THE ABEL-TYPE TRANSFORMATIONS INTO G_{w}
 mULATU LEMMA and GEORGE TESSEMA

(Received 16 January 2001)

Abstract

The Abel-type matrix $A_{\alpha, t}$ was introduced and studied as a mapping into ℓ by Lemma (1999). The purpose of this paper is to study these transformations as mappings into G_{w}. The necessary and sufficient conditions for $A_{\alpha, t}$ to be $G_{w}-G_{w}$ are established. The strength of $A_{\alpha, t}$ in the $G_{w}-G_{w}$ setting is investigated. Also, it is shown that $A_{\alpha, t}$ is translative in the $G_{w}-G_{w}$ senses for certain sequences.

2000 Mathematics Subject Classification. 40A05, 40D25.

1. Introduction. The Abel-type power series method [1], denoted by $A_{\alpha}, \alpha>-1$, is the following sequence-to-function transformation: if

$$
\begin{gather*}
\sum_{k=0}^{\infty}\binom{k+\alpha}{k} u_{k} x^{k} \text { is convergent, for } 0<x<1, \\
\lim _{x \rightarrow 1}(1-x)^{\alpha+1} \sum_{k=0}^{\infty}\binom{k+\alpha}{k} u_{k} x^{k}=L \tag{1.1}
\end{gather*}
$$

then we say u is A_{α}-summable to L. The matrix analogue of A_{α} is the $A_{\alpha, t}$ matrix [2] whose $n k$ th entry is given by

$$
\begin{equation*}
a_{n k}=\binom{k+\alpha}{k} t_{n}^{k}\left(1-t_{n}\right)^{\alpha+1} \tag{1.2}
\end{equation*}
$$

where $0<t_{n}<1$ for all n and $\lim t_{n}=1$. Thus, the sequence u is transformed into the sequence $A_{\alpha, t} u$ whose nth term is given by

$$
\begin{equation*}
\left(A_{\alpha, t} u\right)_{n}=\left(1-t_{n}\right)^{\alpha+1} \sum_{k=0}^{\infty}\binom{k+\alpha}{k} u_{k} t_{n}^{k} \tag{1.3}
\end{equation*}
$$

The matrix $A_{\alpha, t}$ is called the Abel-type matrix [2]. Throughout, $\alpha>-1$ and t will denote such a sequence: $0<t_{n}<1$ for all n, and $\lim t_{n}=1$.
2. Basic notations and definitions. Let $A=\left(a_{n k}\right)$ be an infinite matrix defining a sequence-to-sequence summability transformation given by

$$
\begin{equation*}
(A x)_{n}=\sum_{k=0}^{\infty} a_{n k} x_{k} \tag{2.1}
\end{equation*}
$$

where $(A x)_{n}$ denotes the nth term of the image sequence $A x$. The sequence $A x$ is called the A-transform of the sequence x. If X and Z are sets of complex number sequences, then the matrix A is called an $X-Z$ matrix if the image $A u$ of u under the transformation A is in Z whenever u is in X.

Suppose that y is a complex sequence; then throughout we use the following basic notations and definitions:

$$
\begin{gather*}
\ell=\left\{y: \sum_{k=0}^{\infty}\left|y_{k}\right| \text { is convergent }\right\}, \\
d(A)=\left\{y: \sum_{k=0}^{\infty} a_{n k} y_{k} \text { is convergent for each } n \geq 0\right\}, \\
\ell(A)=\{y: A y \in \ell\}, \tag{2.2}\\
G_{w}=\left\{y: y_{k}=O\left(r^{k}\right) \text { for some } r \in(0, w), 0<w<1\right\}, \\
c(A)=\{y: y \text { is summable by } A\}, \\
G_{w}(A)=\left\{y: A y \in G_{w}\right\}, \\
\Delta x_{k}=x_{k}-x_{k+1} .
\end{gather*}
$$

DEFINITION 2.1. The summability matrix A is said to be G_{w}-translative for a sequence u in $G_{w}(A)$ provided that each of the sequences T_{u} and S_{u} is in $G_{w}(A)$, where $T_{u}=\left\{u_{1}, u_{2}, u_{3}, \ldots\right\}$ and $S_{u}=\left\{0, u_{0}, u_{1}, \ldots\right\}$.

