BIHARMONIC MAPS ON V-MANIFOLDS

YUAN-JEN CHIANG and HONGAN SUN

(Received 16 February 2001)

Abstract

We generalize biharmonic maps between Riemannian manifolds into the case of the domain being V -manifolds. We obtain the first and second variations of biharmonic maps on V-manifolds. Since a biharmonic map from a compact V-manifold into a Riemannian manifold of nonpositive curvature is harmonic, we construct a biharmonic non-harmonic map into a sphere. We also show that under certain condition the biharmonic property of f implies the harmonic property of f. We finally discuss the composition of biharmonic maps on V-manifolds.

2000 Mathematics Subject Classification. 58E20, 35K05.

1. Introduction. Following Eells, Sampson, and Lemaire's tentative ideas [7, 8, 9], Jiang first discussed biharmonic (or 2-harmonic) maps between Riemannian manifolds in his two articles $[10,11]$ in China in 1986, which gives the conditions for biharmonic maps. A biharmonic map $f: M \rightarrow N$ between Riemannian manifolds is the smooth critical point of the bi-energy functional

$$
\begin{equation*}
E_{2}(f)=\int_{M}\left\|\left(d+d^{*}\right) f\right\|^{2} * 1=\int_{M}\|\boldsymbol{\tau}(f)\|^{2} * 1 \tag{1.1}
\end{equation*}
$$

where $* 1$ is the volume form on M, the tension field $\tau(f)=(\hat{D} d f)\left(e_{i}, e_{i}\right)\left(=\left(\hat{D}_{e_{i}} d f\right)\left(e_{i}\right)\right)$, $\left\{e_{i}\right\}$ is the local frame of a point p in M. Biharmonic maps are the extensions of harmonic maps, and their study provides a source in partial differential equations, differential geometry, and analysis. After Jiang, Chiang, and Sun have studied biharmonic maps in two papers [6, 14]. Chiang also studied harmonic maps and biharmonic maps of two different kinds of singular spaces: V-manifolds [3, 4] and spaces with conical singularities (with Andrea Ratto [5]).
In this paper, we generalize the notion of a biharmonic map to the case that the domain of f is a V-manifold due to Satake in [1, 12, 13]. A (C^{∞}) V-manifold (M, \mathscr{F}) consists of a Hausdorff space M with an atlas \mathscr{F} of V-charts satisfying the following conditions:
(i) If $\{\tilde{U}, G, \pi\}$ and $\left\{\tilde{U}^{\prime}, G^{\prime}, \pi^{\prime}\right\}$ are two V-charts in \mathscr{F} over U, U^{\prime}, respectively, in M with $U \subset U^{\prime}$, then there exists an injection $\lambda:\{U, G, \pi\} \rightarrow\left\{U, G^{\prime}, \pi^{\prime}\right\}$.
(ii) The supports of V-charts in \mathscr{F} form a basis for open sets in M.

Take a chart $\{\tilde{U}, G, \pi\} \in \mathscr{F}$ such that $p \in \pi(\tilde{U})$ and choose $\tilde{p} \in \tilde{U}$ such that $\sigma \tilde{p}=\tilde{p}$. The isotropic subgroup $G_{\tilde{P}}$ of G at \tilde{p} is the set of all $\sigma \in G$ such that $\sigma \tilde{p}=\tilde{p}$. So $G_{\tilde{p}}$ is called the isotropic group of p. The singular set \mathbb{S} of M consists of all singular points of M, that is, the points of M with nontrivial isotropy groups. (For example, S^{2} / Z_{3} is a compact V-manifold with two singular points.) The main difficulties of this
paper arise from the complicated behavior of the singular locus of V-manifolds, and therefore a different method than the usual one is required. In fact, this article is the extension of Chiang's previous two papers [3, 4].

We derive the first variations of biharmonic maps in Theorem 2.2, and give the definition for biharmonic maps on V-manifolds. We show that a biharmonic map from a compact V-manifold into a Riemannian manifold of nonpositive curvature is a harmonic map in Theorem 2.4. Then we construct a biharmonic non-harmonic map from a V-manifold into a sphere in Section 2. We obtain the second variations of biharmonic maps in Theorem 3.1. If $d^{2} /\left.d t^{2} E_{2}\left(f_{t}\right)\right|_{t=0} \geq 0$, then f is a stable biharmonic map. In Theorem 3.3, we show that if a stable biharmonic map from a compact V-manifold M into a Riemannian manifold N of positive curvature satisfies the conservation law, then f must be a harmonic map. In Theorem 3.4, we prove the composition of biharmonic maps on V-manifolds which generalizes Sun's result in [14].
2. Biharmonic maps on V-manifolds. Let (M, \mathscr{F}) be a (\mathbb{C}^{∞}) V-manifold, and U be an open subset of M. By a V-chart on M over U we mean a system $\{\tilde{U}, G, \pi\}$ consisting of (1) a connected open subset \tilde{U} of \mathbb{R}^{m}, (2) a finite group G of diffeomorphisms of \tilde{U}, with the set of fixed points of codimension ≥ 2, and (3) a continuous map of $\pi: \tilde{U} \rightarrow U$ such that $\pi \circ \sigma=\pi$ for $\sigma \in G$ and such that π induces a homeomorphism of \tilde{U} / G onto U. The set U is called the support of V -chart, and π is called the projection onto U.
Let (M, \mathscr{F}) be a V-manifold and $p \in M$. Take a chart $\{\tilde{U}, G, \pi\} \in \mathscr{F}$ such that $p \in$ $\pi(\tilde{U})$ and choose $\tilde{p} \in \tilde{U}$ such that $\pi(\tilde{p})=p$. The isotropic subgroup $G_{\tilde{p}}$ of G at \tilde{p} is the set of all $\sigma \in G$ such that $\sigma \tilde{p}=\tilde{p}$, and is uniquely determined by p. Therefore, $G_{\tilde{p}}$ is called the isotropic group of p. The singular set \mathbb{S} of M consists of all singular points of M, that is, the points of M with nontrivial isotropic groups. Let ($\tilde{x}^{1}, \ldots, \tilde{x}^{m}$) be a coordinate system around \tilde{p} and consider the system $\tilde{y}^{i}=1 /\left|G_{\tilde{p}}\right| \sum l_{i j}\left(\sigma^{-1}\right) \tilde{x}^{j} \cdot \sigma$ with

