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REFLEXIVE AND DIHEDRAL (CO)HOMOLOGY
OF A PRE-ADDITIVE CATEGORY
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Abstract. The group dihedral homology of an algebra over a field with characteristic zero
was introduced by Tsygan (1983). The dihedral homology and cohomology of an algebra
with involution over commutative ring with identity, associated with the small category,
were studied by Krasauskas et al. (1988), Loday (1987), and Lodder (1993). The aim of this
work is concerned with dihedral and reflexive (co)homology of small pre-additive category.
We also define the free product of involutive algebras associated with this category and
study its dihedral homology group. Finally, following Perelygin (1990), we show that a
small pre-additive category is Morita equivalence.
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1. Preliminaries. Suppose that∆� is a small category, with objects, the set {[0],[1],
. . . ,[n], . . .}, and the following family of morphisms δin : [n] → [n− 1], 0 ≤ i ≤ n,

σjn : [n]→ [n+1], 0≤ i≤n, τn : [n]→ [n], ρn : [n]→ [n] such that

δjn+1δin = δin+1δi−1
n , i < j,

σjnσin+1 = σinσj−1
n+1, i≤ j,

σjn+1δ1
n =




σi−1
n−2δ

j
n−1, i≤ j,

Id, i= j,j+1,

σ in−2δ
i−1
n−1, i > j,

τnδin = δi−1
n τn−1, 0≤ i≤n, (

τn
)n+1 = 1n, ρ2

n = 1,

τnσ
j
n = σj−1

n τn+1, 0≤ j ≤n, τnρn = ρnτ−1
n .

(1.1)

Definition 1.1. The category ∆� is called a dihedral category. Note that the cate-

gory generated by only the morphisms δin and σjn is called a simplicial category and

is denoted by ∆, the category generated by δin, σjn, and τn is a cyclic category and is

denoted by ∆C (see [6]), and the category generated by the family of morphisms δin,

σjn, and ρn is called a reflexive category and is denoted by ∆R.

Definition 1.2 (see [3]). Let k be a commutative ring with identity and involution.

An algebra over k associated with the category ∆�(∆R) is an algebra with identity

generated by the morphisms δin,σ
j
n,τn, and ρn (δin,σ

j
n,ρn).

http://ijmms.hindawi.com
http://ijmms.hindawi.com
http://www.hindawi.com


430 YASIEN GH. GOUDA

Definition 1.3. For an arbitrary category C, following [3], for case of presentation,

a simplicial object in the category C is a functor � : ∆op → C (the category ∆op is the

inverse of ∆).

Definition 1.4. Following [2] (see also [6]), for an arbitrary category C, the dihe-

dral (reflexive) object in C is a functor � : ∆Dop → C, (� : ∆�op → C). If we drop the

morphism ρn from the group family of morphisms (δin,σ
j
n,τn,ρn), we get a cyclic

object of an arbitrary category C (see [5]). Suppose that �([n]) = Xn, �(δin) = din,

�(σjn)= sjn, �(τn)= tn, �(ρn)= rn. We write the dihedral (reflexive) object by the fam-

ily (Xn,din,s
j
n,tn,rn) (Xn,din,s

j
n,rn). We can easily check that the morphisms din,s

j
n,tn,

and rn satisfy relations (1.1).

Definition 1.5. Let k be a commutative ring with identity and involution and let C
be a category of k-modules. The dihedral k-module in C is defined to be the dihedral

objects (Xn,din,s
j
n,tn,rn) in the category C.

2. The reflexive and dihedral homology of pre-additive category. In this section,

we define the dihedral k-module associated with a pre-additive category and study its

(co)homology.

