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Abstract. We prove necessary and sufficient Tauberian conditions for sequences sum-
mable by weighted mean methods. The main results of this paper apply to all weighted
mean methods and unify the results known in the literature for particular methods. Among
others, the conditions in our theorems are easy consequences of the slowly decreasing con-
dition for real numbers, or slowly oscillating condition for complex numbers. Therefore,
practically all classical (one-sided as well as two-sided) Tauberian conditions for weighted
mean methods are corollaries of our two main theorems.
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1. Introduction. Let (sk : k = 0,1,2, . . .) be a sequence of real or complex numbers

and p = (pk) be a sequence of nonnegative numbers such that p0 > 0 and

Pn :=
n∑
k=0

pk �→∞ as n �→∞. (1.1)

The weighted mean (formed with this sequence p) of the sequence (sk) is defined by

tn := 1
Pn

n∑
k=0

pksk for n∈N0. (1.2)

The sequence (sk) is said to be summable by this weighted mean method (shortly

summable (N̄,p)) if the sequence (tn) converges to a finite limit s.
It is well known that condition (1.1) is necessary and sufficient that every convergent

sequence is summable (N̄,p) to the same limit, that is, the weighted mean method in

question is regular. We are interested in the converse implication. Under what condi-

tions does convergence follow from summability by the given weighted mean method?

There are many results answering this question see for example, [2, 6, 8, 9, 12]. How-

ever, our two main results give necessary and sufficient Tauberian conditions for all

such methods and thus contain all particular results of this kind.

2. Main results. Let (ρn) be a strictly increasing sequence of positive integers such

that ρn→∞ as n→∞. We say that ρ is an upper allowed sequence with respect to p if

liminf
n→∞

Pρn
Pn

> 1. (2.1)
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Similarly, we say that ρ is a lower allowed sequence for p if

liminf
n→∞

Pn
Pρn

> 1. (2.2)

Denote by Λu andΛ� the classes of all upper or lower allowed sequences, respectively.

In the case of real sequences (sk), we will prove the following one-sided Tauberian

theorem.

Theorem 2.1. Let (sk) be a sequence of real numbers, which is summable (N̄,p) to

a finite limit s. Then

lim
k→∞

sk = s (2.3)

if and only if

sup
ρ∈Λu

liminf
n→∞

1
Pρn−Pn

ρn∑
k=n+1

pk
(
sk−sn

)≥ 0, (2.4)

sup
ρ∈Λ�

liminf
n→∞

1
Pn−Pρn

n∑
k=ρn+1

pk
(
sn−sk

)≥ 0. (2.5)

A few remarks are appropriate here.

Remark 2.2. (i) Obviously, it is sufficient to verify conditions (2.4) and (2.5) for

some subclasses Λ̃u and Λ̃�. A natural type of subclasses is given by the following

construction. Define

ρun(λ) :=min

{
m>n;

m∑
k=n+1

pk
Pk
≥ λ−1

}
for λ > 1, (2.6)

then we have

Pρun(λ) ≥ Pn+Pn
ρun(λ)∑
k=n+1

pk
Pk
≥ λPn (2.7)

and we may consider Λ̃u := {(ρun(λ))n, λ > 1} instead of Λu.

Analogously, we define

ρ�n(λ) :=max

{
m<n;

n∑
k=m+1

pk
Pk
≥ λ−1

}
for λ > 1, (2.8)

then we have

Pn ≥ Pρ�n(λ)+Pρ�n(λ) ·
n∑

k=ρ�n(λ)+1

pk
Pk
≥ λPρ�n(λ) (2.9)

and we may consider Λ̃� := {(ρ�n(λ))n,λ > 1} instead of Λ�.
(ii) Following Schmidt [10] (see also [2, pages 124–125]), a sequence of numbers

is slowly decreasing with respect to the method (N̄,p) if the following condition is

satisfied:

lim
λ→1+

liminf
n→∞

min
n<k≤ρun(λ)

{
sk−sn

}≥ 0. (2.10)
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Note that for m= ρ�n(λ)+1, we have