$$
\begin{equation*}
l_{i j}(\sigma)=\left[\frac{\partial \tilde{x}^{i} \circ \sigma}{\partial \tilde{x}^{j}}\right]_{\tilde{p}}, \quad\left|G_{\tilde{p}}\right|=\operatorname{order} \text { of } G_{\tilde{p}} . \tag{2.1}
\end{equation*}
$$

Then the $\left\{\tilde{y}^{i}\right\}$ are a new coordinate system around \tilde{p} and $G_{\tilde{p}}$ operates linearly in the \tilde{y}-system. After this suitable C^{∞} change of coordinates around $\tilde{p}, G_{\tilde{p}}$ becomes a finite group of linear transformations. The fixed point set of any $\sigma \in G_{\tilde{p}}$ is the defined linear equations in the \tilde{y}, and consequently the fixed point set of $\sigma \in G_{\tilde{p}}$ in \tilde{U} is the intersection of \tilde{U} with a linear space. Therefore, $\pi^{-1} \mathbb{S}$ is locally expressed by a finite union of linear spaces intersected with \tilde{U}. Hence \mathbb{S} is a V-submanifold of codimension ≥ 2 of M. Clearly, $M-\mathbb{S}$ is an ordinary manifold.

We fix a V-manifold M with defining atlas \mathscr{F}. A smooth function $f:(M, \mathscr{F}) \rightarrow N$ from M into an ordinary manifold N is defined as follows: for any $\{\tilde{U}, G, \pi\} \in \mathscr{F}$ there corresponds an ordinary G-invariant smooth map $f_{\tilde{U}}^{G}=1 /|G| \sum_{\sigma \in G} f_{\tilde{U}} \circ \sigma: \tilde{U} \rightarrow N$ such that $f_{\tilde{U}}^{G}=f \circ \pi$ and $f_{\tilde{U}}^{G}=f_{\tilde{U}^{\prime}}^{G^{\prime}} \circ \lambda$ for any injection $\lambda:\{\tilde{U}, G, \pi\} \rightarrow\left\{\tilde{U}^{\prime}, G^{\prime}, \pi^{\prime}\right\}$ where $f_{\tilde{U}}: \tilde{U} \rightarrow N$ is an ordinary smooth map.
Put a Riemannian metric $g_{\tilde{U}}=g_{i j} d \tilde{x}^{i} d \tilde{x}^{j}$ on \tilde{U}. By taking the G-average if necessary, we can assume that $g_{\tilde{U}}$ is G-invariant. Thus the transformations $\sigma \in G$ are isometries for $g_{\tilde{U}}$. By using the standard partition of unity construction, we can patch all such
local invariant metrics together into a global metric tensor field of type $(0,2)$ on the V-manifold M, which we call a Riemannian metric on M.

Let M^{m} be a compact V-manifold of dimension m with \mathbb{C}^{∞} Riemannian metric g, and N^{n} a $\left(\mathbb{C}^{\infty}\right)$ Riemannian manifold of dimension n. By Satake [12, 13], M admits a finite triangulation $T=\cup s_{\alpha}$ such that each s_{α} is contained in the support U_{α} of a V chart $\left\{\tilde{U}_{\alpha}, G_{\alpha}, \pi_{\alpha}\right\} \in \mathscr{F}$ on M and is the homeomorphic projection of a regular simplex \tilde{s}_{α} in \tilde{U}_{α}. For a smooth map $f: M \rightarrow N$, the bi-energy functional of f is defined by

$$
\begin{equation*}
E_{2}(f)=\int_{M}|\tau(f)|^{2} * 1=\sum \int_{s_{\alpha}}|\tau(f)|^{2} d x_{\alpha}=\sum \frac{1}{\left|G_{\alpha}\right|} \int_{\tilde{s}_{\alpha}}|\tau(\tilde{f})|^{2} d \tilde{x}_{\alpha} \tag{2.2}
\end{equation*}
$$

where $d \tilde{x}_{\alpha}$ denotes the volume form with respect to the G_{α}-invariant metric $g_{i j}$ in \tilde{U}_{α}, $\tilde{f}_{\alpha}: \tilde{U}_{\alpha} \rightarrow N$ is the G_{α}-invariant lift of f. The Green's divergence theorem on a compact V-manifold proved in [3] plays an important role in the proofs of both Theorems 2.2 and 3.1.

