THE ABEL-TYPE TRANSFORMATIONS INTO G_w

MULATU LEMMA and GEORGE TESSEMA

(Received 16 January 2001)

ABSTRACT. The Abel-type matrix $A_{\alpha,t}$ was introduced and studied as a mapping into ℓ by Lemma (1999). The purpose of this paper is to study these transformations as mappings into G_w . The necessary and sufficient conditions for $A_{\alpha,t}$ to be G_w - G_w are established. The strength of $A_{\alpha,t}$ in the G_w - G_w setting is investigated. Also, it is shown that $A_{\alpha,t}$ is translative in the G_w - G_w senses for certain sequences.

2000 Mathematics Subject Classification. 40A05, 40D25.

1. Introduction. The Abel-type power series method [1], denoted by A_{α} , $\alpha > -1$, is the following sequence-to-function transformation: if

$$\sum_{k=0}^{\infty} \binom{k+\alpha}{k} u_k x^k \text{ is convergent, } \text{ for } 0 < x < 1,$$

$$\lim_{x \to 1} (1-x)^{\alpha+1} \sum_{k=0}^{\infty} \binom{k+\alpha}{k} u_k x^k = L,$$
(1.1)

then we say *u* is A_{α} -summable to *L*. The matrix analogue of A_{α} is the $A_{\alpha,t}$ matrix [2] whose *nk*th entry is given by

$$a_{nk} = \binom{k+\alpha}{k} t_n^k (1-t_n)^{\alpha+1}, \qquad (1.2)$$

where $0 < t_n < 1$ for all n and $\lim t_n = 1$. Thus, the sequence u is transformed into the sequence $A_{\alpha,t}u$ whose nth term is given by

$$(A_{\alpha,t}u)_{n} = (1-t_{n})^{\alpha+1} \sum_{k=0}^{\infty} \binom{k+\alpha}{k} u_{k} t_{n}^{k}.$$
 (1.3)

The matrix $A_{\alpha,t}$ is called the Abel-type matrix [2]. Throughout, $\alpha > -1$ and t will denote such a sequence: $0 < t_n < 1$ for all n, and $\lim t_n = 1$.

2. Basic notations and definitions. Let $A = (a_{nk})$ be an infinite matrix defining a sequence-to-sequence summability transformation given by

$$(Ax)_n = \sum_{k=0}^{\infty} a_{nk} x_k, \qquad (2.1)$$

where $(Ax)_n$ denotes the *n*th term of the image sequence Ax. The sequence Ax is called the *A*-transform of the sequence *x*. If *X* and *Z* are sets of complex number sequences, then the matrix *A* is called an *X*-*Z* matrix if the image Au of *u* under the transformation *A* is in *Z* whenever *u* is in *X*.

Suppose that y is a complex sequence; then throughout we use the following basic notations and definitions:

$$\ell = \left\{ y : \sum_{k=0}^{\infty} |y_k| \text{ is convergent} \right\},\$$

$$d(A) = \left\{ y : \sum_{k=0}^{\infty} a_{nk} y_k \text{ is convergent for each } n \ge 0 \right\},\$$

$$\ell(A) = \{ y : Ay \in \ell \},\$$

$$G_w = \{ y : y_k = O(r^k) \text{ for some } r \in (0, w), \ 0 < w < 1 \},\$$

$$c(A) = \{ y : y \text{ is summable by } A \},\$$

$$G_w(A) = \{ y : Ay \in G_w \},\$$

$$\Delta x_k = x_k - x_{k+1}.$$
(2.2)

DEFINITION 2.1. The summability matrix *A* is said to be G_w -translative for a sequence *u* in $G_w(A)$ provided that each of the sequences T_u and S_u is in $G_w(A)$, where $T_u = \{u_1, u_2, u_3, ...\}$ and $S_u = \{0, u_0, u_1, ...\}$.

DEFINITION 2.2. The matrix *A* is said to be G_w -stronger than the matrix *B* provided $G_w(B) \subseteq G_w(A)$.

3. The main results

THEOREM 3.1. The matrix $A_{\alpha,t}$ is a G_w - G_w matrix if and only if $(1-t)^{\alpha+1} \in G_w$.

PROOF. Suppose that $x \in G_w$, then we show that $Y \in G_w$, where *Y* is the $A_{\alpha,t}$ -transform of the sequence *x*. Since $x \in G$, it follows that $|x_k| \le M_1 r^k$ for some $r \in (0, w)$ and $M_1 > 0$. Now we have

$$|Y_{n}| = (1 - t_{n})^{\alpha + 1} \left| \sum_{k=0}^{\infty} {\binom{k+\alpha}{k}} x_{k} t_{n}^{k} \right|,$$

$$|Y_{n}| \leq (1 - t_{n})^{\alpha + 1} \sum_{k=0}^{\infty} {\binom{k+\alpha}{k}} |x_{k}| t_{n}^{k}$$

$$\leq M_{1} (1 - t_{n})^{\alpha + 1} \sum_{k=0}^{\infty} {\binom{k+\alpha}{k}} r^{k} t_{n}^{k}$$

$$\leq M_{1} (1 - t_{n})^{\alpha + 1} (1 - rt_{n})^{-(\alpha + 1)}$$

$$\leq M_{2} (1 - t_{n})^{\alpha + 1}, \text{ for some } M_{2} > 0.$$

(3.1)

Hence if $(1-t)^{\alpha+1} \in G_w$, then it follows that $Y \in G_w$. Conversely, if $(1-t)^{\alpha+1}$ is not in G_w , then the first column of $A_{\alpha,t}$ is not in G_w because $a_{n,0} = t_n(1-t_n)^{\alpha+1}$. Thus, $A_{\alpha,t}$ is not a G_w - G_w matrix.

