x, y \in X$, then

$$(\mu \cap \nu)(x * y) = \min \{\mu(x * y), \nu(x * y)\}$$

$$\geq \min \{\mu(x) \cdot \mu(y), \nu(x) \cdot \nu(y)\}$$

$$\geq (\min \{\mu(x), \nu(x)\}) \cdot (\min \{\mu(y), \nu(y)\})$$

$$= ((\mu \cap \nu)(x)) \cdot ((\mu \cap \nu)(y)).$$
(3.5)

Hence $\mu \cap \nu$ is a fuzzy dot subalgebra of *X*.

Note that a fuzzy subset μ of *X* is a fuzzy subalgebra of *X* if and only if a nonempty level subset

$$U(\mu;t) := \{ x \in X \mid \mu(x) \ge t \}$$
(3.6)

is a subalgebra of *X* for every $t \in [0, 1]$. But, we know that if μ is a fuzzy dot subalgebra of *X*, then there exists $t \in [0, 1]$ such that

$$U(\mu;t) := \{ x \in X \mid \mu(x) \ge t \}$$
(3.7)

is not a subalgebra of *X*. In fact, if μ is the fuzzy dot subalgebra of *X* in Example 3.2, then

$$U(\mu; 0.4) = \{ x \in X \mid \mu(x) \ge 0.4 \} = \{ 0, a, b \}$$
(3.8)

is not a subalgebra of *X* since $b * a = c \notin U(\mu; 0.4)$.

THEOREM 3.6. If μ is a fuzzy dot subalgebra of X, then

$$U(\mu;1) := \{ x \in X \mid \mu(x) = 1 \}$$
(3.9)

is either empty or is a subalgebra of X.

PROOF. If *x* and *y* belong to $U(\mu;1)$, then $\mu(x * y) \ge \mu(x) \cdot \mu(y) = 1$. Hence $\mu(x * y) = 1$ which implies $x * y \in U(\mu;1)$. Consequently, $U(\mu;1)$ is a subalgebra of *X*.

THEOREM 3.7. Let X be a medial BCH-algebra and let μ be a fuzzy subset of X such that

$$\mu(0 * x) \ge \mu(x), \qquad \mu(x * (0 * y)) \ge \mu(x) \cdot \mu(y), \tag{3.10}$$

for all $x, y \in X$. Then μ is a fuzzy dot subalgebra of X.

PROOF. Since *X* is medial, we have 0 * (0 * y) = y for all $y \in X$. Hence

$$\mu(x * y) = \mu(x * (0 * (0 * y))) \ge \mu(x) \cdot \mu(0 * y) \ge \mu(x) \cdot \mu(y)$$
(3.11)

for all $x, y \in X$. Therefore μ is a fuzzy dot subalgebra of X.

THEOREM 3.8. Let $g : X \to Y$ be a homomorphism of BCH-algebras. If v is a fuzzy dot subalgebra of Y, then the preimage $g^{-1}[v]$ of v under g is a fuzzy dot subalgebra of X.

PROOF. For any $x_1, x_2 \in X$, we have

$$g^{-1}[\nu](x_1 * x_2) = \nu(g(x_1 * x_2)) = \nu(g(x_1) * g(x_2))$$

$$\geq \nu(g(x_1)) \cdot \nu(g(x_2)) = g^{-1}[\nu](x_1) \cdot g^{-1}[\nu](x_2).$$
(3.12)

Thus $g^{-1}[v]$ is a fuzzy dot subalgebra of *X*.

THEOREM 3.9. Let $f : X \to Y$ be an onto homomorphism of BCH-algebras. If μ is a fuzzy dot subalgebra of X, then the image $f[\mu]$ of μ under f is a fuzzy dot subalgebra of Y.

PROOF. For any $y_1, y_2 \in Y$, let $A_1 = f^{-1}(y_1)$, $A_2 = f^{-1}(y_2)$, and $A_{12} = f^{-1}(y_1 * y_2)$. Consider the set

$$A_1 * A_2 := \{ x \in X \mid x = a_1 * a_2 \text{ for some } a_1 \in A_1, a_2 \in A_2 \}.$$
(3.13)

If $x \in A_1 * A_2$, then $x = x_1 * x_2$ for some $x_1 \in A_1$ and $x_2 \in A_2$ so that

$$f(x) = f(x_1 * x_2) = f(x_1) * f(x_2) = y_1 * y_2,$$
(3.14)

that is, $x \in f^{-1}(y_1 * y_2) = A_{12}$. Hence $A_1 * A_2 \subseteq A_{12}$. It follows that

$$f[\mu](y_1 * y_2) = \sup_{x \in f^{-1}(y_1 * y_2)} \mu(x) = \sup_{x \in A_{12}} \mu(x)$$

$$\geq \sup_{x \in A_1 * A_2} \mu(x) \geq \sup_{x_1 \in A_1, \ x_2 \in A_2} \mu(x_1 * x_2)$$

$$\geq \sup_{x_1 \in A_1, \ x_2 \in A_2} \mu(x_1) \cdot \mu(x_2).$$
(3.15)

