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THE ABEL-TYPE TRANSFORMATIONS INTO Gw
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Abstract. The Abel-type matrix Aα,t was introduced and studied as a mapping into � by
Lemma (1999). The purpose of this paper is to study these transformations as mappings
into Gw . The necessary and sufficient conditions for Aα,t to be Gw -Gw are established.
The strength of Aα,t in the Gw -Gw setting is investigated. Also, it is shown that Aα,t is
translative in the Gw -Gw senses for certain sequences.
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1. Introduction. The Abel-type power series method [1], denoted by Aα, α>−1, is

the following sequence-to-function transformation: if

∞∑
k=0

(
k+α
k

)
ukxk is convergent, for 0<x < 1,

lim
x→1

(1−x)α+1
∞∑
k=0

(
k+α
k

)
ukxk = L,

(1.1)

then we say u is Aα-summable to L. The matrix analogue of Aα is the Aα,t matrix [2]

whose nkth entry is given by

ank =
(
k+α
k

)
tkn
(
1−tn

)α+1, (1.2)

where 0 < tn < 1 for all n and limtn = 1. Thus, the sequence u is transformed into

the sequence Aα,tu whose nth term is given by

(
Aα,tu

)
n =

(
1−tn

)α+1
∞∑
k=0

(
k+α
k

)
uktkn. (1.3)

The matrix Aα,t is called the Abel-type matrix [2]. Throughout, α > −1 and t will

denote such a sequence: 0< tn < 1 for all n, and limtn = 1.

2. Basic notations and definitions. Let A = (ank) be an infinite matrix defining a

sequence-to-sequence summability transformation given by

(Ax)n =
∞∑
k=0

ankxk, (2.1)
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where (Ax)n denotes the nth term of the image sequence Ax. The sequence Ax is

called the A-transform of the sequence x. If X and Z are sets of complex number

sequences, then the matrix A is called an X-Z matrix if the image Au of u under the

transformation A is in Z whenever u is in X.

Suppose that y is a complex sequence; then throughout we use the following basic

notations and definitions:

� =

y :

∞∑
k=0

∣∣yk∣∣ is convergent


,

d(A)=

y :

∞∑
k=0

ankyk is convergent for each n≥ 0


,

�(A)= {y :Ay ∈ �},

Gw =
{
y :yk =O

(
rk
)

for some r ∈ (0,w), 0<w < 1
}
,

c(A)= {y :y is summable by A},

Gw(A)=
{
y :Ay ∈Gw

}
,

∆xk = xk−xk+1.

(2.2)

Definition 2.1. The summability matrix A is said to be Gw -translative for a se-

quence u in Gw(A) provided that each of the sequences Tu and Su is in Gw(A), where

Tu = {u1,u2,u3, . . .} and Su = {0,u0,u1, . . .}.

Definition 2.2. The matrix A is said to be Gw -stronger than the matrix B provided

Gw(B)⊆Gw(A).

3. The main results

Theorem 3.1. The matrix Aα,t is a Gw -Gw matrix if and only if (1−t)α+1 ∈Gw .

Proof. Suppose that x ∈ Gw , then we show that Y ∈ Gw , where Y is the Aα,t-
transform of the sequence x. Since x ∈ G, it follows that |xk| ≤ M1rk for some r ∈
(0,w) and M1 > 0. Now we have

|Yn| =
(
1−tn

)α+1

∣∣∣∣∣∣
∞∑
k=0

(
k+α
k

)
xktkn

∣∣∣∣∣∣,

|Yn| ≤
(
1−tn

)α+1
∞∑
k=0

(
k+α
k

)∣∣xk∣∣tkn

≤M1
(
1−tn

)α+1
∞∑
k=0

(
k+α
k

)
rktkn

≤M1
(
1−tn

)α+1(
1−rtn

)−(α+1)

≤M2
(
1−tn

)α+1, for some M2 > 0.

(3.1)
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Hence if (1−t)α+1 ∈ Gw , then it follows that Y ∈ Gw . Conversely, if (1−t)α+1 is not

in Gw , then the first column of Aα,t is not in Gw because an,0 = tn(1− tn)α+1. Thus,

Aα,t is not a Gw -Gw matrix.