DEFINITION 2.2. The matrix A is said to be G_{w}-stronger than the matrix B provided $G_{w}(B) \subseteq G_{w}(A)$.

3. The main results

Theorem 3.1. The matrix $A_{\alpha, t}$ is a $G_{w}-G_{w}$ matrix if and only if $(1-t)^{\alpha+1} \in G_{w}$.
Proof. Suppose that $x \in G_{w}$, then we show that $Y \in G_{w}$, where Y is the $A_{\alpha, t^{-}}$ transform of the sequence x. Since $x \in G$, it follows that $\left|x_{k}\right| \leq M_{1} r^{k}$ for some $r \in$ $(0, w)$ and $M_{1}>0$. Now we have

$$
\begin{align*}
\left|Y_{n}\right| & =\left(1-t_{n}\right)^{\alpha+1}\left|\sum_{k=0}^{\infty}\binom{k+\alpha}{k} x_{k} t_{n}^{k}\right| \\
\left|Y_{n}\right| & \leq\left(1-t_{n}\right)^{\alpha+1} \sum_{k=0}^{\infty}\binom{k+\alpha}{k}\left|x_{k}\right| t_{n}^{k} \\
& \leq M_{1}\left(1-t_{n}\right)^{\alpha+1} \sum_{k=0}^{\infty}\binom{k+\alpha}{k} r^{k} t_{n}^{k} \tag{3.1}\\
& \leq M_{1}\left(1-t_{n}\right)^{\alpha+1}\left(1-r t_{n}\right)^{-(\alpha+1)} \\
& \leq M_{2}\left(1-t_{n}\right)^{\alpha+1}, \quad \text { for some } M_{2}>0 .
\end{align*}
$$

Hence if $(1-t)^{\alpha+1} \in G_{w}$, then it follows that $Y \in G_{w}$. Conversely, if $(1-t)^{\alpha+1}$ is not in G_{w}, then the first column of $A_{\alpha, t}$ is not in G_{w} because $a_{n, 0}=t_{n}\left(1-t_{n}\right)^{\alpha+1}$. Thus, $A_{\alpha, t}$ is not a $G_{w}-G_{w}$ matrix.

Remark 3.2. In the G_{w} - G_{w} setting, $A_{\alpha, t}$ being a G_{w} - G_{w} matrix does not imply that $(1-t) \in G_{w}$. Also, $(1-t) \in G_{w}$ does not imply that $A_{\alpha, t}$ is a $G_{w}-G_{w}$ matrix.

This can be demonstrated as follows.
(1) Let $t_{n}=1-(1 / 3)^{n}, \alpha=1$, and $w=1 / 4$. So, we have $\left(1-t_{n}\right)^{\alpha+1}=(1 / 9)^{n}$ and hence $(1-t)^{\alpha+1} \in G_{w}$. This implies that $A_{\alpha, t}$ is a $G_{w}-G_{w}$ matrix by Theorem 3.1. But observe that $(1-t)$ is not G_{w}. Hence, $A_{\alpha, t}$ being a $G_{w}-G_{w}$ matrix does not imply that $(1-t) \in G_{w}$.
(2) Let $t_{n}=1-(1 / 4)^{n}, \alpha=-1 / 2$, and $w=1 / 3$. Then we have $(1-t) \in G_{w}$. But note that $\left(1-t_{n}\right)^{\alpha+1}=(1 / 2)^{n}$ and hence $(1-t)^{\alpha+1}$ is not in G_{w}. This implies that $A_{\alpha, t}$ is not a $G_{w}-G_{w}$ matrix by Theorem 3.1. Hence, $(1-t) \in G_{w}$ does not imply that $A_{\alpha, t}$ is a $G_{w}-G_{w}$ matrix.

Corollary 3.3. (1) If $-1<\alpha \leq 0$, then $A_{\alpha, t}$ is a $G_{w}-G_{w}$ matrix implies that $(1-t) \in$ G_{w}.
(2) If $\alpha>0$, then $(1-t) \in G_{w}$ implies that $A_{\alpha, t}$ is a $G_{w}-G_{w}$ matrix.