Since $\cdot : [0,1] \times [0,1] \rightarrow [0,1]$ is continuous, for every $\varepsilon > 0$ there exists $\delta > 0$ such that if $\tilde{x}_1 \ge \sup_{x_1 \in A_1} \mu(x_1) - \delta$ and $\tilde{x}_2 \ge \sup_{x_2 \in A_2} \mu(x_2) - \delta$, then $\tilde{x}_1 \cdot \tilde{x}_2 \ge \sup_{x_1 \in A_1} \mu(x_1) \cdot \sup_{x_2 \in A_2} \mu(x_2) - \varepsilon$. Choose $a_1 \in A_1$ and $a_2 \in A_2$ such that $\mu(a_1) \ge$

 $\sup_{x_1 \in A_1} \mu(x_1) - \delta$ and $\mu(a_2) \ge \sup_{x_2 \in A_2} \mu(x_2) - \delta$. Then

$$\mu(a_1) \cdot \mu(a_2) \ge \sup_{x_1 \in A_1} \mu(x_1) \cdot \sup_{x_2 \in A_2} \mu(x_2) - \varepsilon.$$
(3.16)

Consequently,

$$f[\mu](y_1 * y_2) \ge \sup_{x_1 \in A_1, \ x_2 \in A_2} \mu(x_1) \cdot \mu(x_2)$$

$$\ge \sup_{x_1 \in A_1} \mu(x_1) \cdot \sup_{x_2 \in A_2} \mu(x_2)$$

$$= f[\mu](y_1) \cdot f[\mu](y_2),$$
(3.17)

and hence $f[\mu]$ is a fuzzy dot subalgebra of *Y*.

DEFINITION 3.10. Let σ be a fuzzy subset of *X*. The *strongest fuzzy* σ *-relation* on *X* is the fuzzy subset μ_{σ} of $X \times X$ given by $\mu_{\sigma}(x, y) = \sigma(x) \cdot \sigma(y)$ for all $x, y \in X$.

THEOREM 3.11. Let μ_{σ} be the strongest fuzzy σ -relation on X, where σ is a fuzzy subset of X. If σ is a fuzzy dot subalgebra of X, then μ_{σ} is a fuzzy dot subalgebra of $X \times X$.

PROOF. Assume that σ is a fuzzy dot subalgebra of *X*. For any $x_1, x_2, y_1, y_2 \in X$, we have

$$\mu_{\sigma}((x_{1}, y_{1}) * (x_{2}, y_{2})) = \mu_{\sigma}(x_{1} * x_{2}, y_{1} * y_{2})$$

$$= \sigma(x_{1} * x_{2}) \cdot \sigma(y_{1} * y_{2})$$

$$\geq (\sigma(x_{1}) \cdot \sigma(x_{2})) \cdot (\sigma(y_{1}) \cdot \sigma(y_{2}))$$

$$= (\sigma(x_{1}) \cdot \sigma(y_{1})) \cdot (\sigma(x_{2}) \cdot \sigma(y_{2}))$$

$$= \mu_{\sigma}(x_{1}, y_{1}) \cdot \mu_{\sigma}(x_{2}, y_{2}),$$
(3.18)

and so μ_{σ} is a fuzzy dot subalgebra of *X*×*X*.

DEFINITION 3.12. Let σ be a fuzzy subset of *X*. A fuzzy relation μ on *X* is called a *fuzzy* σ *-product relation* if $\mu(x, y) \ge \sigma(x) \cdot \sigma(y)$ for all $x, y \in X$.

DEFINITION 3.13. Let σ be a fuzzy subset of *X*. A fuzzy relation μ on *X* is called a *left fuzzy relation* on σ if $\mu(x, y) = \sigma(x)$ for all $x, y \in X$.

Similarly, we can define a right fuzzy relation on σ . Note that a left (resp., right) fuzzy relation on σ is a fuzzy σ -product relation.

THEOREM 3.14. Let μ be a left fuzzy relation on a fuzzy subset σ of X. If μ is a fuzzy dot subalgebra of $X \times X$, then σ is a fuzzy dot subalgebra of X.