Definition 2.1. Let k be a commutative ring with identity and involution. Following

[2], the k-category A with an involution is defined to be a small pre-additive category

with objects the k-modules of set morphisms A(i,j), where, i,j are in A, and the

bilinear maps A(i,j)xA(j,k) → A(i,k), as morphisms. Suppose that, for all objects

i,j ∈A, there exists a k-linear map ∗ :A(i,j)→A(j,i), such that ∗2 :A(i,j)→A(i,j).
Define the family M = {Mn}n≥0 of k-modules and k-morphisms as follows:

M0 = ⊕
i0∈|A|

A
(
i0, i0

)
, . . . , Mn = ⊕

i0,i1,...,in∈|A|
A
(
i0, i0

)⊗
k
A
(
i1, i2

)⊗
k
···⊗

k
A
(
in,i0

)
. (2.1)

On the family M = (Mn), define the morphisms din′s
j
n′tn′rn as follows:

din :Mn �→Mn−1, sjn :Mn �→Mn−1, rn,tn :Mn �→Mn, (2.2)

such that

din
(
a0⊗···⊗an

)= din(a0⊗···⊗an
)+(−1)nana0⊗···⊗an−1,

din
(
a0⊗···⊗an

)= n−1∑
k=0

(−1)ka0⊗···⊗akak+1⊗···⊗an,

sjn
(
a0⊗···⊗an

)= a0⊗a1⊗···⊗ai⊗1⊗ai+1⊗···⊗an,

tn
(
a0⊗···⊗an

)= (−1)n
(
an⊗a0⊗···⊗an−1

)
,

rn
(
a0⊗···⊗an

)=α(−1)n(n+1)/2a∗0 ⊗a∗n⊗···⊗a∗1 , α=±1,

(2.3)

where a∗i ’s are the image of the elements ai (0 ≤ i ≤ n) under the involution ∗.

Clearly, the moduleM = {Mn} under the last morphisms is a dihedral k-module. Now,
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we define the dihedral homology group. Suppose that M = (Mn)= Cp,q,r , p, q, r > 0,

and consider the complex (Cp,q,r ,δi), i= 1,2 (see [3]), where

δ1 : Cp,q,r �→ Cp−1,q,r , δ2 : Cp,q,r �→ Cp,q−1,r , (2.4)

are defined by

δ1 =




1−Tn, n= 1 (mod2),

Nn = 1+Tn+···+Tnn , n= 0 (mod2),

δ2 =



bn+1 = (−1)idin+1, n= 0 (mod2),

−b = (−1)idi, n= 1 (mod2).

(2.5)

Clearly, by definition, δi ·δi = 0, i= 1,2. The complex (Cp,q,r ,δi) can be illustrated

by Tsygan’s bicomplex C(M) (see [5]):

...

b

...

−b′

...

b

...

−b′

C0,2,2

b

C1,2,21−T

−b′

C2,2,2N

b

C3,2,21−T

−b′

···N

C0,1,1

b

C1,1,11−T

−b′

C2,1,1N

b

C3,1,11−T

−b′

···N

C0,0,0 C1,0,01−T
C2,0,0N

C3,0,01−T ··· ,N

(2.6)

where the morphisms b,−b′ : Cp,q,r → Cp,q−1,r are given by b =∑n
i=0(−1)idin, −b′ =∑n−1

i=0 (−1)idin, T = (−1)ntn, N = 1+Tn+···+Tnn . Following [5], the homology of the

bicomplex (2.6) gives the cyclic homology group: �Cn(M)=�n(C(M)). Following [3],

if we act by the group Z/2 on the bicomplex (2.6): on the column 2� (� > 0) by means

of the automorphism

(−1)n(n+1)/2+�rn = (−1)�Rn, where Rn
(
a0⊗···⊗an

)= (−1)n(n+1)/2rn, (2.7)

and on the column 2� + 1 by means of the automorphism (−1)n(n−1)/2+�+1rn =
(−1)�RnTn, we get the tricomplex (Cp,q,r ,δi), i = 1,2,3. The differentials δ1,δ2 are

defined in (2.5) and δ3 : Cp,q,r+1 → Cp,q,r is defined by

δ3 =




(−1)n
(
1+(−1)�Rn

)
, n= 0 (mod4),

(−1)n+1
(
1+(−1)�+1RnTn

)
, n= 1 (mod4),

(−1)n
(
1+(−1)�+1Rn

)
, n= 2 (mod4),

(−1)n+1
(
1+(−1)�+1RnTn

)
, n= 3 (mod4), Rn = (−1)nrn.

