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SOME APPLICATIONS OF MINIMAL OPEN SETS
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Abstract. We characterize minimal open sets in topological spaces. We show that any
nonempty subset of a minimal open set is pre-open. As an application of a theory of
minimal open sets, we obtain a sufficient condition for a locally finite space to be a pre-
Hausdorff space.
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1. Introduction. Let X be a topological space. We call a nonempty open set U of X
a minimal open set when the only open subsets of U are U and ∅.

In this paper, we study fundamental properties of minimal open sets and apply

them to obtain some results on pre-open sets (cf. [2]) and pre-Hausdorff spaces.

In Section 2, we characterize minimal open sets, that is, we show that a nonempty

open set U is a minimal open set if and only if Cl(U)= Cl(S) for any nonempty subset

S of U . This result implies that any nonempty subset S of a minimal open set U is a

pre-open set.

In Section 3, we study minimal open sets in locally finite spaces. The results of this

section are closely related to the work of James [1], and these results will be used in

the next scetion.

In Section 4, we apply the theory of minimal open sets to study pre-open sets. Our

first main result of this section is a property of the set of all minimal open sets in

any nonempty finite open set which is not a minimal open set. This result enables

us to prove a generalization of Theorem 2.5, when U is a nonempty finite open set,

in Theorem 4.4. Theorem 4.5 shows that our theory of minimal open set is useful to

study pre-open sets.

Finally, we show that some conditions on minimal open sets implies pre-Hausdorff-

ness of a space, that is, if any minimal open set of a locally finite space X has two

elements at least, then X is a pre-Hausdorff space.

2. Minimal open sets. Let (X,τ) be a topological space.

Definition 2.1. A nonempty open set U of X is said to be a minimal open set if

and only if any open set which is contained in U is ∅ or U .

Lemma 2.2. (1) Let U be a minimal open set and W an open set. Then U∩W =∅ or

U ⊂W .

(2) Let U and V be minimal open sets. Then U∩V =∅ or U = V .
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Proof. (1) Let W be an open set such that U∩W ≠∅. Since U is a minimal open

set and U∩W ⊂U , we have U∩W =U . Therefore U ⊂W .

(2) If U∩V ≠∅, then we see that U ⊂ V and V ⊂U by (1). Therefore U = V .

Proposition 2.3. Let U be a minimal open set. If x is an element of U , then U ⊂W
for any open neighborhood W of x.

Proof. Let W be an open neighborhood of x such that U �⊂W . Then U∩W is an

open set such that U∩W ⊊ U and U∩W ≠∅. This contradicts our assumption that

U is a minimal open set.

Proposition 2.4. Let U be a minimal open set. Then

U =∩{W |W is an open neighborhood of x} (2.1)

for any element x of U .

Proof. By Proposition 2.3 and the fact that U is an open neighborhood of x, we

have U ⊂∩{W |W is an open neighborhood of x} ⊂ U . Therefore we have the result.

Theorem 2.5. Let U be a nonempty open set. Then the following three conditions

are equivalent:

(1) U is a minimal open set.

(2) U ⊂ Cl(S) for any nonempty subset S of U .

(3) Cl(U)= Cl(S) for any nonempty subset S of U .

Proof. (1)⇒(2). Let S be any nonempty subset of U . By Proposition 2.3, for any

element x of U and any open neighborhood W of x, we have

S =U∩S ⊂W ∩S. (2.2)

Then, we haveW∩S ≠∅ and hence x is an element of Cl(S). It follows that U ⊂ Cl(S).
(2)⇒(3). For any nonempty subset S of U , we have Cl(S) ⊂ Cl(U). On the other

hand, by (2), we see Cl(U) ⊂ Cl(Cl(S)) = Cl(S). Therefore we have Cl(U) = Cl(S) for

any nonempty subset S of U .

(3)⇒(1). Suppose that U is not a minimal open set. Then there exists a nonempty

open set V such that V ⊊U and hence there exists an element a∈U such that a ∉ V .

Then we have Cl({a}) ⊂ Vc , the complement of V . It follows that Cl({a}) ≠ Cl(U).

A subset M of a space (X,τ) is called a pre-open set if M ⊂ IntCl(M). The family of

all pre-open sets in (X,τ) will be denoted by PO(X,τ), (cf. [2]).

A space (X,τ) is called pre-Hausdorff if for each x,y ∈X, x ≠y there exist subsets

U , V ∈ PO(X,τ) such that x ∈U , y ∈ V , and U∩V =∅.