In order to compute the Euler-Lagrange equation, we consider a one-parameter family of maps $\left\{f_{t}\right\} \in \mathbb{C}^{\infty}(M, N), t \in I_{\epsilon}=(-\epsilon, \epsilon), \epsilon>0$ such that in the V-chart $\{\tilde{U}, G, \pi\} \in \mathscr{F}$ over the support U on M, the G-invariant lift \tilde{f}_{t} is the endpoint of the segment starting at G-invariant lift $\overline{f(x)}$ determined in length and direction by the vector field $\dot{\tilde{f}}$ along \tilde{f}, and such that $\partial \tilde{f}_{t} / \partial t=0$ and $\bar{D}_{\tilde{e}_{i}} \partial \tilde{f}_{t} / \partial t=0$ outside a compact subset of the interior of \tilde{U}. Choose $\left\{e_{i}\right\}$ being the local frame of a point p in U on M, and $\left\{\tilde{e}_{i}\right\}$ being the local frame of the lifting point \tilde{p} in \tilde{U}. Let $D, D^{\prime}, \bar{D}, \hat{D}$ be the Riemannian connections along $T M, T N, f^{-1} T N, T^{*} M \otimes f^{-1} T N$, and \tilde{D}, $\hat{\tilde{D}}$ are the Riemannian connections along $T \tilde{U}, T^{*} \tilde{U} \otimes f^{-1} T N$ in each $\{\tilde{U}, G, \pi\} \in \mathscr{F}$ over the support U on M. Also, let $\triangle=\bar{D}_{\tilde{e}_{k}} \bar{D}_{\tilde{e}_{k}}-\bar{D}_{\tilde{e}_{e_{k}}} \tilde{e}_{k}$ be the Laplace operator along the cross section of $f^{-1} T N$ in each \tilde{U}, and $V=\partial \tilde{f}_{t} / \partial t$. We can compute (2.2) directly, and obtain the following result.

LEMMA 2.1.

$$
\begin{align*}
\frac{d}{d t} E_{2}\left(f_{t}\right)= & 2 \Sigma \frac{1}{\left|G_{\alpha}\right|} \int_{\tilde{s}_{\alpha}}\left\langle\tilde{\hat{D}}_{\tilde{e}_{i}} \tilde{\hat{D}}_{\tilde{e}_{i}} d \tilde{f}_{t}\left(\frac{\partial}{\partial t}\right)-\tilde{\hat{D}}_{\tilde{D}_{\tilde{e}_{i}} \tilde{e}_{i}} d \tilde{f}_{t}\left(\frac{\partial}{\partial t}\right),\left(\tilde{\hat{D}}_{\tilde{e}_{j}} d \tilde{f}_{t}\right)\left(\tilde{e}_{j}\right)\right\rangle d \tilde{x}_{\alpha} \tag{2.3}\\
& +2 \Sigma \frac{1}{\left|G_{\alpha}\right|} \int_{\tilde{s}_{\alpha}}\left\langle R^{N}\left(d \tilde{f}_{t}\left(\tilde{e}_{i}\right), d \tilde{f}_{t}\left(\frac{\partial}{\partial t}\right)\right) d \tilde{f}_{t}\left(\tilde{e}_{i}\right),\left(\tilde{\hat{D}}_{\tilde{e}_{j}} d \tilde{f}_{t}\right)\left(\tilde{e}_{j}\right)\right\rangle d \tilde{x}_{\alpha}
\end{align*}
$$

THEOREM 2.2. Let $f:(M, \mathscr{F}) \rightarrow N$ be a smooth map from a compact V-manifold (M, \mathscr{F}) into a Riemannian manifold N. Set $V=\partial \tilde{f}_{t} / \partial t$ then

$$
\begin{equation*}
\left.\frac{d}{d t}\right|_{t=0} E_{2}\left(f_{t}\right)=2 \Sigma \frac{1}{\left|G_{\alpha}\right|} \int_{\tilde{s}_{\alpha}}\left\langle V, \Delta \tau(\tilde{f})+R^{N}\left(d \tilde{f}\left(\tilde{e}_{i}\right), \tau(\tilde{f})\right) d \tilde{f}\left(\tilde{e}_{i}\right)\right\rangle d \tilde{x}_{\alpha} \tag{2.4}
\end{equation*}
$$

Proof. For every $t \in I_{\epsilon}$, let

$$
\begin{equation*}
\tilde{X}=\left\langle\tilde{\hat{D}}_{\tilde{e}_{i}} d \tilde{f}_{t}\left(\frac{\partial}{\partial t}\right), \tilde{\hat{D}}_{\tilde{e}_{j}} d \tilde{f}_{t}\left(\tilde{e}_{j}\right)\right\rangle \tilde{e}_{i}, \quad \tilde{Y}=\left\langle d \tilde{f}_{t}\left(\frac{\partial}{\partial t}\right), \bar{D}_{\tilde{e}_{i}}\left(\tilde{\hat{D}}_{\tilde{e}_{j}} d \tilde{f}_{t}\right)\left(\tilde{e}_{j}\right)\right\rangle\left(\tilde{e}_{i}\right) \tag{2.5}
\end{equation*}
$$

in each $\{\tilde{U}, \pi, G\} \in \mathscr{F}$ over the support U on M. By computing the divergence of \tilde{X} and \tilde{Y} in each \tilde{U}, and applying Green's divergence theorem to the vector field $\tilde{X}-\tilde{Y}$
in each $\tilde{\triangle}$ on the compact manifold M in [3], we have