(2.8)

Following [4], the dihedral homology of the module M(α��(M)) is the homology of

the complex (Cp,q,r ,δi), i= 1,2,3, α=±1.
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Definition 2.2. The dihedral homology of a k-category A with involution is the di-

hedral homology of the associated dihedral k-moduleM={Mn} :α��n(A)=α��n(M),
α=±1.

Definition 2.3. The reflexive homology of a k-category A with an involution is the

reflexive homology of k-module {Mrefl}:

α��n(A)= α��n
(
Mrefl

)
, α±1, (2.9)

where Mrefl is the reflexive k-module M = {Mn}. Similarly, if we take the cyclic k-

module Mcycl, we obtain the cyclic homology of the k-category A (see [6]): �Cn(A) =
��n(Mcycl). Following [3, 4], the dihedral (reflexive) homology of the dihedral (reflex-

ive) module M can be considered as derived functor

α��n(M)= Tork[∆D]
op

n
(
k� ·M ·)(α��n(M)= Tork[∆R]

op

n
(
k� ·M ·)), (2.10)

where k�(k�) is a trivial dihedral (reflexive) k-module, k[∆D]op(k[∆R]op) is the alge-

bra associated with the dihedral (reflexive) category.

Note that (see [3]) the dihedral (reflexive) homology is considered as the hyperho-

mology of the group Z/2 with coefficients in Tsygan bicomplex (simplicial (Hochschild)

complex). The relations between the cyclic and the dihedral homology and also the

reflexive and the dihedral homology of pre-additive category are given by the following

assertions.

Theorem 2.4. Let k be a commutative ring and let A be a k-category with an invo-

lution. Then there exist the following exact sequences

··· �→−α��n(A) �→�Cn(A) �→+α��n(A) �→−α��n−1(A) �→ ··· ,

··· �→+α��n(A) �→+α��n(A) �→−α��n−2(A) �→+α��n−1(A) �→ ··· .
(2.11)

Proof. The proof follows from [3].

Corollary 2.5. Let 1/2∈ k. Then there exists the natural isomorphism

�Cn(A)	 −α��n(A)⊕+α��n(A). (2.12)

Note that we can define the reflexive cohomology and the dihedral cohomology of

a pre-additive category in the same manner.

3. The dihedral homology of free product algebras. In this section, we study the

product of the algebras associated with a pre-additive k-category, where k has char-

acteristic zero. Let A, B, and C be arbitrary involutive algebras. The free product of

the algebras A and B with respect to algebra C is denoted by A∗
c
B. Following [1], the

algebra A∗
c
B is C-bimodule. For the algebras A, B, and C ,

TorCi (A,A)= TorCi (A,B)= TorCi (B,A)= TorCi (B,B)= 0. (3.1)
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Consider also the following diagram of algebras and homomorphisms between them:

A
j1

C
i1

i2
B, j1 ◦i1 = IdC = j2 ◦i2.

j2
(3.2)

Following [3], let RA and RB be the free involutive resolution of the algebras A and B
over the homomorphisms i1 and i2, respectively. Consequently, we get the following

diagram:

RA C
iA1 iB2

RB . (3.3)

Consider the diagrams

RA

πA

C
iA1

A

RB

πB

C
iB2

B

(3.4)

Clearly, they are commutative. If we define the homomorphisms jA1 and jB2 as follows:

RA
jA1�����������������������������������������������������������������→ RB, RB

jB2�������������������������������������������������������������→ C, where jA1 = j1 ◦πA, jB2 = j2 ◦πA, (3.5)

we get the diagram

RA
jA1

C
iB2

iA1

RB
jB2

, (3.6)

where jA1 ◦ iA1 = IdC , jB2 ◦ iB2 = IdC , since jA1 ◦ iA1 = (j1 ◦πA)◦ iA1 = j1 ◦ i1 = Idc , jB2 ◦ iB2 =
(j2 ◦πB)◦ iB2 = j2 ◦ i2 = Idc . Suppose that R̄A = kerjA1 , R̄B = kerjB2 . Then RA∗

c
RB is a

C-module given by

RA∗
c
RB = C+ R̄A∗

c
R̄B+

(
RA⊗

c
RB
)
+
(
RB⊗

c
RA
)
+
(
RA⊗

c
RB⊗

c
RA
)
+··· . (3.7)

We define an involution on RA∗
c
RB as follows:

(
p0q0p1q1 ···pnqnqn+1

)∗
= p∗n+1q∗np∗n ···q∗0p∗0 , pi ∈ RA, 0≤ i≤n+1, qi ∈ RB, 0≤ i≤n.