Theorem 2.6. Let U be a minimal open set. Then any nonempty subset S of U is a

pre-open set.

Proof. By Theorem 2.5(2), we have IntU ⊂ IntCl(S). Since U is an open set, we

have S ⊂U = Int(U)⊂ IntCl(S).
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Theorem 2.7. Let U be a minimal open set and M a nonempty subset of X. If there

exists an open neighborhoodW ofM such thatW ⊂ Cl(M∪U), thenM∪S is a pre-open

set for any nonempty subset S of U .

Proof. By Theorem 2.5(3), we have Cl(M∪S) = Cl(M)∪Cl(S) = Cl(M)∪Cl(U) =
Cl(M ∪ U). Since W ⊂ Cl(M ∪ U) = Cl(M ∪ S) by assumption, we have Int(W) ⊂
IntCl(M∪S). SinceW is an open neighborhood ofM , namelyW is an open set such that

M ⊂W , we haveM ⊂W = Int(W)⊂ IntCl(M∪S). Moreover we have Int(U)⊂ IntCl(M∪
U), for Int(U) = U ⊂ Cl(U) ⊂ Cl(M)∪Cl(U) = Cl(M∪U). Since U is an open set, we

have S ⊂ U = IntU ⊂ IntCl(M ∪U) = IntCl(M ∪S). Therefore M ∪S ⊂ IntCl(M ∪S).

Corollary 2.8. Let U be a minimal open set andM a nonempty subset of X. If there

exists an open neighborhood W of M such that W ⊂ Cl(U), then M∪S is a pre-open set

for any nonempty subset S of U .

Proof. By assumption, we haveW ⊂ Cl(M)∪Cl(U)=Cl(M∪U). So by Theorem 2.7,

we see that M∪S is a pre-open set.

The condition of Theorem 2.7, namely W ⊂ Cl(M∪S), does not necessarily imply

the condition of Corollary 2.8, namely W ⊂ Cl(S). We have the following example.

Example 2.9. LetX = {a,b,c,d}with topology θ={∅,{d},{a,b},{a,b,c},{a,b,d},
X}, U = {a,b} and M = W = {d}. Then W = {d} ⊂ Cl({a,b}∪{d}) = Cl(M ∪U) and

W = {d} �⊂ Cl({a,b})= Cl(U).

Theorem 2.10. Let U be a minimal open set and x an element of X −U . Then

W ∩U =∅ or U ⊂W for any open neighborhood W of x.

Proof. Since W is an open set, we have the result by Lemma 2.2.

Corollary 2.11. Let U be a minimal open set and x an element of X−U . Define

Ux ≡∩{W |W is an open neighborhood of x}. Then Ux∩U =∅ or U ⊂Ux .

Proof. If U ⊂W for any open neighborhood W of x, then U ⊂∩{W |W is an open

neighborhood of x}. Therefore U ⊂Ux . Otherwise there exists an open neighborhood

W of x such that W ∩U =∅. Then we have U∩Ux =∅.

3. Finite open sets. In this section, we study some properties of minimal open sets

in finite open sets and locally finite spaces.

Theorem 3.1. Let V be a nonempty finite open set. Then there exists at least one

(finite) minimal open set U such that U ⊂ V .

Proof. If V is a minimal open set, we may set U = V . If V is not a minimal open set,

then there exists an (finite) open set V1 such that ∅≠ V1 ⊊ V . If V1 is a minimal open

set, we may set U = V1. If V1 is not a minimal open set, then there exists an (finite)

open set V2 such that ∅ ≠ V2 ⊊ V1 ⊊ V . Continuing this process, we have a sequence

of open sets

V ⊋ V1 ⊋ V2 ···⊋ Vk ⊋ ··· . (3.1)
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Since V is a finite set, this process repeats only finitely. Then, finally we get a minimal

open set U = Vn for some positive integer n.

A topological space is said to be a locally finite space if each of its elements is

contained in a finite open set.

Corollary 3.2. Let X be a locally finite space and V a nonempty open set. Then

there exists at least one (finite) minimal open set U such that U ⊂ V .

Proof. Since V is a nonempty set, there exists an element x of V . Since X is a

locally finite space, we have a finite open set Vx such that x ∈ Vx . Since V ∩Vx is a

finite open set, we get a minimal open set U such that U ⊂ V∩Vx ⊂ V by Theorem 3.1.