ρum(λ)−m≥n−ρ�n(λ) since
n∑

ν=m+1

pν
Pν
< λ−1 (2.11)

by the maximality of ρ�n(λ). Hence

liminf
n→∞

min
ρ�n(λ)<k≤n

{
sn−sk

}≥ liminf
k→∞

min
k<n≤ρuk (λ)

{
sn−sk

}
(2.12)

and from (2.10) it follows that

lim
λ→1+

liminf
n→∞

min
ρ�n(λ)<k≤n

{
sn−sk

}≥ 0. (2.13)

So, we have that (2.10) implies (2.13) and both yield trivially our TC (2.4) and (2.5).

(iii) Conditions (2.4) and (2.5) are independent of each other in general. We refer

to the example given in [7, pages 56–57], in case of integral summability (C,1) on

R+. However, the discrete counterpart in case of (C,1)-summability of sequences (i.e.,

pk = 1, k∈N0) can easily be adapted.

(iv) The symmetric counterparts of conditions (2.4) and (2.5) can be written as fol-

lows:

inf
ρ∈Λu

limsup
n→∞

1
Pρn−Pn

ρn∑
k=n+1

pk
(
sk−sn

)≤ 0,

inf
ρ∈Λ�

limsup
n→∞

1
Pn−Pρn

n∑
k=ρn+1

pk
(
sn−sk

)≤ 0.
(2.14)

Now, Theorem 2.1 remains valid if conditions (2.4) and (2.5) are replaced by the latter

two conditions. As a by-product we obtain the following: assume that a real sequence

is summable (N̄,p) to a finite limit; if conditions (2.4) and (2.5) are satisfied, then

conditions (2.14) are also true, and vice versa.

(v) Analogously to (ii), we may say that a real sequence (sk) is slowly increasing

with respect to the method (N̄,p) if it satisfies the condition

lim
λ→1+

limsup
n→∞

max
n<k≤ρun(λ)

{
sk−sn

}≤ 0. (2.15)

As before, this condition implies conditions (2.14).

Next, we consider complex sequences (sk) and will prove the following two-sided

Tauberian theorem.

Theorem 2.3. Let (sk) be a sequence of complex numbers, which is summable (N̄,p)
to a finite limit s. If one of the following two conditions is satisfied:

inf
ρ∈Λu

limsup
n→∞

∣∣∣∣∣ 1
Pρn−Pn

ρn∑
k=n+1

pk
(
sk−sn

)∣∣∣∣∣= 0, (2.16)
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or

inf
ρ∈Λ�

limsup
n→∞

∣∣∣∣∣ 1
Pn−Pρn

n∑
k=ρn+1

pk
(
sn−sk

)∣∣∣∣∣= 0, (2.17)

then (2.3) holds. Conversely, (2.3) implies both (2.16) and (2.17).

Remark 2.4. A sequence is said to be slowly oscillating with respect to the method

(N̄,p) if

lim
λ→1+

limsup
n→∞

max
n<k≤ρun(λ)

∣∣sk−sn∣∣= 0. (2.18)

Condition (2.16) clearly follows from (2.18).

We note that Theorem 2.1 can be extended to sequences whose terms belong to an

ordered space over the real numbers. We do not enter into details, but refer to [5] and

also [6] as a pattern, given in the case of (C,1)-summability.

3. Proofs. The following lemma plays a basic role in the proofs of our theorems.

Lemma 3.1. Let (sk) be a sequence of complex numbers which is summable (N̄,p)
to a finite limit s.

(i) If ρ ∈Λu, then

lim
n→∞

1
Pρn−Pn

ρn∑
k=n+1

pksk = s. (3.1)

(ii) If ρ ∈Λ�, then

lim
n→∞

1
Pn−Pρn

n∑
k=ρn+1

pk sk = s . (3.2)

Proof. (i) By definition,

1
Pρn−Pn

ρn∑
k=n+1

pksk =
Pρn

Pρn−Pn
tρn−

Pn
Pρn−Pn

tn

= tρn+
Pn

Pρn−Pn
(
tρn−tn

)
.

