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ON SOLUTIONS OF THE GOŁA̧B-SCHINZEL EQUATION
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Abstract. We determine the solutions f : (0,∞)→ [0,∞) of the functional equation f(x+
f(x)y) = f(x)f(y) that are continuous at a point a > 0 such that f(a) > 0. This is a
partial solution of a problem raised by Brzdȩk.
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The well-known Goła̧b-Schinzel functional equation

f
(
x+f(x)y)= f(x)f(y) (1)

has been studied by many authors (cf. [1, 3, 5, 7, 10]) in many classes of functions.

Recently Aczél and Schwaiger [2], motivated by a problem of Kahlig, solved the fol-

lowing conditional version of (1)

f
(
x+f(x)y)= f(x)f(y) for x ≥ 0,y ≥ 0, (2)

in the class of continuous functions f : R→ R, where R denotes the set of real num-

bers. Some further conditional generalizations of (1) have been considered by Reich

[9] (see also [8] and Brzdȩk [4]).

At the 38th International Symposium on Functional Equations (Noszvaj, Hungary,

June 11–17, 2000) Brzdȩk raised, among others, the problem (see [6]) of solving the

equation

f
(
x+f(x)y)= f(x)f(y), whenever x,y,x+f(x)y ∈R+, (3)

in the class of functions f :R+ →R that are continuous at a point, where R+ = (0,∞).
We give a partial solution to the problem, namely we determine the solutions f :R+ →
[0,∞) of (3) that are continuous at a pointa∈R+ such that f(a) > 0. Note that actually

equations (1) and (3) have the same solutions in the class of functions f :R+ → [0,∞).
From now on we assume that f : R+ → [0,∞) is a solution of (3), continuous at a

point a∈R+ such that f(a) > 0.

We start with some lemmas.

Lemma 1. Suppose that y2 >y1 > 0 and f(y1)= f(y2) > 0. Then

(a) f(t+(y2−y1))= f(t) for t ≥y1;

(b) for every z > 0 such that f(z) > 0,

f
(
t+f(z)(y2−y1

))= f(t) for t ≥ z+y1f(z); (4)
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(c) if z1,z2 > 0 and f(z2) > f(z1) > 0, then

f
(
t+(f (z2

)−f (z1
))(
y2−y1

))= f(t) for t ≥max
{
z1+y1f

(
z1
)
,z2+y1f

(
z2
)}
. (5)

Proof. (a) We argue in the same way as in [2, 7]. Namely, for t ≥y1, by (3) we have

f
(
t+(y2−y1

))= f
(
y2+ t−y1

f(y1)
f
(
y1
))= f

(
y2+ t−y1

f(y1)
f
(
y2
))

= f (y2
)
f
(
t−y1

f(y1)

)
= f (y1

)
f
(
t−y1

f(y1)

)

= f
(
y1+ t−y1

f(y1)
f
(
y1
))= f(t).

(6)

(b) For every z > 0 such that f(z) > 0 we have

f
(
z+y1f(z)

)= f(z)f (y1
)= f(z)f (y2

)= f (z+y2f(z)
)

(7)

and consequently by (a) (with y1 and y2 replaced by z+y1f(z) and z+y2f(z))

f(t)= f [t+(z+y2f(z)−z−y1f(z)
)]= f (t+f(z)(y2−y1

))
(8)

for t ≥ z+y1f(z).
(c) Since (f (z2)− f(z1))(y2 −y1) > 0, t + (f (z2)− f(z1))(y2 −y1) ≥ max{z1 +

y1f(z1),z2+y1f(z2)} for t ≥max{z1+y1f(z1),z2+y1f(z2)}. Thus using (b) twice,

for z = z1 and z = z2 (the first time with t replaced by t+(f (z2)−f(z1))(y2−y1)),
we have

f
(
t+(f (z2

)−f (z1
))(
y2−y1

))
= f [t+(f (z2

)−f (z1
))(
y2−y1

)+f (z1
)(
y2−y1

)]
= f (t+f (z2

)(
y2−y1

))= f(t)
(9)

for t ≥max{z1+y1f(z1),z2+y1f(z2)}.

Lemma 2. Let y2 > y1 > 0 and f(y1) = f(y2) > 0. Then there exists x0 > 0 such

that for every d> 0 there is c ∈ (0,d) with f(t+c)= f(t) for t ≥ x0.