(3.8)

Remarks. (i) The differential on RA∗
c
RB is defined by Leibniz formula for differ-

ential graded algebras [5].

(ii) The chain complex R̄A is a free C-biomodule resolution of the C-biomodule Ā.

(iii) Ā+C = A = H ·(RA) = H ·(R̄A⊕C) = H ·(R̄A)+C , that is, H ·(R̄A) = Ā, where

H is a hyperhomology of R̄A. From (3.1), (i), (ii), and (iii), we have

Torci
(
Ā, Ā

)= Torci
(
Ā, B̄

)= Torci
(
B̄, Ā

)= Torci
(
B̄, B̄

)= 0. (3.9)
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From (3.7) and (3.9), we have A∗
c
B = H · (R̄A⊗

c
R̄B) (see [1]). Consider the following

diagram:

RA∗
c
RB

C = C∗
c
C

iA1∗c i
B
2

i1∗c i2
A∗
c
B

(3.10)

Lemma 3.1. The diagram (3.10) is commutative.

Proof. The proof follows from the fact that the differential graded algebra RA∗
c
RB

is an involutive resolution of the algebra A∗
c
B over the inclusion i1∗c i2.

Consider the complex T(n)(C ; R̄A⊗
c
R̄B) = C ⊗

c⊗cop
((R̄A⊗

c
R̄B)⊗···⊗ (R̄A⊗ R̄B)). We

act on the complex by means of an automorphism εγn as follows:

εγn
((
p0⊗q0

)⊗···⊗(pn⊗qn))=(−1)�+νε
(
p∗0⊗q∗n

)⊗(p∗n⊗q∗n−1

)⊗···⊗(p∗1⊗q∗0); (3.11)

where pi ∈ R̄A, qi ∈ R̄B , 0≤ i≤n, � = degp0
∑n
i=1 degpi+

∑n
j=1 degqi, ν =α(α−1)/2,

α=∑n
i=1 degpi+degqi, α=±1. Consider the chain complex homomorphism

µ :
T(n)

(
C ;RA∗

c
RB
)

Im
(
1−tn

)+ Im
(
1−εγn

) �→
(
RA∗RB

)
C+RA+RB+

[
RA∗

c
RB,RA∗

c
RB
]
+ Im

(
1−εγn

) ,
(3.12)

such that

µ
(((
p0⊗q0

)⊗···⊗(pn⊗qn)) mod
(
Im
(
1−tn

)+ Im
(
1−εγn

)))
= (p0q0 ···pnqn

)
mod

(
C+ R̄A+ R̄B+

[
RA∗

c
RB,RA∗

c
RB
]
+ Im

(
1−εr

))
.

(3.13)

In the following lemma, we explain the existence of the homomorphism µ and prove

that it is an isomorphism.

Lemma 3.2. A chain complex homomorphism µ is an isomorphism.

Proof. Clearly, in RA∗
c
RB , there exists a subcomplex C+ R̄A+ R̄B (but in T(n)(C ;

R̄A⊗
c
R̄B) there is not), and we can factorize RA∗

c
RB by this subcomplex. The elements

in R̄A⊗
c
R̄B can be compared by modulo with the commutant of the algebraRA∗

c
RB with

elements in R̄A⊗
c
R̄B since �⊗a+(−1)m(a⊗�−(−1)(dega)·(deg�)�⊗a)= (−1)ma⊗�,

where

m=




0, if (dega)·(deg�) is even,

1, if (dega)·(deg�) is odd, a∈ R̄A, �∈ R̄B.
(3.14)
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Note that the elements in R̄A⊗
c
R̄B ⊗

c
R̄A or in R̄B ⊗

c
R̄A⊗

c
R̄B can also be compared by

modulo with the commutant of the algebra RA∗
c
RB with elements in R̄A⊗

c
R̄B , at the

same time;

pqp′−(pqp′−(−1)deg(p·q)·degp′p′pq
)= (−1)deg(pq)·degp′(p′p)q, p,p′ ∈ R̄A, q ∈ R̄B.