$$
\begin{align*}
& \sum \frac{1}{\left|G_{\alpha}\right|} \int_{\tilde{s}_{\alpha}}\left\langle\left(\tilde{\hat{D}}_{\tilde{e}_{i}} \tilde{\hat{D}}_{\tilde{e}_{i}} d \tilde{f}_{t}\right)\left(\frac{\partial}{\partial t}\right)-\left(\tilde{\hat{D}}_{\tilde{D}_{\tilde{e}_{i}} \tilde{e}_{i}} d \tilde{f}_{t}\right)\left(\frac{\partial}{\partial t}\right),\left(\tilde{\hat{D}}_{\tilde{e}_{j}} d \tilde{f}_{t}\right)\left(\tilde{e}_{j}\right)\right\rangle d \tilde{x}_{\alpha} \\
& \quad=\sum \frac{1}{\left|G_{\alpha}\right|} \int_{\tilde{s}_{\alpha}}\left\langle d \tilde{f}_{t}\left(\frac{\partial}{\partial t}\right), \bar{D}_{\tilde{e}_{k}} \bar{D}_{\tilde{e}_{k}}\left(\tilde{\hat{D}}_{\tilde{e}_{j}} d \tilde{f}_{t}\right)\left(\tilde{e}_{j}\right)-\bar{D}_{\tilde{D}_{\tilde{e}_{k}} \tilde{e}_{k}}\left(\left(\tilde{\hat{D}}_{\tilde{e}_{j}} d \tilde{f}_{t}\right)\left(\tilde{e}_{j}\right)\right)\right\rangle d \tilde{x}_{\alpha} . \tag{2.6}
\end{align*}
$$

By the assumption, $\partial \tilde{f}_{t} / \partial t=0$ and $\bar{D}_{\tilde{e}_{i}} \partial \tilde{f}_{t} / \partial t=0$ outside of the compact subset of the interior of each \tilde{U}, and substituting (2.6) into (2.3), we get

$$
\begin{align*}
\left.\frac{d}{d t}\right|_{t=0} E_{2}\left(f_{t}\right)= & 2 \sum \frac{1}{\left|G_{\alpha}\right|} \int_{\tilde{S}_{\alpha}}\left\langle d \tilde{f}_{t}\left(\frac{\partial}{\partial t}\right), \bar{D}_{\tilde{e}_{k}} \bar{D}_{\tilde{e}_{k}}\left(\tilde{\hat{D}}_{\tilde{e}_{j}} d \tilde{f}_{t}\right)\left(\tilde{e}_{j}\right)\right. \\
& \left.\quad-\bar{D}_{\tilde{D}_{\tilde{e}_{k}} \tilde{e}_{k}}\left(\left(\tilde{\hat{D}}_{\tilde{e}_{j}} d \tilde{f}_{t}\right)\left(\tilde{e}_{j}\right)\right)\right\rangle d \tilde{x}_{\alpha} \\
& +2 \sum \frac{1}{\left|G_{\alpha}\right|} \int_{\tilde{s}_{\alpha}}\left\langle R^{N}\left(d \tilde{f}_{t}\left(\tilde{e}_{i}\right), d \tilde{f}_{t}\left(\frac{\partial}{\partial t}\right)\right) d \tilde{f}_{t}\left(\tilde{e}_{i}\right),\left(\tilde{\hat{D}}_{\tilde{e}_{j}} d \tilde{f}_{t}\right)\left(\tilde{e}_{j}\right)\right\rangle d \tilde{x}_{\alpha} . \tag{2.7}
\end{align*}
$$

Let $t=0$, and by the symmetry of the Riemannian curvature tensor, we derive (2.4).

DEFINITION 2.3. A smooth map $f:(M, \mathscr{F}) \rightarrow N$ from a compact V-manifold M into a Riemannian manifold N is biharmonic if and only if

$$
\begin{equation*}
\boldsymbol{\tau}_{2}(\tilde{f})=\triangle \boldsymbol{\tau}(\tilde{f})+R^{N}\left(d \tilde{f}\left(\tilde{e}_{i}\right), \tau(\tilde{f})\right) d \tilde{f}\left(\tilde{e}_{i}\right)=0 \tag{2.8}
\end{equation*}
$$

in each $\{\tilde{U}, G, \pi\} \in \mathscr{F}$ over the support U on M.
A harmonic map $f: M \rightarrow N$ on a V-manifold M is obviously a biharmonic map, but a harmonic map is not necessarily a biharmonic map. However, we obtain the following theorem.

Theorem 2.4. Suppose that M is a compact V-manifold, and N is a Riemannian manifold of nonpositive curvature. If $f: M \rightarrow N$ is a biharmonic map, then f is a harmonic map.
Proof. In each V-chart $\{\tilde{U}, G, \pi\} \in \mathscr{F}$ over the support U on M it is calculated by

$$
\begin{align*}
\Delta e_{2}(\tilde{f}) & =\frac{1}{2} \Delta\|\tau(\tilde{f})\|^{2}=\left\langle\tilde{D}_{\tilde{e}_{k}} \tau(\tilde{f}), \tilde{D}_{\tilde{e}_{k}} \tau(\tilde{f})\right\rangle+\left\langle\bar{D}^{*} \bar{D} \tau(\tilde{f}), \tau(\tilde{f})\right\rangle \tag{2.9}\\
& =\left\langle\tilde{D}_{\tilde{e}_{k}} \tau(\tilde{f}), \tilde{D}_{e_{k}} \tau(\tilde{f})\right\rangle-\left\langle R^{N}\left(d \tilde{f}\left(\tilde{e}_{i}\right), \tau(\tilde{f})\right) d \tilde{f}\left(\tilde{e}_{i}\right), \tau(\tilde{f})\right\rangle \geq 0,
\end{align*}
$$

because $\tau_{2}(\tilde{f})=0$ in each \tilde{U} and the Riemannian curvature of N is nonpositive. By Bochner's technique and the assumption $\partial \tilde{f}_{t} / \partial t=0$ and $\bar{D}_{\tilde{e}_{i}} \partial \tilde{f}_{t} / \partial t=0$ outside a compact subset of $\operatorname{int}(\tilde{U})$, we know $\|\boldsymbol{\tau}(\tilde{f})\|^{2}=$ const, and then substituting into (2.9) we have $\bar{D}_{\tilde{e}_{k}}(\tau \tilde{f})=0$, for all $k=1,2, \ldots, m$ by [7] which implies $\tau(\tilde{f})=0$ in each \tilde{U}, that is, f is harmonic on M.