Remark 3.2. In the Gw -Gw setting, Aα,t being a Gw -Gw matrix does not imply that

(1−t)∈Gw . Also, (1−t)∈Gw does not imply that Aα,t is a Gw -Gw matrix.

This can be demonstrated as follows.

(1) Let tn = 1− (1/3)n, α = 1, and w = 1/4. So, we have (1− tn)α+1 = (1/9)n and

hence (1−t)α+1 ∈ Gw . This implies that Aα,t is a Gw -Gw matrix by Theorem 3.1. But

observe that (1−t) is not Gw . Hence, Aα,t being a Gw -Gw matrix does not imply that

(1−t)∈Gw .

(2) Let tn = 1−(1/4)n, α=−1/2, and w = 1/3. Then we have (1−t)∈Gw . But note

that (1− tn)α+1 = (1/2)n and hence (1− t)α+1 is not in Gw . This implies that Aα,t is

not a Gw -Gw matrix by Theorem 3.1. Hence, (1−t) ∈ Gw does not imply that Aα,t is

a Gw -Gw matrix.

Corollary 3.3. (1) If −1<α≤ 0, then Aα,t is a Gw -Gw matrix implies that (1−t)∈
Gw .

(2) If α> 0, then (1−t)∈Gw implies that Aα,t is a Gw -Gw matrix.

Proof. (1) Since −1 < α ≤ 0 implies that (1− tn) ≤ (1− tn)α+1, it follows that

(1−t)∈Gw by Theorem 3.1.

(2) If α > 0, then we have (1− tn)α+1 < (1− tn) and hence by Theorem 3.1, Aα,t a

Gw -Gw matrix whenever (1−t)∈Gw .

Corollary 3.4. The matrix Aα,t is a G-Gw matrix if and only if Aα,t is a Gw -Gw
matrix.

Proof. Since Gw is a subset of G,Aα,t being a G-Gw matrix yields Aα,t is a Gw -Gw
matrix. Conversely, if Aα,t is a Gw -Gw matrix, then by Theorem 3.1, we have (1−
t)α+1 ∈Gw . Now using the same technique used in the proof of Theorem 3.1, we can

easily show that Aα,t is a G-Gw matrix. Thus, the corollary follows.

The next results indicate that the Aα,t matrix is a strong method in the Gw -Gw
setting. The Aα,t matrix is Gw -stronger than the identity matrix.

Theorem 3.5. Suppose that −1<α≤ 0 and Aα,t is a Gw -Gw matrix; then Gw(Aα,t)
contains the class of all sequences x whose partial sums are bounded.

Proof. The theorem follows using a similar argument as in the proof of [2, Theo-

rem 8].

Remark 3.6. Although Theorem 3.5 is stated for −1 < α ≤ 0, it is also true for

all α > −1 for some sequences, which we will demonstrate as follows. Let x be the

unbounded sequence defined by

xk = (−1)k
k+α+1
α+1

. (3.2)
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Let Y be the Aα,t-transform of x. Then we have

Yn =
(
1−tn

)α+1

(
1+tn

)α+2 <
(
1−tn

)α+1. (3.3)

Thus, ifAα,t is aGw -Gw matrix, then by Theorem 3.1, (1−t)α+1 ∈Gw , sox ∈Gw(Aα,t).

Corollary 3.7. Suppose that−1<α≤ 0 andAα,t is aGw -Gw matrix; thenGw(Aα,t)
contains the class of all sequences x such that

∑∞
k=0xk is conditionally convergent.

Our next results deal with the Gw -translativity of the Aα,t matrix. We will show that

the Aα,t matrix is Gw -translative for some sequences in Gw(Aα,t).

Theorem 3.8. Every Gw -GwAα,t matrix is Gw -translative for each sequence x ∈
Gw(Aα,t) for which {xk/k} ∈Gw , k= 1,2,3, . . . .