(3.15)

In the complex T(n)(C ; R̄A⊗
c
R̄B)/ Im(1−tn)+ Im(1−εγn), we have the following:

(
p0⊗q0

)⊗···⊗(pn⊗qn)= (−1)S
(
pn⊗qn

)⊗(p0⊗q0
)⊗···⊗(pn−1⊗qn−1

)
, (3.16)

where s = deg(pn⊗qn)
∑n−1
i=1 deg(pi⊗qi) and (p0⊗q0)⊗···⊗ (pn⊗qn) = (−1)�+νε

(p∗0 ⊗ q∗n) ⊗
(
p∗n ⊗ q∗n−1) ⊗ ··· ⊗ (p∗1 ⊗ q∗0 ); � = degp0 ·

∑n
i=1 degpi +

∑n
j=1 degqj,

ν = α(α−1)/2, α =∑n
i=1 degpi+degqi. Clearly, the same relation holds in the com-

plex: (RA∗
c
RB)/C+ R̄A+ R̄B+[RA∗

c
RB,RA∗

c
RB]+ Im(1−εr) since

(
p0q0p1q1 ···pn−1qn−1

)(
pnqn

)= (−1)S
′(
pnqn

)(
p0q0p1q1 ···pn−1qn−1

)
, (3.17)

where s′ = deg(pnqn)
∑n−1
i=1 deg(piqi), and since deg(pnqn)= deg(pn⊗qn), s = s′ and

p0q0p1q1 ···pnqn = (−1)νq∗np∗n ···q∗1p∗1 q∗0p∗0
= (−1)ν+�

(
p∗0 q∗n

)(
p∗nq

∗
n−1

)···(p∗2 q∗1 )(p∗1 q∗0 ). (3.18)

This gives the required isomorphism. It is easily seen that the differentials in the

complexes ⊗∞n=0T(n)(C ; R̄A⊗
c
R̄B)/ Im(1−tn)+Im(1−εγn) and (RA∗

c
RB)/C+R̄A+R̄B+

[RA ∗
c
RB,RA ∗

c
RB]+ Im(1− εr) coincide. Using the condition Torci (Ā, B̄) = 0, i > 0,

we find that R̄A ⊗
c
R̄B is a free C-module resolution of the algebra R̄ ⊗

c
R̄. Then by

considering the isomorphism µ, we get

�·
( RA∗

c
RB

C+ R̄A+ R̄B+
[
RA∗

c
RB,RA∗

c
RB
]
+ Im

(
1−εr

)
)
=

Ω∼ ·(C,Ā⊗ B̄)
Im
(
1− ∞⊕

n=0
εγ̃n

) , (3.19)

where εγ̃n is an automorphism on the graded K-module H · (Z/(n+1);T(n)(C ; R̄A⊗
c

R̄B)) is induced by the automorphism εγn on the complex T(n)(C ; R̄A⊗
c
R̄B). From the

isomorphism µ, we get the following isomorphism:

ε��i
(
C i1�����������������������������������������������������→A)⊕ε��i

(
C i2�����������������������������������������������������→ B)⊕




Ω∼i
(
C,Ā⊗ B̄)

Im
(
1− ∞⊕

n=0
εγ̃n

)



=�·
( RA∗

c
RB

C+ R̄A+ R̄B+
[
RA∗

c
RB,RA∗

c
RB
]
+ Im

(
1−εr

)
)

⊕ε��i
(
C i1�����������������������������������������������������→A)⊕ε��i

(
C i2�����������������������������������������������������→ B).