PROOF. Assume that a left fuzzy relation μ on σ is a fuzzy dot subalgebra of $X \times X$. Then

$$\sigma(x_1 * x_2) = \mu(x_1 * x_2, y_1 * y_2) = \mu((x_1, y_1) * (x_2, y_2))$$

$$\geq \mu(x_1, y_1) \cdot \mu(x_2, y_2) = \sigma(x_1) \cdot \sigma(x_2)$$
(3.19)

for all $x_1, x_2, y_1, y_2 \in X$. Hence σ is a fuzzy dot subalgebra of X.

THEOREM 3.15. Let μ be a fuzzy relation on X satisfying the inequality $\mu(x, y) \le \mu(x, 0)$ for all $x, y \in X$. Given $z \in X$, let σ_z be a fuzzy subset of X defined by $\sigma_z(x) = \mu(x, z)$ for all $x \in X$. If μ is a fuzzy dot subalgebra of $X \times X$, then σ_z is a fuzzy dot subalgebra of X for all $z \in X$.

PROOF. Let $z, x, y \in X$, then

$$\sigma_{z}(x * y) = \mu(x * y, z) = \mu(x * y, z * 0)$$

= $\mu((x, z) * (y, 0)) \ge \mu(x, z) \cdot \mu(y, 0)$
 $\ge \mu(x, z) \cdot \mu(y, z) = \sigma_{z}(x) \cdot \sigma_{z}(y),$ (3.20)

completing the proof.

THEOREM 3.16. Let μ be a fuzzy relation on X and let σ_{μ} be a fuzzy subset of X given by $\sigma_{\mu}(x) = \inf_{y \in X} \mu(x, y) \cdot \mu(y, x)$ for all $x \in X$. If μ is a fuzzy dot subalgebra of $X \times X$ satisfying the equality $\mu(x, 0) = 1 = \mu(0, x)$ for all $x \in X$, then σ_{μ} is a fuzzy dot subalgebra of subalgebra of X.

PROOF. For any $x, y, z \in X$, we have

$$\mu(x * y, z) = \mu(x * y, z * 0) = \mu((x, z) * (y, 0))$$

$$\geq \mu(x, z) \cdot \mu(y, 0) = \mu(x, z),$$

$$\mu(z, x * y) = \mu(z * 0, x * y) = \mu((z, x) * (0, y))$$

$$\geq \mu(z, x) \cdot \mu(0, y) = \mu(z, x).$$

(3.21)

It follows that

$$\mu(x * y, z) \cdot \mu(z, x * y) \ge \mu(x, z) \cdot \mu(z, x)$$

$$\ge (\mu(x, z) \cdot \mu(z, x)) \cdot (\mu(y, z) \cdot \mu(z, y))$$
(3.22)

so that

$$\sigma_{\mu}(x * y) = \inf_{z \in X} \mu(x * y, z) \cdot \mu(z, x * y)$$

$$\geq \left(\inf_{z \in X} \mu(x, z) \cdot \mu(z, x)\right) \cdot \left(\inf_{z \in X} \mu(y, z) \cdot \mu(z, y)\right)$$
(3.23)

$$= \sigma_{\mu}(x) \cdot \sigma_{\mu}(y).$$

This completes the proof.

DEFINITION 3.17 (see Choudhury et al. [3]). A *fuzzy map* f from a set X to a set Y is an ordinary map from X to the set of all fuzzy subsets of Y satisfying the following conditions:

(C1) for all $x \in X$, there exists $y_x \in X$ such that $(f(x))(y_x) = 1$,

(C2) for all $x \in X$, $f(x)(y_1) = f(x)(y_2)$ implies $y_1 = y_2$.

One observes that a fuzzy map f from X to Y gives rise to a unique ordinary map $\mu_f: X \times X \to I$, given by $\mu_f(x, y) = f(x)(y)$. One also notes that a fuzzy map from X to Y gives a unique ordinary map $f_1: X \to Y$ defined as $f_1(x) = y_x$.

DEFINITION 3.18. A fuzzy map f from a BCH-algebra X to a BCH-algebra Y is called a *fuzzy homomorphism* if

$$\mu_f(x_1 * x_2, y) = \sup_{y = y_1 * y_2} \mu_f(x_1, y_1) \cdot \mu_f(x_2, y_2)$$
(3.24)

for all $x_1, x_2 \in X$ and $y \in Y$.

One notes that if f is an ordinary map, then the above definition reduces to an ordinary homomorphism. One also observes that if a fuzzy map f is a fuzzy homomorphism, then the induced ordinary map f_1 is an ordinary homomorphism.

