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Abstract. We present a simple method for evaluation of multiple Euler sums in terms of
single and double zeta values.
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1. Introduction. We give a short evaluation of the triple sums

w(p,q,r)=
∞∑

n,m=1

1
npmq(n+m)r (1.1)

in terms of single zeta values ζ(p)

ζ(p)=
∞∑
n=1

n−p (1.2)

and double zeta values (Euler sums) S(p,q)

S(p,q)=
∞∑
n=1

H(p)
n n−q, H(p)

n = 1−p+2−p+···+n−p, (1.3)

where p ≥ 1, q > 1.

Multiple Euler sums have been discussed and evaluated in a number of papers of

which we want to point out [1, 2, 3, 4, 5, 6, 7, 10]. Also [8, Sections 18 and 19]. We

refer to these publications for general comments and details.

2. Euler sums

Lemma 2.1. For any integer p > 1 and any x > 0,

σ(p;x)≡
∞∑
n=1

1
np(n+x) =

p−1∑
k=1

(−1)k−1ζ(p−k+1)
xk

+ (−1)p−1

xp
(
ψ(x+1)+γ), (2.1)

where ψ= Γ ′/Γ is the psi function and γ is Euler’s constant.

Proof. We have

σ(p;x)=
∞∑
n=1

x+n−n
npx(n+x) =

∞∑
n=1

1
npx

−
∞∑
n=1

1
np−1x(n+x)

= 1
x
(
ζ(p)−σ(p−1;x)

)
.

(2.2)
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Equation (2.1) follows by repeating the procedure p−1 times in view of the fact that

(see [9, page 665])

σ(1;x)=
∞∑
n=1

1
n(n+x) =

1
x
(
ψ(x+1)+γ). (2.3)

Now we differentiate (2.1) r −1 times, where r > 1. With D = d/dx we have

Dr−1 1
n+x =

(−1)r−1(r −1)!
(n+x)r ,

Dr−1 1
xk

= (−1)r−1 (r +k−2)!
(k−1)!

1
xr+k−1

= (−1)r−1(r −1)!
(
r +k−2
r −1

)
1

xr+k−1
,

Dr−1(x−p(ψ(x+1)+γ))= r−1∑
k=0

(
r −1
k

)(
Dr−1−kx−p

)(
Dk
(
ψ(x+1)+γ)).

(2.4)

Therefore,

Dr−1σ(p;x)=(−1)r−1(r −1)!
∞∑
n=1

1
np(n+x)r

=(−1)r−1(r −1)!
p−1∑
k=1

(−1)k−1

(
r +k−2
r −1

)
ζ(p−k+1)
xk+r−1

+ (−1)p−1(−1)r−1(r−1)!
(p−1)!

r−1∑
k=0

(−1)k(r+p−k−2)!
k!(r−k−1)!

(
ψ(x+1)+γ)(k)
xr+p−k−1

.

(2.5)

We summarize this result in the following lemma.

Lemma 2.2. For any integers p > 1, r ≥ 1 and any x > 0,

∞∑
n=1

1
np(n+x)r =

p−1∑
k=1

(−1)k−1

(
r +k−2
r −1

)
ζ(p−k+1)
xk+r−1

+ (−1)p−1

(p−1)!

r−1∑
k=0

(−1)k(r +p−k−2)!
k!(r −k−1)!

(
ψ(x+1)+γ)(k)
xr+p−k−1

.

(2.6)

Next, we replace here x by mx and multiply both sides by m−q, q ≥ 1. This gives

∞∑
n=1

1
npmq(n+mx)r =

p−2∑
k=0

(−1)k

xk+r

(
r +k−1
r −1

)
ζ(p−k)
mk+q+r

+ (−1)p−1

(p−1)!

r−1∑
k=0

(−1)k(r+p−k−2)!
k!(r−k−1)!

1
xr+p−k−1

(
ψ(mx+1)+γ)(k)
mr+p+q−k−1

.

(2.7)

Summing for m= 1,2, . . . we obtain our main representation.



EVALUATION OF EULER-ZAGIER SUMS 409

Theorem 2.3. For all integers p > 1, r ≥ 1 and all q ≥ 0, q+r > 1, x > 0,

σ(p,q,r ;x)≡
∞∑
m=1

∞∑
n=1

1
npmq(n+mx)r

=
p−2∑
k=0

(−1)k

xk+r

(
r+k−1
r−1

)
ζ(p−k)ζ(k+q+r)

+ (−1)p−1

(p−1)!

r−1∑
k=0

(−1)k(r+p−k−2)!
k!(r−k−1)!

1
xr+p−k−1

∞∑
m=1

(
ψ(mx+1)+γ)(k)
mr+p+q−k−1

.

(2.8)

The case p = 1 can be derived directly from (2.3), namely,

σ(1,q,r ;x)=
∞∑
m=1

∞∑
n=1

1
nmq(n+mx)r

=
r−1∑
k=0

(−1)k

k!
1

xr−k

∞∑
m=1

(
ψ(mx+1)+γ)(k)

mr+q−k .

(2.9)

We remind the reader that the expression (ψ(mx+1)+γ)(k) stands for the kth

derivative of the function ψ(x+1)+γ evaluated at mx.

By setting x = 1 we get the desired representation of w(p,q,r). Making use of

ψ(m+1)+γ =H(1)
m = 1+2−1+···+m−1,

ψ(k)(m+1)= (−1)kk!
[
H(k+1)
m −ζ(k+1)

]
,

(2.10)

(see [9, page 775]), and with the agreement to read ζ(1)= 0, one obtains the following

corollary.