Proof. (1) Since $-1<\alpha \leq 0$ implies that $\left(1-t_{n}\right) \leq\left(1-t_{n}\right)^{\alpha+1}$, it follows that $(1-t) \in G_{w}$ by Theorem 3.1.
(2) If $\alpha>0$, then we have $\left(1-t_{n}\right)^{\alpha+1}<\left(1-t_{n}\right)$ and hence by Theorem 3.1, $A_{\alpha, t}$ a $G_{w}-G_{w}$ matrix whenever $(1-t) \in G_{w}$.

Corollary 3.4. The matrix $A_{\alpha, t}$ is a $G-G_{w}$ matrix if and only if $A_{\alpha, t}$ is a $G_{w}-G_{w}$ matrix.

Proof. Since G_{w} is a subset of $G, A_{\alpha, t}$ being a $G-G_{w}$ matrix yields $A_{\alpha, t}$ is a $G_{w}-G_{w}$ matrix. Conversely, if $A_{\alpha, t}$ is a $G_{w}-G_{w}$ matrix, then by Theorem 3.1, we have ($1-$ $t)^{\alpha+1} \in G_{w}$. Now using the same technique used in the proof of Theorem 3.1, we can easily show that $A_{\alpha, t}$ is a $G-G_{w}$ matrix. Thus, the corollary follows.

The next results indicate that the $A_{\alpha, t}$ matrix is a strong method in the $G_{w}-G_{w}$ setting. The $A_{\alpha, t}$ matrix is G_{w}-stronger than the identity matrix.

Theorem 3.5. Suppose that $-1<\alpha \leq 0$ and $A_{\alpha, t}$ is a G_{w} - G_{w} matrix; then $G_{w}\left(A_{\alpha, t}\right)$ contains the class of all sequences x whose partial sums are bounded.

Proof. The theorem follows using a similar argument as in the proof of [2, Theorem 8].

Remark 3.6. Although Theorem 3.5 is stated for $-1<\alpha \leq 0$, it is also true for all $\alpha>-1$ for some sequences, which we will demonstrate as follows. Let x be the unbounded sequence defined by

$$
\begin{equation*}
x_{k}=(-1)^{k} \frac{k+\alpha+1}{\alpha+1} . \tag{3.2}
\end{equation*}
$$

Let Y be the $A_{\alpha, t}$-transform of x. Then we have

$$
\begin{equation*}
Y_{n}=\frac{\left(1-t_{n}\right)^{\alpha+1}}{\left(1+t_{n}\right)^{\alpha+2}}<\left(1-t_{n}\right)^{\alpha+1} . \tag{3.3}
\end{equation*}
$$

Thus, if $A_{\alpha, t}$ is a $G_{w}-G_{w}$ matrix, then by Theorem 3.1, $(1-t)^{\alpha+1} \in G_{w}$, so $x \in G_{w}\left(A_{\alpha, t}\right)$.
Corollary 3.7. Suppose that $-1<\alpha \leq 0$ and $A_{\alpha, t}$ is a $G_{w}-G_{w}$ matrix; then $G_{w}\left(A_{\alpha, t}\right)$ contains the class of all sequences x such that $\sum_{k=0}^{\infty} x_{k}$ is conditionally convergent.

Our next results deal with the G_{w}-translativity of the $A_{\alpha, t}$ matrix. We will show that the $A_{\alpha, t}$ matrix is G_{w}-translative for some sequences in $G_{w}\left(A_{\alpha, t}\right)$.

Theorem 3.8. Every $G_{w}-G_{w} A_{\alpha, t}$ matrix is G_{w}-translative for each sequence $x \in$ $G_{w}\left(A_{\alpha, t}\right)$ for which $\left\{x_{k} / k\right\} \in G_{w}, k=1,2,3, \ldots$
Proof. Let $x \in G_{w}\left(A_{\alpha, t}\right)$. Then we will show that
(1) $T_{x} \in G_{w}\left(A_{\alpha, t}\right)$ and
(2) $S_{x} \in G_{w}\left(A_{\alpha, t}\right)$.