PROPOSITION 3.19. Let $f: X \to Y$ be a fuzzy homomorphism of BCH-algebras. Then

- (i) $\mu_f(x_1 * x_2, y_1 * y_2) \ge \mu_f(x_1, y_1) \cdot \mu_f(x_2, y_2)$ for all $x_1, x_2 \in X$ and $y_1, y_2 \in Y$. (ii) $\mu_f(0, 0) = 1$.
- (iii) $\mu_f(0 * x, 0 * y) \ge \mu_f(x, y)$ for all $x \in X$ and $y \in Y$.
- (iv) if *Y* is medial and $\mu_f(x, y) = t \neq 0$, then $\mu_f(0, y_x * y) = t$ for all $x \in X$ and $y \in Y$, where $y_x \in Y$ with $\mu_f(x, y_x) = 1$.

PROOF. (i) For every $x_1, x_2 \in X$ and $y_1, y_2 \in Y$, we have

$$\mu_{f}(x_{1} * x_{2}, y_{1} * y_{2}) = \sup_{\substack{y_{1} * y_{2} = \tilde{y}_{1} * \tilde{y}_{2}}} \mu_{f}(x_{1}, \tilde{y}_{1}) \cdot \mu_{f}(x_{2}, \tilde{y}_{2})$$

$$\geq \mu_{f}(x_{1}, y_{1}) \cdot \mu_{f}(x_{2}, y_{2}).$$
(3.25)

(ii) Let $x \in X$ and $y_x \in Y$ be such that $\mu_f(x, y_x) = 1$. Using (I) and (i), we get

$$\mu_f(0,0) = \mu_f(x * x, y_x * y_x) \ge \mu_f(x, y_x) \cdot \mu_f(x, y_x) = 1$$
(3.26)

and so $\mu_f(0, 0) = 1$.

(iii) The proof follows from (i) and (ii).

(iv) Assume that *Y* is medial and $\mu_f(x, y) = t \neq 0$ for all $x \in X$ and $y \in Y$, and let $y_x \in Y$ be such that $\mu_f(x, y_x) = 1$. Then

$$\mu_{f}(0, y_{x} * y) = \mu_{f}(x * x, y_{x} * y) \ge \mu_{f}(x, y_{x}) \cdot \mu_{f}(x, y)$$

= $t = \mu_{f}(x, y) = \mu_{f}(x * 0, y_{x} * (y_{x} * y))$
 $\ge \mu_{f}(x, y_{x}) \cdot \mu_{f}(0, y_{x} * y) = \mu_{f}(0, y_{x} * y),$ (3.27)

and hence $\mu_f(0, y_x * y) = t$. This completes the proof.

ACKNOWLEDGEMENT. This work was supported by Korea Research Foundation Grant (KRF-99-005-D00003).

References

- B. Ahmad, On classification of BCH-algebras, Math. Japon. 35 (1990), no. 5, 801-804. MR 91h:06035. Zbl 729.06014.
- [2] M. A. Chaudhry and H. Fakhar-Ud-Din, *Ideals and filters in BCH-algebras*, Math. Japon. 44 (1996), no. 1, 101–111. CMP 1 402 806. Zbl 0880.06013.
- [3] F. P. Choudhury, A. B. Chakraborty, and S. S. Khare, A note on fuzzy subgroups and fuzzy homomorphism, J. Math. Anal. Appl. 131 (1988), no. 2, 537-553. MR 89m:20086. Zbl 652.20032.

SUNG MIN HONG ET AL.

- Q. P. Hu and X. Li, On BCH-algebras, Math. Sem. Notes Kobe Univ. 11 (1983), no. 2, part 2, 313–320. MR 86a:06016. Zbl 579.03047.
- [5] Y. B. Jun, Fuzzy closed ideals and fuzzy filters in BCH-algebras, J. Fuzzy Math. 7 (1999), no. 2, 435-444. CMP 1 697 759. Zbl 939.06018.
- [6] L. A. Zadeh, *Fuzzy sets*, Information and Control 8 (1965), 338–353. MR 36#2509. Zbl 139.24606.

Sung Min Hong: Department of Mathematics, Gyeongsang National University, Chinju, 660-701, Korea

E-mail address: smhong@nongae.gsnu.ac.kr

YOUNG BAE JUN: DEPARTMENT OF MATHEMATICS EDUCATION, GYEONGSANG NATIONAL UNIVERSITY, CHINJU 660-701, KOREA

E-mail address: ybjun@nongae.gsnu.ac.kr

Seon Jeong Kim: Department of Mathematics, Gyeongsang National University, Chinju $660\mathchar`201$, Korea

E-mail address: skim@nongae.gsnu.ac.kr

GWANG IL KIM: DEPARTMENT OF MATHEMATICS, GYEONGSANG NATIONAL UNIVERSITY, CHINJU 660-701, KOREA

E-mail address: gikim@nongae.gsnu.ac.kr