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AN APPROXIMATE ANALYTIC SOLUTION OF A PARTICULAR
BOUNDARY VALUE PROBLEM
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Abstract. This note is concerned with the three-dimensional quasi-steady-state heat con-
duction equation subject to certain boundary conditions in the whole x′y′-plane and
finite in z′-direction. This type of boundary value problem arises in laser welding process.
The solution to this problem can be represented by an integral using Fourier analysis.
This integral is approximated to obtain a simple analytic expression for the temperature
distribution.
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1. Mathematical formulation and analysis. The governing equation for the non-

dimensional temperature distribution is given by [2]

Txx+Tyy+Tzz =−(Pe)Tx (1.1)

The boundary conditions for the temperature are

T �→ 0 as x �→±∞, y �→±∞,

Tz|z=0 =− 2AP
πr0kw

(
Tm−T0

) exp
[−2

(
x2+y2)]+NutT ,

Tz|z=d =−NubT ,

(1.2)

where A, P , r0, kw , Tm, T0, Pe, Nut , and Nub are all constants defined in [2]. Equation

(1.1) can be simplified by defining

T = T1 exp
(
− Pe

2
x
)

(1.3)

which transforms (1.1) into the following form:

T1xx+T1yy+T1zz−
(
Pe2

4

)
T1 = 0 (1.4)

and, the boundary conditions are now expressed as

T1 �→ 0 as x �→±∞, y �→±∞,

T1z|z=0 =− 2AP
πr0kw

(
Tm−T0

) exp
[−2

(
x2+y2)]+NutT1,

T1z|z=d =−NubT1.

(1.5)
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The solution to the boundary value problem was obtained earlier [2]. The solution is

given in dimensional form

T ′
(
x′,y ′,z′

)= T0+ AP exp
[−Pe/2(x−Pe/16)

]
2πr0kw

∫∞
0
Rexp

(
− R

2

8

)
Φ(R)J0(rR)dR,

(1.6)

where J0(β) is the Bessel function of order zero, x = x′/r0, y =y ′/r0, z = z′/r0,

Φ(R)= M cosh
[
M(d−z)]+Nub sinh

[
M(d−z)](

M2+NutNub
)
sinh(Md)+M(Nut+Nub)cosh(Md)

,

M =
√
R2+ Pe

2

4
,

(1.7)

and, R is the distance in the Fourier space (dual variable) defined as R =
√
p2+q2 and

r is the distance in the real xy-plane defined as r =
√
x2+y2.

To approximate the integral in (1.6), consider the special case Nub =Nut = 0. For

this case (1.7) becomes

Φ(R)= cosh
[
M(d−z)]

M sinh(Md)
. (1.8)

For large values of M which is R→∞, (1.8) can be approximated as

Φ(R)≈ exp(−Mz)+exp
[−M(2d−z)]

M
. (1.9)

Therefore, the integral in (1.6) becomes

I ≈
∫∞

0
Rexp

(
− R

2

8

)
exp(−Mz)+exp

[−M(2d−z)]
M

J0(rR)dR. (1.10)

Approximation of the following type of integral is necessary in general:

IA =
∫∞

0
Rexp

(−aR2)exp
(−c√R2+b2

)
√
R2+b2

J0(rR)dR, (1.11)

where a, b, and c are positive constants. One can rewrite (1.11) as

IA = exp
(
ab2)∫∞

0
Rexp

(−a√R2+b2
√
R2+b2

)exp
(−c√R2+b2

)
√
R2+b2

J0(rR)dR. (1.12)

Expanding one of the repeated terms under the square root sign in the first exponential

term in a Taylor series about R = 0 and retaining the first term, one obtains

IA ≈ exp
(
ab2)∫∞

0
R

exp
[−(c+ab)√R2+b2

]
√
R2+b2

J0(rR)dR. (1.13)
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Using the Hankel transform [1], (1.13) can be evaluated as

IA = exp
(
ab2)

exp
[−b√r 2+(c+ab)2]√
r 2+(c+ab)2 . (1.14)

Now the approximated dimensional temperature distribution can be obtained from

(1.14)

T ′
(
x′,y ′,z′

)≈ T0+ AP exp
[−Pe/2(x−Pe/16

)]
2πr0kw

exp
(
Pe2

32

)

×


exp

(
−Pe/2

√
r 2+(z+Pe/16

)2
)

√
r 2+(z+Pe/16

)2

+
exp

(
−Pe/2

√
r 2+(2d−z+Pe/16

)2
)

√
r 2+(2d−z+Pe/16

)2


.