Since harmonic maps are automatically biharmonic maps when the Riemannian curvature of N is nonpositive, we will find a non-trivial biharmonic map into a sphere. By the concepts of V-manifolds and the similar techniques as [11], we have the following theorem.

THEOREM 2.5. Let $f:(M, \mathscr{F}) \rightarrow S^{m+1}$ be nonzero parallel mean curvature isometric embedding, then f is biharmonic if and only if the second fundamental form $B(\tilde{f})$ of \tilde{f} with $\|B(\tilde{f})\|^{2}=m=\operatorname{dim}(\tilde{U})$ in each \tilde{U} over the support U on M.

Example 2.6. In S^{m+1}, the compact hypersurface of its Gauss map being isometric embedding is the Clifford surface (see [15]):

$$
\begin{equation*}
M_{k}^{m}(1)=S^{k}\left(\sqrt{\frac{1}{2}}\right) \times S^{m-k}\left(\sqrt{\frac{1}{2}}\right), \quad 0 \leq k \leq m . \tag{2.10}
\end{equation*}
$$

Let $f: M_{k}^{m}(1) \rightarrow S^{m+1}$ be the standard embedding. Set

$$
\begin{equation*}
M_{k}^{m}(1)^{\prime}=\frac{S^{k}(\sqrt{1 / 2})}{Z_{p}} \times \frac{S^{m-k}(\sqrt{1 / 2})}{Z_{p^{\prime}}} \tag{2.11}
\end{equation*}
$$

where p, p^{\prime} are prime numbers (p and p^{\prime} could be the same or different). Since both the first and the second terms are compact V-manifolds, the product is also a compact V-manifold. Let $f^{\prime}: M_{k}^{m}(1)^{\prime} \rightarrow S^{m+1}$ be a map such that $k \neq m / 2$, pick $\tilde{U}=\left\{\left(x^{0}, x^{1}, \ldots, x^{k}\right) \in S^{k} \sqrt{1 / 2}: x^{i}>0, i\right.$ is any of $\left.0,1, \ldots, k\right\} \times\left\{\left(x^{k+1}, \ldots, x^{m+1}\right) \in\right.$ $S^{m-k} \sqrt{1 / 2}: x^{j}>0, j$ is any of $\left.k+1, \ldots, m+1\right\}$ (if x^{i} and x^{j} vary, \tilde{U} is different), and let $\tilde{f}^{\prime}: \tilde{U} \rightarrow S^{m+1}$ (as part of the standard map $f: S^{k} \sqrt{1 / 2} \times S^{m-k} \sqrt{1 / 2} \rightarrow S^{m+1}$) in each $\{\tilde{U}, G, \pi\} \in \mathscr{F}$. So \tilde{f}^{\prime} has parallel second fundamental form, and has parallel mean curvature and $B\left(\tilde{f}^{\prime}\right)=k+m-k=m,\left\|\boldsymbol{\tau}\left(\tilde{f}^{\prime}\right)\right\|=|k-(m-k)|=2 k-m \neq 0$. That is, \tilde{f}^{\prime} is biharmonic in \tilde{U} for each $\{\tilde{U}, G, \pi\} \in \mathscr{F}$. Then by Theorem $2.5 f$ is a nontrivial biharmonic map on (M, \mathscr{F}).
3. The stability and composition of biharmonic maps on V-manifolds. Let M be a compact V-manifold, and N a Riemannian manifold. We continue to use the notations as in the previous sections. By applying the Green's divergence theorem on the compact V-manifold M [3], the concepts of V-manifolds, and the similar techniques in [11], we can have the second variations of biharmonic maps as follows.

THEOREM 3.1. If $f:(M \mathscr{F}) \rightarrow N$ is a biharmonic map, then

$$
\begin{align*}
& \left.\frac{1}{2} \frac{d^{2}}{d t^{2}} E_{2}\left(f_{t}\right)\right|_{t=0} \\
& =\sum \frac{1}{\left|G_{\alpha}\right|} \int_{\tilde{s}_{\alpha}}\left\|\Delta V+R^{N}\left(d \tilde{f}\left(\tilde{e}_{i}\right), V\right) d \tilde{f}\left(\tilde{e}_{i}\right)\right\|^{2} d \tilde{x}_{\alpha} \\
& \quad+\sum \frac{1}{\left|G_{\alpha}\right|} \int_{\tilde{s}_{\alpha}}\left\langle V,\left(D^{\prime}{ }_{d \tilde{f}\left(\tilde{e}_{k}\right)} R^{N}\right)\left(d \tilde{f}\left(\tilde{e}_{k}\right), \tau(\tilde{f})\right) V\right. \tag{3.1}\\
& \\
& \quad+\left(D_{\tau(\tilde{f})}^{\prime} R^{N}\right)\left(d \tilde{f}\left(\tilde{e}_{i}\right), V\right) d \tilde{f}\left(\tilde{e}_{i}\right)+R^{N}(\tau(\tilde{f}), V) \tau(\tilde{f}) \\
& \\
&
\end{align*}
$$

DEFINITION 3.2. Let $f:(M, \mathscr{F}) \rightarrow N$ be a biharmonic map from a compact V-manifold M into a Riemannian manifold N. If $d^{2} /\left.d t^{2} E_{2}\left(f_{t}\right)\right|_{t=0} \geq 0$, then f is a stable biharmonic map.