(3.20)

Lemma 3.3. The right-hand side of relation (3.20) is isomorphic to the group
ε��i(C

i1∗i2�������������������������������������������������������������������������������������������→A∗
c
B).
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Proof. Since

RA∗
c
RB(

C+
[
RA∗

c
RB,RA∗

c
RB
]
+ Im

(
1−εr

))

=

(
RA∗

c
RB
)

C+
[
RA∗

c
RB,RA∗

c
RB
]
+ Im

(
1−εr

)+ R̄A+ R̄B
+
{

R̄A[
R̄A, R̄A

]+ Im
(
1−εrRA

)
}
+
{

R̄B[
R̄B, R̄B

]+ Im
(
1−εrRB

)
}

=

 RA∗RB
C+

[
RA∗

c
RB,RA∗

c
RB
]
+ Im

(
1−εr

)+ R̄A+ R̄B



+
{

RA

C+[RA,RA]+ Im
(
1−εrRA

)
}
+
{

RB

C+[RB,RB]+ Im
(
1−εrRB

)
}
,

(3.21)

we have

ε��i

(
C i1∗i2�������������������������������������������������������������������������������������������→A∗

c
B
)
=




Ω∼i
(
C,Ā⊗ B̄)

Im
(
1− ∞⊕

n=0
εγ̃n

)

+ε��i

(
C i1�������������������→A)⊕ε��i

(
C i2�������������������→ B). (3.22)

Lemma 3.4. The following isomorphism holds:

ε��i

(
A∗
c
B
)
⊕ε��i(C)= ε��i(A)⊕ε��i(B)⊕

Ω∼i
(
C,Ā⊕ B̄)

Im
(
1− ∞⊕

n=0
εγ̃n

) . (3.23)

Proof. This follows from the fact that

ε��i(A)= ε��i
(
C i1�����������������������������������������������������→A)⊕ε��(C),

ε��i(B)= ε��i
(
C i2�����������������������������������������������������→ B)⊕ε��(C),

ε��i

(
A∗
c
B
)
= ε��i

(
C

i1∗c i2
�����������������������������������������������������������������������������������������������������������������������������→A∗

c
B
)
⊕ε��(C).

(3.24)

Note that the last three relations are obtained from the long exact sequence of rel-

ative dihedral homology of algebras [5]. Following [3] (also, see [4]), the automor-

phisms tn and εγn give the representation of the dihedral group �n+1 on the complex

T(n)(C ; R̄A⊗
c
R̄B), where (tn)n+1 = (εγn)2 = Id, εγntnn = t−1

n
εγn. Then if char(k)= 0, we

get the following isomorphism:

Ω∼i
(
C,Ā⊗ B̄)

Im
(
1− ∞⊕

n=0
εγ̃n

) 	 ∞⊕
n=0
H·
(

�n+1;T(n)
(
C ; R̄A⊗

c
R̄B
))
. (3.25)

From Lemma 3.3 and relation (3.20), we get

ε��i

(
A∗
c
B
)
⊕ε��i(C)

= ε��i(A)⊕ε��i(B)⊕
( ∞⊕
n=0
H·
(

�n+1;T(n)
(
C ; R̄A⊗

c
R̄B
)))

.
(3.26)

So, we have proved the following theorem.
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Theorem 3.5. Consider the following diagram of involutive algebras associated with

a pre-additive K-category:

A
j1

C
i1

i2
B,

j2
where j1 ◦i1 = IdC = j2 ◦i2. (3.27)

If

TorCi (A,A)= TorCi (A,B)= TorCi (B,A)= Torci (B,B)= 0, i > 0, (3.28)

then we have

ε��i

(
A∗
c
B
)
⊕ε��i(C)

= ε��i(A)⊕ε��i(B)⊕
( α⊕
n=0

H·
(

�n+1;T(n)
(
C ; R̄A⊗

c
R̄B
)))

.
(3.29)

Let A be a k-category with an involution, and let ModA be the category of right

A-modules and P(A) be full subcategory in ModA, consisting of the finite projective

modules. Consider the category Mrt(k) with objects, the k-categories with involution

and morphisms f : A → B are k-factors F : ModA → ModB, such that for every X ∈
P(A), f(X)∈ P(B), f commutes with an involution. We call these morphisms, Morita-

morphisms. Evidently, if f is an equivalence, then f is a Morita-morphism. Following

[7] (also, see [8]), the cyclic (co)homology of k-category Morita equivalence. Using this

fact and considering the deep results of [3], the following fact follows.

Theorem 3.6. The reflexive cohomolgy and the dihedral (co)homology of the k-

category A with involution are invariant under Morita equivalence.
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