Corollary 2.4. For all integers p > 1, r ≥ 1 and all q ≥ 0 with q+r > 1,

w(p,q,r)=
∞∑
m=1

∞∑
n=1

1
npmq(n+m)r

=
p−2∑
k=0

(−1)k
(
r +k−1
r −1

)
ζ(p−k)ζ(r +q+k)

+ (−1)p−1

(p−1)!

r−1∑
k=0

(r+p−k−2)!
(r−k−1)!

[
S(k+1,r+p+q−k−1)−ζ(k+1)ζ(r+p+q−k−1)

]
,

(2.11)

in particular,

w(1,q,r)=
∞∑
m=1

∞∑
n=1

1
nmq(n+m)r

=
r−1∑
k=0

[
S(k+1,r +q−k)−ζ(k+1)ζ(r +q−k)].

(2.12)
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When q > 0 (or q ≥ 1, p = 1) we also have

w(p,q,1)=
∞∑
m=1

∞∑
n=1

1
npmq(n+m)

=
p−1∑
k=1

(−1)k−1ζ(p−k+1)ζ(q+k)+(−1)p−1S(1,p+q).
(2.13)

3. Remarks. Our notation S(p,q) corresponds to Sp,q in [5]. The authors of [2] use

the sums ζ(p,q), which equal S(q,p)−ζ(p+q).
The representation (2.11) has strong and weak points. One good feature is that

q need not be an integer. A weak point is that the right-hand side in (2.11) is not

explicitly symmetrical in p and q, while obviously w(p,q,r) =w(q,p,r). Moreover,

the right-hand side has too many terms. For instance, when q = 0 (2.11) becomes

w(p,0,r)=
∞∑
m=1

∞∑
n=1

1
np(n+m)r

=(−1)p−1S(r ,p)+
p−2∑
k=0

(−1)k
(
r +k−1
r −1

)
ζ(p−k)ζ(r +k)

+ (−1)p−1

(p−1)!

r−2∑
k=0

(r+p−k−2)!
(r−k−1)!

[
S(k+1,r+p−k−1)−ζ(k+1)ζ(r+p−k−1)

]
(3.1)

(here the term (−1)p−1S(r ,p) is written separately on purpose).

At the same time

w(p,0,r )=
∞∑
n=1

1
np

∞∑
m=1

1
(n+m)r =

∞∑
n=1

1
np
(
ζ(r)−H(r)

n
)= ζ(p)ζ(r)−S(r ,p) (3.2)

which is much shorter. However, we can benefit from this situation if we compare the

two representations of w(p,0,r ) and derive relations for the single and double Euler

sums. For instance, when p is odd, we can solve for S(r ,p) to get

2S(r ,p)=
p−2∑
k=1

(−1)k+1

(
r +k−1
r −1

)
ζ(p−k)ζ(r +k)

+ (−1)p−1

(p−1)!

r−2∑
k=0

(r+p−k−2)!
(r−k−1)!

[
S(k+1,r+p−k−1)−ζ(k+1)ζ(r+p−k−1)

]
,

(3.3)

that is, S(r ,p) can be expressed in terms of single zeta values and S(k,l), with k < r ,

k+l= r +p.

4. Other sums. It is interesting to consider also the sum

u(p,q,r)=
∞∑
n=1

∞∑
m=1

1
npmq

(
nr +mr

) (4.1)



EVALUATION OF EULER-ZAGIER SUMS 411

and compare it to w(p,q,r). Here one can write

u(p,q,r)
∞∑
n=1

∞∑
m=1

nr +mr −nr
np+rmq

(
nr +mr

) = ζ(p+r)ζ(q)−u(p+r ,q−r ,r). (4.2)

Let q>p. We observe that if (q−p)/r is odd, repeating this step (q−p)/r times, we get

u(p,q,r)=
(q−p)/r∑
j=1

(−1)j−1ζ(p+jr)ζ(q−(j−1)r
)−u(q,p,r) (4.3)

from where, because of the symmetry u(p,q,r)=u(q,p,r), we obtain the following

proposition.

Proposition 4.1. For all q > p ≥ 1, r ≥ 1 with (q−p)/r odd,

u(p,q,r)= 1
2

(q−p)/r∑
j=1

(−1)j−1ζ(p+jr)ζ(q−(j−1)r
)
. (4.4)

Note that p,q,r need not be integers. The only restrictions are those listed above.

When r = 1 we have

∞∑
n=1

∞∑
m=1

1
npmq(n+m) =

1
2

q−p∑
j=1

(−1)j−1ζ(p+j)ζ(q−j+1) (4.5)

which can be compared to (2.13). This gives the well-known expression of S(1,p+q)
in terms of zeta values. To make this more explicit we set p = 1 and q ≥ 2. Then from

(2.13),

w(1,q−1,1)=
∞∑
m=1

∞∑
n=1

1
nmq−1(n+m) = S(1,q). (4.6)

This is the same as u(1,q−1,1). When q is odd we find from (4.5) (with p = 1 and

q−1 in the place of q)

S(1,q)= 1
2

q−2∑
j=1

(−1)j−1ζ(j+1)ζ(q−j) (4.7)

which is a variant of Euler’s formula for the sum S(1,q) (see [5, Theorem 2.2]).
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