(1.15)

2. Results and discussion. Figures 2.1, 2.2, and 2.3 show the numerical and ap-

proximate temperature distributions along the z′-axis for various values of the radial

distance in the real physical space such as, r = 0, 0.45 and 0.75 mm with laser power

50 W, absorptivity 36%, laser beam radius 0.15 mm and scanning speed 10 mm/s. As

expected, the temperature profiles below z′ = 50 µm are not in good agreement for the

case of r = 0 because the approximation is accurate for larger values of r . Figure 2.1

depicts that the two temperature values get closer to each other for z′ values lying

in the interval [50,200]. As shown in Figures 2.2 and 2.4, the difference between the

temperature values decreases along z′-axis for larger values of r . Figure 2.4 shows

the comparison between the numerical and approximate temperature values along

the y ′-axis for x′ = 0,0.15 mm. For y ′ values up to 80 µm, there is a discrepancy be-

tween the two temperature values for x′ = 0. However, it is good for x′ = 0.15 mm. In

addition, all the temperature values are in very good agreement for y ′ values lying in

the interval [160,450].
The approximate temperature values can also be improved for small and large val-

ues of r . One of the expression under the square root sign of exponent is approximated

as

√
R2+b2 ≈ br +A

′

r +B′ , (2.1)

where A′ and B′ are parameters to be determined numerically. In addition, a multi-

plicative factor C′ is introduced for integral in (1.12). In this case the result is very

much improved for r = 0 as shown in Figure 2.5. As r increases, the difference be-

tween the numerical and approximate temperature values becomes smaller. These

cases are depicted in Figures 2.6 and 2.7. Figure 2.8 shows very good agreement be-

tween the two temperatures for x′ = 0 and all y ′ values compared to Figure 2.4.
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Figure 2.1. Comparison between the numerical and approximate tempe-
ratures (r = 0 case).
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Figure 2.2. Comparison between the numerical and approximate tempe-
ratures (r = 0.45 mm case).
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Figure 2.3. Comparison between the numerical and approximate tempe-
ratures (r = 0.75 mm case).
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Figure 2.4. Comparison between the numerical and approximate tempera-
tures in the y′ direction for the different values of x′.
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Figure 2.5. Comparison between the numerical and improved approximate
temperatures (r = 0 case).
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Figure 2.6. Comparison between the numerical and improved approximate
temperatures (r = 0.45 mm case).
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Figure 2.7. Comparison between the numerical and improved approximate
temperatures (r = 0.75 mm case).

0 80 160 240 320 400

0

1000

2000

3000

4000

T
em

p
er

at
u

re
,T

′ (
x
′ =

0
/0
.1

5
,y

′ ,
z′
=

0
)[
K
]

y′-axis [µm]

Numerical temp. for x′ = 0mm

Approximate temp. for x′ = 0 mm

Numerical temp. for x′ = 0.15 mm

Approximate temp. for x′ = 0.15 mm

Material: SS316

Laser beam radius: 0.15 mm

Laser scanning speed: 10 mm/s

Laser power: 50 W

Absorptivity: 0.36

Improvement parameters for

the approximated temperature:

A′ = 12, B′ = 1 and C′ = 1.2

Figure 2.8. Comparison between the numerical and approximate tempera-
tures in the y′-direction for different values of x′.
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3. Conclusion. The numerical and approximate temperature values are presented

for different values of the radial distance r in the real physical space. The approx-

imation is based on the fact that the integral expression, (1.13), is accurate around

R = 0 which means larger values of r . To fix this problem, (2.1) is used for the op-

timal choices of the parameters A′ = 12, B′ = 1, and C′ = 1.2. This approximation

is also good for smaller values of R. The values of these parameters are determined

numerically.
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