If we look at a harmonic map as a biharmonic map, then it must be stable by the definition of bi-energy since

$$
\begin{equation*}
\left.\frac{1}{2} \frac{d^{2}}{d t^{2}} E_{2}\left(f_{t}\right)\right|_{t=0}=\sum \frac{1}{\left|G_{\alpha}\right|} \int_{\tilde{s}_{\alpha}}\left\|\Delta V+R^{N}(d \tilde{f})\left(\left(\tilde{e}_{i}\right), V\right) d \tilde{f}\left(\tilde{e}_{i}\right)\right\|^{2} d \tilde{x}_{\alpha} \geq 0 \tag{3.2}
\end{equation*}
$$

Theorem 3.3. Let $f:(M, \mathscr{F}) \rightarrow N$ be a stable biharmonic map from a compact V manifold M into a Riemannian manifold N of constant sectional curvature $K>0$ and f satisfies the conservation law, then f must be a harmonic map.

Proof. Because N has the constant sectional curvature, the term of $D^{\prime} R^{N}$ of the second variation formula disappears and

$$
\begin{align*}
\left.\frac{1}{2} \frac{d^{2}}{d t^{2}} E_{2}\left(f_{t}\right)\right|_{t=0}= & \sum \frac{1}{\left|G_{\alpha}\right|} \int_{\tilde{s}_{\alpha}}\left\|\Delta V+R^{N}\left(d f\left(e_{i}\right), V\right) d f\left(e_{i}\right)\right\|^{2} d \tilde{x}_{\alpha} \\
& +\sum \frac{1}{\left|G_{\alpha}\right|} \int_{\tilde{s}_{\alpha}}\left\langle V, R^{N}(\tau(\tilde{f}), V) \tau(\tilde{f})+2 R^{N}\left(d \tilde{f}\left(\tilde{e}_{k}\right), V\right) \bar{D}_{\tilde{e}_{k}} \tau(\tilde{f})\right. \tag{3.3}\\
& \left.+2 R^{N}\left(d \tilde{f}\left(\tilde{e}_{i}\right), \tau(\tilde{f})\right) \bar{D}_{\tilde{e}_{i}} V\right\rangle d \tilde{x}_{\alpha}
\end{align*}
$$

Take $V=\boldsymbol{\tau}(\tilde{f})$, and notice that f is biharmonic and N has the constant sectional curvature, then by (3.3) we have

$$
\begin{align*}
&\left.\frac{1}{2} \frac{d^{2}}{d t^{2}} E_{2}\left(f_{t}\right)\right|_{t=0}=\sum \frac{4}{\left|G_{\alpha}\right|} \int_{\tilde{s}_{\alpha}}\left\langle R^{N}\left(d \tilde{f}\left(\tilde{e}_{i}\right), \tau(\tilde{f})\right) \bar{D}_{\tilde{e}_{k}} \tau(\tilde{f}), \tau(\tilde{f})\right\rangle d \tilde{x}_{\alpha} \\
&=4 K \sum \frac{1}{\left|G_{\alpha}\right|} \int_{\tilde{s}_{\alpha}} {\left[\left\langle d \tilde{f}\left(\tilde{e}_{k}\right), \tilde{D}_{\tilde{e}_{k}} \tau(\tilde{f})\right\rangle\|\boldsymbol{\tau}(\tilde{f})\|^{2}\right.} \tag{3.4}\\
&\left.-\left\langle d \tilde{f}\left(\tilde{e}_{k}\right), \tau(\tilde{f})\right\rangle\left\langle\tau(\tilde{f}), \bar{D}_{\tilde{e}_{k}} \tau(\tilde{f})\right\rangle\right] d \tilde{x}_{\alpha}
\end{align*}
$$

In each $\tilde{U}_{\alpha}, \tilde{f}$ satisfies the conservation law [2], so

$$
\begin{gather*}
\left\langle d \tilde{f}\left(\tilde{e}_{k}\right), \tau(\tilde{f})\right\rangle=0 \tag{3.5}\\
\left\langle d \tilde{f}\left(\tilde{e}_{k}\right), \bar{D}_{\tilde{e}_{k}} \tau(\tilde{f})\right\rangle=-\left\langle\bar{D}_{\tilde{e}_{k}} d \tilde{f}\left(\tilde{e}_{k}\right), \tau(\tilde{f})\right\rangle=-\|\tau(\tilde{f})\|^{2}
\end{gather*}
$$

in each \tilde{U}. Substitute (3.5) into (3.4), and f is stable, we have

$$
\begin{equation*}
\left.\frac{1}{2} \frac{d^{2}}{d t^{2}} E_{2}\left(f_{t}\right)\right|_{t=0}=-4 K \sum \frac{1}{\left|G_{\alpha}\right|} \int_{\tilde{s}_{\alpha}}\|\tau(\tilde{f})\|^{4} d \tilde{x}_{\alpha} \geq 0 \tag{3.6}
\end{equation*}
$$