Proof. First suppose that there is a neighbourhoodU = (a−δ,a+δ) of a on which

f is constant. Then for every x ∈U such that a< x, from Lemma 1(a), we get

f
(
t+(x−a))= f(t) for t ≥ a. (10)

Thus it is enough to take x0 = a.

Now assume that there does not exist any neighbourhood of a on which f is con-

stant. Take ε ∈ (0,f (a)). The continuity of f at a implies that there exists δ ∈ (0,1)
such that for every x ∈ U1 = (a−δ,a+δ) we have f(x) ∈ (f (a)−ε,f (a)+ε). Take

x1,x2 ∈U1 such that f(x1) < f(x2). Then f(x2)−f(x1) < 2ε. From ε < f(a) we infer

f(x1) > 0 and by Lemma 1(c) we get

f
(
t+(f (x2

)−f (x1
))(
y2−y1

))= f(t) for t ≥max
{
x1+y1f

(
x1
)
,x2+y1f

(
x2
)}
.

(11)

Next by a suitable choice of ε the value c := (f (x2)−f(x1))(y2−y1) can be made

arbitrarily small. Moreover, x1,x2 <a+1 and f(x1),f (x2) < f(a)+ε < 2f(a), which

means that f(t+c)=f(t) for t≥x0 :=a+1+y12f(a). This completes the proof.
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Lemma 3. If for some y2 >y1 > 0, f(y1)= f(y2) > 0, then for every ε > 0 and e > 0

there is c ∈ (0,e) with f(t+c)= f(t) for t ≥ ε.

Proof. By Lemma 2 there exists x0 > 0 such that for arbitrarily small c > 0

f(t+c)= f(t) for t ≥ x0. (12)

By induction, from Lemma 1(a), we get f(y1) = f(y1+n(y2−y1)) for any positive

integer n. Consequently there exists x1 ∈ [x0,∞) with f(x1)= f(y1).
Put B = {x > x0 : f(x) > 0}. Clearly x1 ∈ B. Thus (12) implies that B∩A ≠∅ for

every nontrivial interval A⊂ [x0,∞). Define a function f1 : [0,∞)→ [x0,∞) by

f1(x)= x1+xf
(
x1
)
. (13)

Note that f1 is increasing. Let ε > 0 and y0 ∈ B∩(f1(0),f1(ε))≠∅. By the continuity

of f1 there exists z0 ∈ (0,ε) such that f1(z0)=y0. Take d> 0 with f(t+d)= f(t) for

t ≥ x0. Then

f
(
y0
)= f (y0+d

)
≠ 0. (14)

The form of the function f1 implies that there exists z1 > z0 such that f1(z1)=y0+d.

Note that (14) yields

f
(
x1+z0f

(
x1
))= f (f1

(
z0
))

= f (y0
)= f (y0+d

)= f (f1
(
z1
))

= f (x1+z1f
(
x1
))
≠ 0.

(15)

Further by (3)

f
(
x1
)
f
(
z0
)= f (x1

)
f
(
z1
)
≠ 0, (16)

and consequently f(z0)= f(z1) > 0. Hence, in view of Lemma 1(a), we infer that

f
(
t+(z1−z0

))= f(t) for t ≥ z0. (17)

This completes the proof, because ε > z0 and, choosing sufficiently small d, we can

make c := (z1−z0) arbitrarily small.

Lemma 4. If there exist y2 >y1 > 0 such that f(y1)= f(y2) > 0, then f ≡ 1.

Proof. First we show that f(x) = f(a) =: b for x ∈ R+. For the proof by contra-

diction suppose that there exists t0 > 0 with f(t0)≠ f(a). Put

ε0 =
∣∣f (t0)−f(a)∣∣. (18)

The continuity of f at a implies that there exists δ > 0 such that if |x−a| < δ then

|f(x)−f(a)|< ε0. By Lemma 3 there exists y0 > 0 such that |y0−a|< δ and f(y0)=
f(t0), which means that |f(t0)−f(a)|< ε0, contrary to (18). Thus we have proved that

f ≡ b. Clearly from (3) we get b = f(a)= f(a+af(a))= f(a)2 = b2 and consequently

b = 1. This completes the proof.

Lemma 5. If f is nonconstant then (f (x)− 1)/x is constant for all x > 0 with

f(x) > 0.
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Proof. Suppose that x > 0, y > 0, x ≠y , f(x)f(y) > 0, and

f(x)−1
x

≠
f(y)−1

y
. (19)

Then x+yf(x)≠y+xf(y) and

f
(
x+yf(x))= f(x)f(y)= f (y+xf(y))> 0. (20)

Thus, by Lemma 4, f ≡ 1, a contradiction.