We first show that (1) holds. Note that

$$
\begin{align*}
\left|\left(A_{\alpha, t} T_{x}\right)_{n}\right| & =\left(1-t_{n}\right)^{\alpha+1}\left|\sum_{k=0}^{\infty}\binom{k+\alpha}{k} x_{k+1} t_{n}^{k}\right| \\
& =\frac{\left(1-t_{n}\right)^{\alpha+1}}{t_{n}}\left|\sum_{k=0}^{\infty}\binom{k+\alpha}{k} x_{k+1} t_{n}^{k+1}\right| \\
& =\frac{\left(1-t_{n}\right)^{\alpha+1}}{t_{n}}\left|\sum_{k=1}^{\infty}\binom{k-1+\alpha}{k-1} x_{k} t_{n}^{k}\right| \tag{3.4}\\
& =\frac{\left(1-t_{n}\right)^{\alpha+1}}{t_{n}}\left|\sum_{k=1}^{\infty}\binom{k+\alpha}{k} x_{k} t_{n}^{k} \frac{k}{k+\alpha}\right| \\
& =\frac{\left(1-t_{n}\right)^{\alpha+1}}{t_{n}}\left|\sum_{k=1}^{\infty}\binom{k+\alpha}{k} x_{k} t_{n}^{k}\left(1-\frac{\alpha}{k+\alpha}\right)\right| \\
& \leq A_{n}+B_{n},
\end{align*}
$$

where

$$
\begin{align*}
& A_{n}=\frac{\left(1-t_{n}\right)^{\alpha+1}}{t_{n}}\left|\sum_{k=1}^{\infty}\binom{k+\alpha}{k} x_{k} t_{n}^{k}\right|, \tag{3.5}\\
& B_{n}=\frac{|\alpha|\left(1-t_{n}\right)^{\alpha+1}}{t_{n}}\left|\sum_{k=1}^{\infty}\binom{k+\alpha}{k} \frac{x_{k}}{k+\alpha} t_{n}^{k}\right| .
\end{align*}
$$

The use of the triangle inequality is legitimate as the radii of convergence of the two power series are at least 1 . Now if we show both A and B are in G_{w}, then (1) holds. But the conditions that $A \in G_{w}$ and $B \in G_{w}$ follow easily from the given hypothesis that $x \in G_{w}\left(A_{\alpha, t}\right)$ and $\left\{x_{k} / k\right\} \in G_{w}$, respectively.

Next we will show that (2) holds. Observe that

$$
\begin{align*}
\left|\left(A_{\alpha, t} S_{x}\right)_{n}\right| & =\left(1-t_{n}\right)^{\alpha+1}\left|\sum_{k=1}^{\infty}\binom{k+\alpha}{k} x_{k-1} t_{n}^{k}\right| \\
& =\left(1-t_{n}\right)^{\alpha+1}\left|\sum_{k=0}^{\infty}\binom{k+\alpha+1}{k+1} x_{k} t_{n}^{k+1}\right| \\
& =\left(1-t_{n}\right)^{\alpha+1}\left|\sum_{k=0}^{\infty}\binom{k+\alpha}{k} x_{k} t_{n}^{k+1}\left(\frac{k+\alpha+1}{k+1}\right)\right| \tag{3.6}\\
& =\left(1-t_{n}\right)^{\alpha+1}\left|\sum_{k=0}^{\infty}\binom{k+\alpha}{k} x_{k} t_{n}^{k+1}\left(1+\frac{\alpha}{k+1}\right)\right| \\
& \leq E_{n}+F_{n},
\end{align*}
$$

where

$$
\begin{align*}
& E_{n}=\left(1-t_{n}\right)^{\alpha+1}\left|\sum_{k=0}^{\infty}\binom{k+\alpha}{k} x_{k} t_{n}^{k}\right|, \tag{3.7}\\
& F_{n}=\left(1-t_{n}\right)^{\alpha+1}|\alpha|\left|\sum_{k=0}^{\infty}\binom{k+\alpha}{k} \frac{x_{k}}{k+1} t_{n}^{k+}\right| .
\end{align*}
$$

Now the given hypothesis that $x \in G_{w}\left(A_{\alpha, t}\right)$ and $\left\{x_{k} / k\right\} \in G_{w}$ implies that both E and F are in G_{w}. Consequently, (2) holds and hence the theorem follows.

Theorem 3.9. Suppose that $-1<\alpha \leq 0$; then every $G_{w}-G_{w}$ matrix $A_{\alpha, t}$ is $G_{w^{-}}$ translative for each A_{α}-summable sequence x in $G_{w}\left(A_{\alpha, t}\right)$.