(3.3)

By (2.1) we have

limsup
n→∞

Pn
Pρn−Pn

=
(

liminf
n→∞

Pρn
Pn

−1
)−1

<∞. (3.4)

Thus (3.1) follows from (3.3) and the convergence of (tn) to s.
(ii) By definition,

1
Pn−Pρn

n∑
k=ρn+1

pksk = Pn
Pn−Pρn

tn−
Pρn

Pn−Pρn
tρn

= tn+
Pρn

Pn−Pρn
(
tn−tρn

)
.

(3.5)

By (2.2) we have

limsup
n→∞

Pρn
Pn−Pρn

=
(

liminf
n→∞

Pn
Pρn

−1
)−1

<∞. (3.6)

Thus (3.2) follows from (3.5) and the convergence of (tn).
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Proof of Theorem 2.1. Necessity. Assume (2.3), whence the convergence of (tn)
to s follows. To verify (2.4), consider an arbitrary sequence ρ ∈Λu. By (3.1) we have

lim
n→∞

1
Pρn−Pn

ρn∑
k=n+1

pk
(
sk−sn

)= lim
n→∞

1
Pρn−Pn

ρn∑
k=n+1

pksk− lim
n→∞sn = s−s = 0. (3.7)

This means that (2.4) is satisfied even with an equality sign. Condition (2.5) can be

proved analogously relying on (3.2).

Sufficiency. Assume that (2.4) and (2.5) together with the convergence of (tn) to s
hold. In order to prove the convergence of (sn) we choose some ε > 0. By (2.4), there

exists a sequence ρ ∈Λu such that

liminf
n→∞

1
Pρn−Pn

ρn∑
k=n+1

pk
(
sk−sn

)≥−ε. (3.8)

By (3.1), the left-hand side in (3.8) equals (note that the first term has a limit)

lim
n→∞

1
Pρn−Pn

ρn∑
k=n+1

pksk− limsup
n→∞

sn = s− limsup
n→∞

sn. (3.9)

Combining (3.8) with (3.9) yields

limsup
n→∞

sn ≤ s+ε. (3.10)

On the other hand, by (2.5) there exists a sequence ρ ∈Λ� such that

liminf
n→∞

1
Pn−Pρn

n∑
k=ρn+1

pk
(
sn−sk

)≥−ε. (3.11)

By (3.2) the left-hand side in (3.11) equals

liminf
n→∞ sn− lim

n→∞
1

Pn−Pρn

n∑
k=ρn+1

pksk = liminf
n→∞ sn−s. (3.12)

Combining (3.11) with (3.12) gives

s−ε ≤ liminf
n→∞ sn. (3.13)

Now, (2.3) follows from (3.10) and (3.13).

Proof of Theorem 2.3. Necessity. This is essentially a repetition of the proof of

Theorem 2.1. Therefore it is omitted.

Sufficiency. We assume (2.16) together with the convergence of (tn) to s. For any

sequence ρ ∈Λu we have

∣∣sn−s∣∣≤
∣∣∣∣∣ 1
Pρn−Pn

ρn∑
k=n+1

pk
(
sk−sn

)∣∣∣∣∣+
∣∣∣∣∣ 1
Pρn−Pn

ρn∑
k=n+1

pk sk−s
∣∣∣∣∣. (3.14)
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It follows from (3.1) that

limsup
n→∞

∣∣sn−s∣∣≤ limsup
n→∞

∣∣∣∣∣ 1
Pρn−Pn

ρn∑
k=n+1

pk
(
sk−sn

)∣∣∣∣∣. (3.15)

Taking (2.16) into account we obtain

limsup
n→∞

∣∣sn−s∣∣= 0, (3.16)

which is equivalent to (2.3) to be proved.

Assuming (2.17), we can prove (2.3) in an analogous way.