Theorem 3.3. Let Vλ be an open set for any λ ∈ Λ and W a nonempty finite open

set. Then W ∩(∩λ∈ΛVλ) is a finite open set.

Proof. We see that there exists an integer n such that W ∩ (∩λ∈ΛVλ) = W ∩
(∩ni=1Vλi) and hence we have the result.

Theorem 3.4. Let Vλ be an open set for any λ ∈ Λ and Wµ a nonempty finite open

set for any µ ∈�. Let S =∪µ∈�Wµ . Then S∩(∩λ∈ΛVλ) is an open set.

Proof. Since Wµ is a finite open set, by Theorem 3.3, we have Wµ∩(∩λ∈ΛVλ) is a

finite open set for any µ ∈�. Since

S∩(∩λ∈ΛVλ
)= (∪µ∈�Wµ

)∩(∩λ∈ΛVλ
)=∪µ∈�

(
Wµ∩

(∩λ∈ΛVλ
))
, (3.2)

we have the result.

Corollary 3.5 (see [1]). Any locally finite space is an Alexandroff space.

4. Applications. Let U be a nonempty finite open set. We see, by Lemma 2.2 and

Corollary 3.2, that there exists a positive integer k such that {U1,U2, . . . ,Uk} is the set

of all minimal open sets in U . Then it satisfies the following two conditions:

(a) Ui∩Uj =∅ for any i, j with 1≤ i, j ≤ k, and i≠ j.
(b) If U ′ is a minimal open set in U , then there exists i with 1 ≤ i ≤ k such that

U ′ =Ui.

Theorem 4.1. Let U be a nonempty finite open set which is not a minimal open

set. Let {U1,U2, . . . ,Un} be the set of all minimal open sets in U and x an element of

U − (U1∪U2∪···∪Un). Define Ux ≡ ∩{W | W is an open neighborhood of x}. Then

there exists a positive integer i of {1, . . . ,n} such that Ui ⊂Ux .

Proof. Assume that Ui �⊂Ux for any positive integer i of {1, . . . ,n}. Then we have

Ui∩Ux =∅ for any minimal open setUi inU by Corollary 2.11. SinceUx is a nonempty

finite open set by Theorem 3.3, there exists a minimal open setU ′ such thatU ′ ⊂Ux by

Theorem 3.1. SinceU ′ ⊂Ux ⊂U , we haveU ′ is a minimal open set inU . By assumption,

we have Ui∩U ′ ⊂Ui∩Ux =∅ for any minimal open set Ui. Therefore U ′ ≠Ui for any

positive integer i of {1,2, . . . ,n}. This contradicts our assumption.



SOME APPLICATIONS OF MINIMAL OPEN SETS 475

Proposition 4.2. Let U be a nonempty finite open set which is not a minimal open

set. Let {U1,U2, . . . ,Un} be the set of all minimal open sets in U and x an element of

U − (U1∪U2∪···∪Un). Then there exists a positive integer i of {1, . . . ,n} such that

Ui ⊂Wx for any open neighborhood Wx of x.

Proof. Since Wx ⊃∩{W |W is an open neighborhood of x}, we have the result by

Theorem 4.1.

Theorem 4.3. Let U be a nonempty finite open set which is not a minimal open

set. Let {U1,U2, . . . ,Un} be the set of all minimal open sets in U and x an element of

U−(U1∪U2∪···∪Un). Then there exists a positive integer i of {1, . . . ,n} such that x
is an element of Cl(Ui).

Proof. By Proposition 4.2, there exists a positive integer i of {1, . . . ,n} such that

Ui ⊂ W for any open neighborhood W of x. Therefore Ui∩W ⊃ Ui∩Ui ≠∅ for any

open neighborhood W of x. Therefore we have the result.

The following result is a generalization of Theorem 2.5, whenU is a nonempty finite

open set.

Theorem 4.4. Let U be a nonempty finite open set and Ui a minimal open set in U
for each i∈ {1,2, . . . ,n}. Then the following three conditions are equivalent:

(1) {U1,U2, . . . ,Un} is the set of all minimal open sets in U .

(2) U ⊂ Cl(S1∪S2∪···∪Sn) for any nonempty subsets Si of Ui for i∈ {1,2, . . . ,n}.
(3) Cl(U)= Cl(S1∪S2∪···∪Sn) for any nonempty subsets Si ofUi for i∈{1,2, . . . ,n}.

Proof. (1)⇒(2). IfU is a minimal open set, then this is the result of Theorem 2.5(2).