Proof. Since the case $\alpha=0$ can be easily proved using the technique used in the proof of [4, Theorem 4.1], here we only consider the case $-1<\alpha<0$. Let $x \in$ $c\left(A_{\alpha}\right) \cap G_{w}\left(A_{\alpha, t}\right)$. Then we will show that
(1) $T_{x} \in G_{w}\left(A_{\alpha, t}\right)$ and
(2) $S_{x} \in G_{w}\left(A_{\alpha, t}\right)$.

We first show that (1) holds. Note that

$$
\begin{align*}
\left|\left(A_{\alpha, t} T_{x}\right)_{n}\right| & =\left(1-t_{n}\right)^{\alpha+1}\left|\sum_{k=0}^{\infty}\binom{k+\alpha}{k} x_{k+1} t_{n}^{k}\right| \\
& =\frac{\left(1-t_{n}\right)^{\alpha+1}}{t_{n}}\left|\sum_{k=0}^{\infty}\binom{k+\alpha}{k} x_{k+1} t_{n}^{k+1}\right| \\
& =\frac{\left(1-t_{n}\right)^{\alpha+1}}{t_{n}}\left|\sum_{k=1}^{\infty}\binom{k-1+\alpha}{k-1} x_{k} t_{n}^{k}\right| \tag{3.8}\\
& =\frac{\left(1-t_{n}\right)^{\alpha+1}}{t_{n}}\left|\sum_{k=1}^{\infty}\binom{k+\alpha}{k} x_{k} t_{n}^{k} \frac{k}{k+\alpha}\right| \\
& =\frac{\left(1-t_{n}\right)^{\alpha+1}}{t_{n}}\left|\sum_{k=1}^{\infty}\binom{k+\alpha}{k} x_{k} t_{n}^{k}\left(1-\frac{\alpha}{k+\alpha}\right)\right| \\
& \leq A_{n}+B_{n},
\end{align*}
$$

where

$$
\begin{align*}
& A_{n}=\frac{\left(1-t_{n}\right)^{\alpha+1}}{t_{n}}\left|\sum_{k=1}^{\infty}\binom{k+\alpha}{k} x_{k} t_{n}^{k}\right|, \\
& B_{n}=-\frac{\alpha\left(1-t_{n}\right)^{\alpha+1}}{t_{n}}\left|\sum_{k=1}^{\infty}\binom{k+\alpha}{k} \frac{x_{k}}{k+\alpha} t_{n}^{k}\right| . \tag{3.9}
\end{align*}
$$

The use of the triangle inequality is legitimate as the radii of convergence of the two power series are at least 1 . Now if we show that both A and B are in G_{w}, then (1) holds. The condition $A \in G_{w}$ follows from the hypothesis that $x \in G_{w}\left(A_{\alpha, t}\right)$, and $B \in G_{w}$ will be shown as follows. Observe that

$$
\begin{align*}
B_{n} & =-\frac{\alpha\left(1-t_{n}\right)^{\alpha+1}}{t_{n}}\left|x_{1} t_{n}+\sum_{k=2}^{\infty}\binom{k+\alpha}{k} \frac{x_{k}}{k+\alpha} t_{n}^{k}\right| \\
& \leq-\alpha\left|x_{1}\right|\left(1-t_{n}\right)^{\alpha+1}+\frac{-\alpha\left(1-t_{n}\right)^{\alpha+1}}{t_{n}}\left|\sum_{k=2}^{\infty}\binom{k+\alpha}{k} \frac{x_{k}}{k+\alpha} t_{n}^{k}\right| \tag{3.10}\\
& \leq C_{n}+D_{n},
\end{align*}
$$

where

$$
\begin{align*}
& C_{n}=-\alpha\left|x_{1}\right|\left(1-t_{n}\right)^{\alpha+1}, \\
& D_{n}=-\frac{\alpha\left(1-t_{n}\right)^{\alpha+1}}{t_{n}}\left|\sum_{k=2}^{\infty}\binom{k+\alpha}{k} \frac{x_{k}}{k+\alpha} t_{n}^{k}\right| . \tag{3.11}
\end{align*}
$$