4. Special cases. (a) If pk = 1 for all k, then the weighted mean method is the so-

called Cesàro method of order 1, the method (C,1). Here for the sequence ρun(λ),
ρ�n(λ) we may choose λn with λ > 1 and < 1, respectively. In this case our result was

proved in [6] and [7, Section 4] (see also [11]). In the real case, the classical one-sided

Tauberian condition

j
(
sj−sj−1

)≥−H (4.1)

of Landau [4] implies slow decrease with respect to the method (C,1). Here and in the

sequel, we denote by H some positive constant not necessarily the same at different

occurrences. To justify this, let λ > 1, and 1≤n< k≤ λn=: ρn(λ), then we have

sk−sn =
k∑

j=n+1

(
sj−sj−1

)≥−H k∑
j=n+1

1
j

≥−H
∫ k
n

dx
x
=−H log

k
n
≥−H logλ �→ 0 as λ→ 1+ .

(4.2)

In the complex case, the classical Tauberian condition is

j
∣∣sj−sj−1

∣∣≤H (4.3)

yielding slow oscillation.

(b) The same sequence (ρn(λ)) and the same Tauberian conditions can be applied

to the cases pk = (k+1)αL(k) with some α > −1 and some slowly varying function

L(·) (see [1] for the definition of slowly varying functions).

(c) If pk = 1/(k+1), then the weighted mean is the so-called harmonic mean (of

first order). We may choose ρun(λ) = [nλ], λ > 1 where [·] means the integral part.

Obviously, we have

P[nλ]
Pn

≥ 1+
∫ [nλ]+2
n+2 dx/x

1+
∫n+1
1 dx/x

≥ 1+ log
([
nλ
]+2

)− log(n+2)
1+ log(n+1)

(4.4)

and this is bigger than λ−1−εn with εn → 0. However, this will do the job since we

may replace λ by λ′ being just a little bit smaller. We note that the results in [8] are not

applicable, since Pλn/Pn→ 1 for all λ > 1. So our condition (2.10) is now of the form

lim
λ→1+

liminf
n→∞

min
logn≤logk≤λ logn

(
sk−sn

)≥ 0. (4.5)
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Furthermore, condition (2.16), expressing slow oscillation, takes the form

lim
λ→1+

limsup
n→∞

max
logn≤logk≤λ logn

∣∣sk−sn∣∣= 0. (4.6)

These conditions are for example, implied by the following conditions

(j logj)
(
sj−sj−1

)≥−H, (j logj)
∣∣sj−sj−1

∣∣≤H, (4.7)

respectively, which follows by similar arguments as in (4.2).

(d) If pk = 1/((k+1)�k) where �k =
∑k
ν=0 1/(k+1) then the weighted means (tn)

form the harmonic means of second order. A suitable sequence is now ρun(λ) =
exp((log(n+1))λ). Then the condition of slow decrease is given as

lim
λ→1+

liminf
n→∞

min
loglogn<log logk≤λ log logn

(
sk−sn

)≥ 0, (4.8)

which is, for example, implied by the local condition

(j logj log logj)
(
sj−sj−1

)≥−H. (4.9)

(e) If pk = exp(kα) with some α ∈ (0, 1), then we have Pn ∼ n1−α exp(nα)/α and a

suitable sequence ρn(λ) is given by ρun(λ)=n+(logλ)n1−α/α and we can easily write

down the appropriate Tauberian conditions.

(f) If pk = ek then we have Pn ∼ en+1/(e−1) and we may choose ρn(λ) = n+1 for

1< λ< e/(e−1). Hence the Tauberian condition of slow decrease type is given by

liminf
n→∞

(
sn+1−sn

)≥ 0, (4.10)

so the sequence has to be almost nondecreasing. However, in this case the weighted

mean method is equivalent with convergence as it can be seen directly from the inverse

transform.

Open problem. The one-sided Tauberian condition (4.1) is also a Tauberian condi-

tion for the Abel method. Similar results hold for more general power series methods

(Jp) with regularly varying weights pk (cf. [3]). The question is whether our Tauberian

condition (2.4) and (2.5) is also a Tauberian condition for the associated power series

method (Jp).
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