Therefore, $\tau(\tilde{f})=0$ in each \tilde{s}_{α} of \tilde{U}_{α}, that is, f is harmonic on (M, \mathscr{F}).
Let $f:(M, \mathscr{F}) \rightarrow M^{\prime}$ be a smooth map from a compact V -manifold (M, \mathscr{F}) into a Riemannian manifold and M^{\prime}, and $f_{1}: M^{\prime} \rightarrow M^{\prime \prime}$ a smooth map from M^{\prime} into another Riemannian manifold $M^{\prime \prime}$. Then the composition $f_{1} \circ f: M \rightarrow M^{\prime \prime}$ is a smooth map. Let $D, D^{\prime}, \bar{D}, \bar{D}^{\prime} \hat{D}, \hat{D}^{\prime}, \hat{D}^{\prime \prime}$ be the Riemannian connections on $T M, T M^{\prime}, f^{-1} T M, f_{1}^{-1} T M^{\prime \prime}$, $\left(f_{1} \circ f\right)^{-1} T M^{\prime \prime}, T^{*} M \otimes f^{-1} T M^{\prime}, T^{*} M^{\prime} \otimes f_{1}^{-1} T M^{\prime \prime}, T^{*} M \otimes\left(f_{1} \circ f\right)^{-1} T M^{\prime \prime}$, respectively, and let $R^{M^{\prime}}(),, R^{f_{1}^{-1} T M^{\prime \prime}}$ be the Riemannian curvatures on $T M^{\prime \prime}, f^{-1} T M^{\prime \prime}$, respectively. For all $X, Y \in \Gamma(T M)$, we have

$$
\begin{equation*}
\bar{D}_{X}^{\prime \prime} d\left(f_{1} \circ f\right) Y=\hat{D}_{d f(X)}^{\prime} d f_{1}(Y)+d f_{1} \circ \bar{D}_{X} d f(Y) \tag{3.7}
\end{equation*}
$$

THEOREM 3.4. Let (M, \mathscr{F}) be a compact V-manifold, and $M^{\prime}, M^{\prime \prime}$ Riemannian manifolds. If $f: M \rightarrow M^{\prime}$ is a biharmonic map and $f_{1}: M^{\prime} \rightarrow M^{\prime \prime}$ is totally geodesic, then the composition $f_{1} \circ f: M \rightarrow M^{\prime \prime}$ is a biharmonic map.

Proof. Since f_{1} is totally geodesic, that is, $\hat{D}^{\prime} d f_{1}=0$, so in each \tilde{U} we have $\tau\left(f_{1} \circ \tilde{f}\right)=d f_{1} \circ \boldsymbol{\tau}(\tilde{f})$ and

$$
\begin{align*}
{\overline{D^{\prime \prime}}}^{\prime \prime} \bar{D} \tau\left(f_{1} \circ \tilde{f}\right) & =\bar{D}^{\prime \prime *} \bar{D}^{\prime \prime}\left(d f_{1} \circ \tau(\tilde{f})\right) \\
& =\bar{D}_{\tilde{e}_{k}}^{\prime \prime} \bar{D}_{\tilde{e}_{k}}^{\prime \prime}\left(d f_{1} \circ \tau(\tilde{f})\right)-\bar{D}_{D_{\tilde{e}_{k}} \tilde{e}_{k}}^{\prime \prime}\left(d f_{1} \circ \tau(\tilde{f})\right) \tag{3.8}
\end{align*}
$$

By (3.7) and notice that f_{1} is totally geodesic, then

$$
\begin{align*}
\bar{D}_{\tilde{e}_{k}}^{\prime \prime}\left(d f_{1} \circ \tau(\tilde{f})\right) & =\bar{D}_{\tilde{e}_{k}}^{\prime \prime}\left(d f_{1} \circ \hat{D}_{\tilde{e}_{j}} d \tilde{f}\left(\tilde{e}_{j}\right)\right) \\
& =\left(\hat{D}_{\hat{D}_{\hat{e}_{j}} d \tilde{f}\left(\tilde{e}_{k}\right)}^{\prime} d f_{1}\right)\left(\hat{D}_{\tilde{e}_{j}} d \tilde{f}\left(\tilde{e}_{j}\right)\right)+d f_{1} \circ \bar{D}_{\tilde{e}_{k}}\left(\hat{D}_{\tilde{e}_{j}} d \tilde{f}\left(\tilde{e}_{j}\right)\right) \tag{3.9}\\
& =d f_{1} \circ \bar{D}_{\tilde{e}_{k}} \tau(\tilde{f}) .
\end{align*}
$$

So

$$
\begin{align*}
& \bar{D}_{\tilde{e}_{k}}^{\prime \prime} \bar{D}_{\tilde{e}_{k}}^{\prime \prime}\left(d f_{1} \circ \tau(\tilde{f})\right)=\bar{D}_{\tilde{e}_{k}}^{\prime \prime}\left(d f_{1} \circ \bar{D}_{\tilde{e}_{k}} \tau(\tilde{f})\right)=d f_{1} \circ \bar{D}_{\tilde{e}_{k}} \bar{D}_{\tilde{e}_{k}} \tau(\tilde{f}), \\
& \bar{D}_{D_{\tilde{e}_{k}} \tilde{e}_{k}}^{\prime \prime}\left(d f_{1} \circ \tau(\tilde{f})\right)=d f_{1} \circ \bar{D}_{D_{\tilde{e}_{k}} \tilde{e}_{k}} \tau(\tilde{f}) \tag{3.10}
\end{align*}
$$