Otherwise U is not a minimal open set. If x is any element of U−(U1∪U2∪···∪Un),
we have x ∈ Cl(U1)∪Cl(U2)∪···∪Cl(Un) by Theorem 4.3. Therefore

U ⊂ Cl
(
U1
)∪Cl

(
U2
)∪···∪Cl

(
Un
)= Cl

(
S1
)∪Cl

(
S2
)∪···∪Cl

(
Sn
)

= Cl
(
S1∪S2∪···∪Sn

) (4.1)

by Theorem 2.5(3).

(2)⇒(3). For any nonempty subset Si of Ui with i∈ {1,2, . . . ,n}, we have Cl(S1∪S2∪
···∪Sn)⊂ Cl(U). On the other hand, by (2), we see

Cl(U)⊂ Cl
(
Cl
(
S1∪S2∪···∪Sn

))= Cl
(
S1∪S2∪···∪Sn

)
. (4.2)

Therefore we have Cl(U)= Cl(S1∪S2∪···∪Sn) for any nonempty subset Si of Ui with

i∈ {1,2, . . . ,n}.
(3)⇒(1). Suppose that V is a minimal open set in U and V ≠ Ui for i ∈ {1,2, . . . ,n}.

Then we have V∩Cl(Ui)=∅ for each i∈ {1,2, . . . ,n}. It follows that any element of V
is not contained in Cl(U1∪U2∪···∪Un). This contradicts the condition (3) because

V ⊂U ⊂ Cl(U)= Cl(S1∪S2∪···∪Sn).

Let U be a nonempty finite open set, {U1,U2, . . . ,Un} the set of all minimal open sets

in U and xi an element of Ui for each i∈ {1,2, . . . ,n}. Then we see that the set {x1,x2,
. . . ,xn} is a pre-open set by Theorem 4.4. Moreover, we have the following result.
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Theorem 4.5. Let U be a nonempty finite open set and {U1,U2, . . . ,Un} the set of all

minimal open sets in U . Let S be any subset of U−(U1∪U2∪···∪Un) and Si be any

nonempty subset ofUi for each i∈{1,2, . . . ,n}. Then S∪S1∪S2 ···∪Sn is a pre-open set.

Proof. By Theorem 4.4(2), we have

U ⊂ Cl
(
S1∪S2 ···∪Sn

)⊂ Cl
(
S∪S1∪S2 ···∪Sn

)
. (4.3)

Since U is an open set, then we have

S∪S1∪S2 ···∪Sn ⊂U = Int(U)⊂ IntCl
(
S∪S1∪S2 ···∪Sn

)
. (4.4)

Then we have the result.

Theorem 4.6. Let X be a locally finite space. If any minimal open set of X has two

elements at least, then X is a pre-Hausdorff space.

Proof. Let x, y be elements of X such that x ≠y . Since X is a locally finite space,

there exists finite open setsU and V such that x ∈U andy ∈ V . By Theorem 3.1, there

exists the set {U1,U2, . . . ,Un} of all minimal open sets in U and the set {V1,V2, . . . ,Vm}
of all minimal open sets in V .

Case 1. If there exists i of {1,2, . . . ,n} and j of {1,2, . . . ,m} such that x ∈ Ui and

y ∈ Vj , then, by Theorem 2.6, {x} and {y} are disjoint pre-open sets which contains

x and y , respectively.

Case 2. If there exists i of {1,2, . . . ,n} such that x ∈ Ui and y �∈ Vj for any j of

{1,2, . . . ,m}, then we find an element yj of Vj for each j such that {x} and {y,y1,
y2, . . . ,ym} are pre-open sets and {x}∩{y,y1,y2, . . . ,yn} = ∅ by Theorems 2.6, 4.5

and the assumption.

Case 3. If x �∈Ui for any i of {1,2, . . . ,n} and y �∈ Vj for any j of {1,2, . . . ,m}, then

we find elements xi of Ui and yj of Vj for each i, j such that {x,x1,x2, . . . ,xn} and

{y,y1,y2, . . . ,ym} are pre-open sets and {x,x1,x2, . . . ,xn}∩ {y,y1,y2, . . . ,ym} = ∅
by Theorem 4.5 and the assumption. We remark that we use the assumption that any

minimal open set of X has at least two elements for the case Ui = Vj for some i and

j in the argument of cases (2) and (3).

Therefore X is a pre-Hausdorff space.
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