Proof. Let x ∈Gw(Aα,t). Then we will show that

(1) Tx ∈Gw(Aα,t) and

(2) Sx ∈Gw(Aα,t).
We first show that (1) holds. Note that

∣∣∣(Aα,tTx)n
∣∣∣= (1−tn)α+1

∣∣∣∣∣∣
∞∑
k=0

(
k+α
k

)
xk+1tkn

∣∣∣∣∣∣
=
(
1−tn

)α+1

tn

∣∣∣∣∣∣
∞∑
k=0

(
k+α
k

)
xk+1tk+1

n

∣∣∣∣∣∣
=
(
1−tn

)α+1

tn

∣∣∣∣∣∣
∞∑
k=1

(
k−1+α
k−1

)
xktkn

∣∣∣∣∣∣
=
(
1−tn

)α+1

tn

∣∣∣∣∣∣
∞∑
k=1

(
k+α
k

)
xktkn

k
k+α

∣∣∣∣∣∣
=
(
1−tn

)α+1

tn

∣∣∣∣∣∣
∞∑
k=1

(
k+α
k

)
xktkn

(
1− α

k+α
)∣∣∣∣∣∣

≤An+Bn,

(3.4)

where

An =
(
1−tn

)α+1

tn

∣∣∣∣∣∣
∞∑
k=1

(
k+α
k

)
xktkn

∣∣∣∣∣∣,

Bn = |α|
(
1−tn

)α+1

tn

∣∣∣∣∣∣
∞∑
k=1

(
k+α
k

)
xk
k+αt

k
n

∣∣∣∣∣∣.
(3.5)

The use of the triangle inequality is legitimate as the radii of convergence of the two

power series are at least 1. Now if we show both A and B are in Gw , then (1) holds.

But the conditions that A ∈ Gw and B ∈ Gw follow easily from the given hypothesis

that x ∈Gw(Aα,t) and {xk/k} ∈Gw , respectively.
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Next we will show that (2) holds. Observe that

∣∣∣(Aα,tSx)n
∣∣∣= (1−tn)α+1

∣∣∣∣∣∣
∞∑
k=1

(
k+α
k

)
xk−1tkn

∣∣∣∣∣∣
= (1−tn)α+1

∣∣∣∣∣∣
∞∑
k=0

(
k+α+1
k+1

)
xktk+1

n

∣∣∣∣∣∣
= (1−tn)α+1

∣∣∣∣∣∣
∞∑
k=0

(
k+α
k

)
xktk+1

n

(
k+α+1
k+1

)∣∣∣∣∣∣
= (1−tn)α+1

∣∣∣∣∣∣
∞∑
k=0

(
k+α
k

)
xktk+1

n

(
1+ α

k+1

)∣∣∣∣∣∣
≤ En+Fn,

(3.6)

where

En =
(
1−tn

)α+1

∣∣∣∣∣∣
∞∑
k=0

(
k+α
k

)
xktkn

∣∣∣∣∣∣,

Fn =
(
1−tn

)α+1|α|
∣∣∣∣∣∣
∞∑
k=0

(
k+α
k

)
xk
k+1

tk+n

∣∣∣∣∣∣.
(3.7)

Now the given hypothesis that x ∈Gw(Aα,t) and {xk/k} ∈Gw implies that both E and

F are in Gw . Consequently, (2) holds and hence the theorem follows.

Theorem 3.9. Suppose that −1 < α ≤ 0; then every Gw -Gw matrix Aα,t is Gw -

translative for each Aα-summable sequence x in Gw(Aα,t).

Proof. Since the case α = 0 can be easily proved using the technique used in

the proof of [4, Theorem 4.1], here we only consider the case −1 < α < 0. Let x ∈
c(Aα)∩Gw(Aα,t). Then we will show that

(1) Tx ∈Gw(Aα,t) and

(2) Sx ∈Gw(Aα,t).
We first show that (1) holds. Note that

∣∣∣(Aα,tTx)n
∣∣∣= (1−tn)α+1

∣∣∣∣∣∣
∞∑
k=0

(
k+α
k

)
xk+1tkn

∣∣∣∣∣∣
=
(
1−tn

)α+1

tn

∣∣∣∣∣∣
∞∑
k=0

(
k+α
k

)
xk+1tk+1

n

∣∣∣∣∣∣
=
(
1−tn

)α+1

tn

∣∣∣∣∣∣
∞∑
k=1

(
k−1+α
k−1

)
xktkn

∣∣∣∣∣∣
=
(
1−tn

)α+1

tn

∣∣∣∣∣∣
∞∑
k=1

(
k+α
k

)
xktkn

k
k+α

∣∣∣∣∣∣
=
(
1−tn

)α+1

tn

∣∣∣∣∣∣
∞∑
k=1

(
k+α
k

)
xktkn

(
1− α

k+α
)∣∣∣∣∣∣

≤An+Bn,

(3.8)
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where

An =
(
1−tn

)α+1

tn

∣∣∣∣∣∣
∞∑
k=1

(
k+α
k

)
xktkn

∣∣∣∣∣∣,

Bn =−α
(
1−tn

)α+1

tn

∣∣∣∣∣∣
∞∑
k=1

(
k+α
k

)
xk
k+αt

k
n

∣∣∣∣∣∣.
(3.9)

The use of the triangle inequality is legitimate as the radii of convergence of the two

power series are at least 1. Now if we show that both A and B are in Gw , then (1) holds.