Remark 6. If we denote the constant in Lemma 5 by c, then from Lemma 5 we

get f(x) ∈ {cx+1,0} for every x > 0. In the case c < 0 we have f(x) = 0 for every

x ≥−1/c (because f ≥ 0).

Lemma 7. Suppose that f is nonconstant. Then,

(a) in the case c := (f (a)−1)/a < 0, f(x)= cx+1 for x ∈ (0,−1/c);
(b) in the case c := (f (a)−1)/a > 0, f(x)= cx+1 for x > 0.

Proof. The continuity of f at a implies that there exists δ ∈ (0,a) such that

f(x) > 0 for every x ∈ U = [a− δ,a+ δ]. Thus, by Remark 6, f(x) = cx + 1 for

x ∈U .

Let I = (a,−1/c) if c < 0 and I = (a,∞) if c > 0. Put B1 := {x ∈ (0,a) : f(x) = 0},
B2 := {x ∈ I : f(x)= 0}, B = B1∪B2,

d1 :=



supB1 if B1 ≠∅,
a−δ if B1 =∅,

d2 :=



infB2 if B2 ≠∅,
a+δ if B2 =∅.

(21)

Clearly f(x) > 0 on the interval A= (d1,d2)⊃ (a−δ,a+δ).
(a) For the proof by contradiction suppose that there exists b1 ∈ (0,−1/c) with

f(b1) = 0. Notice that d2 < −1/c. Indeed, if B2 ≠ ∅ then, since B2 ⊂ (a,−1/c), so

infB2 < −1/c. If not, then from Remark 6 we have that a+δ < −1/c. Consequently

d2 <−1/c. Thus cd2 >−1 and consequently δ+δcd2 > 0. Take b ∈ B and z ∈A such

that |z−b|< δ+δcd2. Define functions h,g :U →R by

h(x)= x+zf(x) for x ∈U,
g(x)= x+bf(x) for x ∈U. (22)

By the continuity of f on U , h is continuous. Next, since z < d2, so cz > cd2 and

δ+δcz > δ+δcd2 > 0. Hence

h(a)−h(a−δ)= a+z(ca+1)−a+δ−z[c(a−δ)+1
]= δ+δcz > 0,

h(a+δ)−h(a)= a+δ+z[c(a+δ)+1]−a−z(ca+1)= δ+δcz > 0.
(23)

Moreover 1> ca+1= f(a) > 0, whence
∣∣h(a)−g(a)∣∣= ∣∣a+z(ca+1)−a−b(ca+1)

∣∣
= |z−b||ca+1|< |z−b|< δ+δcd2 < δ+δcz.

(24)

From (23) and (24) we obtain

h(a−δ) < g(a) < h(a+δ). (25)
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The continuity of h implies that there exists x0 ∈ (a−δ,a+δ) such that h(x0)= g(a).
Since a,x0,z ∈A and b ∈ B, so we have

0≠ f
(
x0
)
f(z)= f (x0+zf

(
x0
))= f (h(x0

))
= f (g(a))= f (a+bf(a))= f(a)f(b)= 0.

(26)

This contradiction ends the proof of (a).

(b) For the proof by contradiction suppose that f(b1) = 0 for some b1 > 0. Since

ca+1 = f(a) > 0, there are b ∈ B and z ∈ A such that |z−b| < δ/(ca+1). Define

functions h,g :U →R in the same way as in the proof of (a). Then (23) holds and

∣∣h(a)−g(a)∣∣= |z−b||ca+1|< δ
ca+1

(ca+1)= δ < δ+δcz. (27)

Hence

h(a−δ) < g(a) < h(a+δ). (28)

We obtain a contradiction in a similar way as in the proof of (a).

Lemma 8. If c := (f (a)−1)/a= 0, then f(x)= 1 for x > 0.

Proof. The continuity of f at a implies that there exists δ > 0 such that f(x) > 0

for every x ∈ [a−δ,a+δ]. Thus, by Lemma 5 and Remark 6, f(x) = cx+1 = 1 for

every x ∈ [a−δ,a+δ]. Hence Lemma 4 implies that f(x)= 1 for every x > 0.

Finally from Lemmas 7 and 8 and Remark 6 we get the following theorem.

Theorem 9. If a function f : R+ → [0,∞) is continuous at a point a such that

f(a)≠ 0 and satisfies (3), then

f(x)=max{cx+1,0} ∀x ∈R+. (29)
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