Substituting (3.10) into (3.8), we get

$$
\begin{equation*}
\bar{D}^{-\prime *} \tau\left(f_{1} \circ \tilde{f}\right)=d f_{1} \circ \bar{D}^{*} \bar{D} \tau(\tilde{f}) \tag{3.11}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
R^{M^{\prime \prime}}\left(d\left(f_{1} \circ \tilde{f}\right)\right. & \left.\left(\tilde{e}_{i}\right), \tau\left(f_{1} \circ \tilde{f}\right)\right) d\left(f_{1} \circ f\right)\left(\tilde{e}_{i}\right) \\
= & R^{f_{1}^{-1} T M^{\prime \prime}}\left(d \tilde{f}\left(\tilde{e}_{i}\right), \tau(\tilde{f})\right) d f_{1}\left(d \tilde{f}\left(\tilde{e}_{i}\right)\right) \tag{3.12}\\
= & d f_{1} \circ R^{M^{\prime}}\left(d \tilde{f}\left(\tilde{e}_{i}\right), \tau(\tilde{f})\right) d \tilde{f}\left(\tilde{e}_{i}\right)
\end{align*}
$$

By (3.11) and (3.12), we have

$$
\begin{align*}
& \bar{D}^{*} \bar{D}^{\prime \prime}\left(f_{1} \circ \tilde{f}\right)+R^{M^{\prime \prime}}\left(d\left(f_{1} \circ \tilde{f}\right)\left(\tilde{e}_{i}\right), \tau\left(f_{1} \circ \tilde{f}\right)\right) d\left(f_{1} \circ \tilde{f}\right)\left(\tilde{e}_{i}\right) \\
&=d f_{1} \circ\left[\bar{D}^{*} \bar{D} \tau(\tilde{f})+R^{M^{\prime}}\left(d \tilde{f}\left(\tilde{e}_{i}\right), \tau(\tilde{f})\right) d \tilde{f}\left(\tilde{e}_{i}\right)\right] \tag{3.13}
\end{align*}
$$

in each \tilde{U}. Hence, if f is biharmonic, then $f_{1} \circ f$ is also biharmonic.
REMARK 3.5. Theorem 3.4 generalizes the main theorem in [14] into V-manifolds. The condition of f_{1} being totally geodesic cannot be weakened into harmonic or biharmonic.

Acknowledgement. This project is supported by National Science Foundation of China.

References

[1] W. L. Baily Jr., The decomposition theorem for V-manifolds, Amer. J. Math. 78 (1956), 862-888. MR 20\#6537. Zbl 173.22705.
[2] P. Baird and J. Eells, A conservation law for harmonic maps, Geometry Symposium, Utrecht 1980 (Utrecht, 1980), Lecture Notes in Math., vol. 894, Springer, Berlin, 1981, pp. 1-25. MR 83i:58031. Zbl 485.58008.
[3] Y.-J. Chiang, Harmonic maps of V-manifolds, Ann. Global Anal. Geom. 8 (1990), no. 3, 315-344. MR 92c:58021. Zbl 679.58014.
[4] _ Spectral geometry of V-manifolds and its application to harmonic maps, Differential Geometry: Partial Differential Equations on Manifolds (Los Angeles, CA, 1990) (Rhode Island), Proc. Sympos. Pure Math., vol. 54, Part 1, Amer. Math. Soc., 1993, pp. 93-99. MR 94c:58040. Zbl 806.58005.
[5] Y.-J. Chiang and A. Ratto, Harmonic maps on spaces with conical singularities, Bull. Soc. Math. France 120 (1992), no. 2, 251-262. MR 93h:58040. Zbl 758.53023.
[6] Y-J. Chiang and H. Sun, 2-harmonic totally real submanifolds in a complex projective space, Bull. Inst. Math. Acad. Sinica 27 (1999), no. 2, 99-107. MR 2000e:53079. Zbl 960.53036.
[7] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), no. 1, 1-68. MR 82b:58033. Zbl 401.58003.
[8] , Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), no. 5, 385524. MR 89i:58027. Zbl 669.58009.
[9] J. Eells, Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160. MR 29\#1603. Zbl 122.40102.
[10] G. Y. Jiang, 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7 (1986), no. 2, 130-144 (Chinese). MR 87k:53140. Zbl 596.53046.
[11] , 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A 7 (1986), no. 4, 389-402 (Chinese). MR 88i:58039. Zbl 0628.58008.
[12] I. Satake, On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 359-363. MR 18,144a. Zbl 074.18103.
[13] , The Gauss-Bonnet theorem for V-manifolds, J. Math. Soc. Japan 9 (1957), 464-492. MR 20\#2022. Zbl 080.37403.
[14] H. Sun, A theorem on 2-harmonic mappings, J. Math. (Wuhan) 12 (1992), no. 1, 103-106 (Chinese). MR 94c:58045. Zbl 0766.53036.
[15] Y. L. Xin and X. P. Chen, The hypersurfaces in the Euclidean sphere with relative affine Gauss maps, Acta Math. Sinica 28 (1985), no. 1, 131-139 (Chinese). MR 87b:53088. Zbl 0567.53041.

Yuan-Jen Chiang: Department of Mathematics, Mary Washington College, FrederICKSbURG, VA 22401, USA

E-mail address: ychiang@mwc.edu
Hongan Sun: Southern Institute of Metallurgy, Ganzou, Jiangxi, China