The condition A∈Gw follows from the hypothesis that x ∈Gw(Aα,t), and B ∈Gw will

be shown as follows. Observe that

Bn =−α
(
1−tn

)α+1

tn

∣∣∣∣∣∣x1tn+
∞∑
k=2

(
k+α
k

)
xk
k+αt

k
n

∣∣∣∣∣∣
≤−α

∣∣x1

∣∣(1−tn)α+1+ −α
(
1−tn

)α+1

tn

∣∣∣∣∣∣
∞∑
k=2

(
k+α
k

)
xk
k+αt

k
n

∣∣∣∣∣∣
≤ Cn+Dn,

(3.10)

where

Cn =−α
∣∣x1

∣∣(1−tn)α+1,

Dn =−α
(
1−tn

)α+1

tn

∣∣∣∣∣∣
∞∑
k=2

(
k+α
k

)
xk
k+αt

k
n

∣∣∣∣∣∣.
(3.11)

By Theorem 3.1, the hypothesis that Aα,t is Gw -Gw implies that C ∈ Gw , hence there

remains only to show D ∈Gw to prove that (1) holds. Now using the same techniques

used in the proof of [3, Theorem 2], we can show that

Dn ≤ M1M2

α
(
1−tn

)−M1M2

α
(
1−tn

)α+1, (3.12)

whereM1 andM2 are some positive real numbers. Note thatAα,t being aGw -Gw matrix

implies that (1− t)α+1 ∈ Gw by Theorem 3.1, and −1 < α < 0 yields (1− t) ∈ Gw .

Consequently, we have D ∈Gw and hence (1) holds. Next we show that (2) holds. We

have

∣∣∣(Aα,tSx)n
∣∣∣= (1−tn)α+1

∣∣∣∣∣∣
∞∑
k=1

(
k+α
k

)
xk−1tkn

∣∣∣∣∣∣
= (1−tn)α+1

∣∣∣∣∣∣
∞∑
k=0

(
k+α+1
k+1

)
xktk+1

n

∣∣∣∣∣∣
= (1−tn)α+1

∣∣∣∣∣∣
∞∑
k=0

(
k+α
k

)
xktk+1

n

(
k+α+1
k+1

)∣∣∣∣∣∣
= (1−tn)α+1

∣∣∣∣∣∣
∞∑
k=0

(
k+α
k

)
xktk+1

n

(
1+ α

k+1

)∣∣∣∣∣∣
≤ En+Fn,

(3.13)
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where

En =
(
1−tn

)α+1

∣∣∣∣∣∣
∞∑
k=0

(
k+α
k

)
xktkn

∣∣∣∣∣∣,

Fn =−
(
1−tn

)α+1α

∣∣∣∣∣∣
∞∑
k=0

(
k+α
k

)
xk
k+1

tk+n

∣∣∣∣∣∣.
(3.14)

The hypothesis that x ∈ Gw(Aα,t) implies that E ∈ Gw and by proceeding as in the

proof of (1) above, we can easily show that F ∈ Gw . Thus, (2) holds and hence our

assertion follows.

Theorem 3.10. Suppose that α > 0 and (1− t) ∈ Gw ; then every Aα,t matrix is

Gw -translative for each Aα-summable sequence x in Gw(Aα,t).

Proof. The theorem follows easily by using similar argument used in the proof of

Theorem 3.9.

Our next result is a Tauberian theorem for Aα,t matrix in the Gw -Gw setting.

Theorem 3.11. Let Aα,t be a Gw -Gw matrix. If x is a sequence such that Aα,tx and

∆x are in Gw , then x is in Gw .

Proof. The theorem easily follows by an argument similar to the proof of [4, Theo-

rem 2.1].
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