By Theorem 3.1, the hypothesis that $A_{\alpha, t}$ is $G_{w}-G_{w}$ implies that $C \in G_{w}$, hence there remains only to show $D \in G_{w}$ to prove that (1) holds. Now using the same techniques used in the proof of [3, Theorem 2], we can show that

$$
\begin{equation*}
D_{n} \leq \frac{M_{1} M_{2}}{\alpha}\left(1-t_{n}\right)-\frac{M_{1} M_{2}}{\alpha}\left(1-t_{n}\right)^{\alpha+1}, \tag{3.12}
\end{equation*}
$$

where M_{1} and M_{2} are some positive real numbers. Note that $A_{\alpha, t}$ being a $G_{w}-G_{w}$ matrix implies that $(1-t)^{\alpha+1} \in G_{w}$ by Theorem 3.1, and $-1<\alpha<0$ yields $(1-t) \in G_{w}$. Consequently, we have $D \in G_{w}$ and hence (1) holds. Next we show that (2) holds. We have

$$
\begin{align*}
\left|\left(A_{\alpha, t} S_{x}\right)_{n}\right| & =\left(1-t_{n}\right)^{\alpha+1}\left|\sum_{k=1}^{\infty}\binom{k+\alpha}{k} x_{k-1} t_{n}^{k}\right| \\
& =\left(1-t_{n}\right)^{\alpha+1}\left|\sum_{k=0}^{\infty}\binom{k+\alpha+1}{k+1} x_{k} t_{n}^{k+1}\right| \\
& =\left(1-t_{n}\right)^{\alpha+1}\left|\sum_{k=0}^{\infty}\binom{k+\alpha}{k} x_{k} t_{n}^{k+1}\left(\frac{k+\alpha+1}{k+1}\right)\right| \tag{3.13}\\
& =\left(1-t_{n}\right)^{\alpha+1}\left|\sum_{k=0}^{\infty}\binom{k+\alpha}{k} x_{k} t_{n}^{k+1}\left(1+\frac{\alpha}{k+1}\right)\right| \\
& \leq E_{n}+F_{n},
\end{align*}
$$

where

$$
\begin{align*}
& E_{n}=\left(1-t_{n}\right)^{\alpha+1}\left|\sum_{k=0}^{\infty}\binom{k+\alpha}{k} x_{k} t_{n}^{k}\right|, \\
& F_{n}=-\left(1-t_{n}\right)^{\alpha+1} \alpha\left|\sum_{k=0}^{\infty}\binom{k+\alpha}{k} \frac{x_{k}}{k+1} t_{n}^{k+}\right| . \tag{3.14}
\end{align*}
$$

The hypothesis that $x \in G_{w}\left(A_{\alpha, t}\right)$ implies that $E \in G_{w}$ and by proceeding as in the proof of (1) above, we can easily show that $F \in G_{w}$. Thus, (2) holds and hence our assertion follows.

Theorem 3.10. Suppose that $\alpha>0$ and $(1-t) \in G_{w}$; then every $A_{\alpha, t}$ matrix is G_{w}-translative for each A_{α}-summable sequence x in $G_{w}\left(A_{\alpha, t}\right)$.

Proof. The theorem follows easily by using similar argument used in the proof of Theorem 3.9.

Our next result is a Tauberian theorem for $A_{\alpha, t}$ matrix in the $G_{w}-G_{w}$ setting.
Theorem 3.11. Let $A_{\alpha, t}$ be a $G_{w}-G_{w}$ matrix. If x is a sequence such that $A_{\alpha, t} x$ and Δx are in G_{w}, then x is in G_{w}.

Proof. The theorem easily follows by an argument similar to the proof of [4, Theorem 2.1].

REFERENCES

[1] D. Borwein, On a scale of Abel-type summability methods, Proc. Cambridge Philos. Soc. 53 (1957), 318-322. MR 19,134f. Zbl 082.27602.
[2] M. Lemma, The Abel-type transformations into ℓ, Int. J. Math. Math. Sci. 22 (1999), no. 4, 775-784. MR 2001b:40002. Zbl 961.40005.
[3] __ The ℓ-translativity of Abel-type matrix, Int. J. Math. Math. Sci. 23 (2000), no. 3, 189-195. MR 2001i:40005. Zbl 952.40002.
[4] S. Selvaraj, Some theorems on the matrix transformations into G, Houston J. Math. 20 (1994), no. 2, 237-245. MR 95d:40007. Zbl 802.40003.

Mulatu Lemma: Savannah State University, Savannah, GA 31404, USA
E-mail address: 1emmam@tigerpaw.ssu.peachnet.edu
George Tessema: Savannah State University, Savannah, GA 31404, USA