REMARK 3.2. In the G_w - G_w setting, $A_{\alpha,t}$ being a G_w - G_w matrix does not imply that $(1-t) \in G_w$. Also, $(1-t) \in G_w$ does not imply that $A_{\alpha,t}$ is a G_w - G_w matrix.

This can be demonstrated as follows.

(1) Let $t_n = 1 - (1/3)^n$, $\alpha = 1$, and w = 1/4. So, we have $(1 - t_n)^{\alpha+1} = (1/9)^n$ and hence $(1 - t)^{\alpha+1} \in G_w$. This implies that $A_{\alpha,t}$ is a G_w - G_w matrix by Theorem 3.1. But observe that (1 - t) is not G_w . Hence, $A_{\alpha,t}$ being a G_w - G_w matrix does not imply that $(1 - t) \in G_w$.

(2) Let $t_n = 1 - (1/4)^n$, $\alpha = -1/2$, and w = 1/3. Then we have $(1-t) \in G_w$. But note that $(1-t_n)^{\alpha+1} = (1/2)^n$ and hence $(1-t)^{\alpha+1}$ is not in G_w . This implies that $A_{\alpha,t}$ is not a G_w - G_w matrix by Theorem 3.1. Hence, $(1-t) \in G_w$ does not imply that $A_{\alpha,t}$ is a G_w - G_w matrix.

COROLLARY 3.3. (1) If $-1 < \alpha \le 0$, then $A_{\alpha,t}$ is a G_w - G_w matrix implies that $(1-t) \in G_w$.

(2) If $\alpha > 0$, then $(1-t) \in G_w$ implies that $A_{\alpha,t}$ is a G_w - G_w matrix.

PROOF. (1) Since $-1 < \alpha \le 0$ implies that $(1 - t_n) \le (1 - t_n)^{\alpha+1}$, it follows that $(1 - t) \in G_w$ by Theorem 3.1.

(2) If $\alpha > 0$, then we have $(1 - t_n)^{\alpha+1} < (1 - t_n)$ and hence by Theorem 3.1, $A_{\alpha,t}$ a G_w - G_w matrix whenever $(1 - t) \in G_w$.

COROLLARY 3.4. The matrix $A_{\alpha,t}$ is a G- G_w matrix if and only if $A_{\alpha,t}$ is a G_w - G_w matrix.

PROOF. Since G_w is a subset of G, $A_{\alpha,t}$ being a G- G_w matrix yields $A_{\alpha,t}$ is a G_w - G_w matrix. Conversely, if $A_{\alpha,t}$ is a G_w - G_w matrix, then by Theorem 3.1, we have $(1 - t)^{\alpha+1} \in G_w$. Now using the same technique used in the proof of Theorem 3.1, we can easily show that $A_{\alpha,t}$ is a G- G_w matrix. Thus, the corollary follows.

The next results indicate that the $A_{\alpha,t}$ matrix is a strong method in the G_w - G_w setting. The $A_{\alpha,t}$ matrix is G_w -stronger than the identity matrix.

THEOREM 3.5. Suppose that $-1 < \alpha \le 0$ and $A_{\alpha,t}$ is a G_w - G_w matrix; then $G_w(A_{\alpha,t})$ contains the class of all sequences x whose partial sums are bounded.

PROOF. The theorem follows using a similar argument as in the proof of [2, Theorem 8].

REMARK 3.6. Although Theorem 3.5 is stated for $-1 < \alpha \le 0$, it is also true for all $\alpha > -1$ for some sequences, which we will demonstrate as follows. Let *x* be the unbounded sequence defined by

$$x_k = (-1)^k \frac{k + \alpha + 1}{\alpha + 1}.$$
(3.2)

Let *Y* be the $A_{\alpha,t}$ -transform of *x*. Then we have

$$Y_n = \frac{(1-t_n)^{\alpha+1}}{(1+t_n)^{\alpha+2}} < (1-t_n)^{\alpha+1}.$$
(3.3)

Thus, if $A_{\alpha,t}$ is a G_w - G_w matrix, then by Theorem 3.1, $(1-t)^{\alpha+1} \in G_w$, so $x \in G_w(A_{\alpha,t})$.

COROLLARY 3.7. Suppose that $-1 < \alpha \le 0$ and $A_{\alpha,t}$ is a G_w - G_w matrix; then $G_w(A_{\alpha,t})$ contains the class of all sequences x such that $\sum_{k=0}^{\infty} x_k$ is conditionally convergent.

Our next results deal with the G_w -translativity of the $A_{\alpha,t}$ matrix. We will show that the $A_{\alpha,t}$ matrix is G_w -translative for some sequences in $G_w(A_{\alpha,t})$.

THEOREM 3.8. Every G_w - $G_wA_{\alpha,t}$ matrix is G_w -translative for each sequence $x \in G_w(A_{\alpha,t})$ for which $\{x_k/k\} \in G_w$, k = 1, 2, 3, ...

PROOF. Let $x \in G_w(A_{\alpha,t})$. Then we will show that

- (1) $T_x \in G_w(A_{\alpha,t})$ and
- (2) $S_x \in G_w(A_{\alpha,t})$.

We first show that (1) holds. Note that

$$(A_{\alpha,t}T_{x})_{n} = (1-t_{n})^{\alpha+1} \left| \sum_{k=0}^{\infty} {\binom{k+\alpha}{k}} x_{k+1}t_{n}^{k} \right|$$

$$= \frac{(1-t_{n})^{\alpha+1}}{t_{n}} \left| \sum_{k=0}^{\infty} {\binom{k+\alpha}{k}} x_{k+1}t_{n}^{k+1} \right|$$

$$= \frac{(1-t_{n})^{\alpha+1}}{t_{n}} \left| \sum_{k=1}^{\infty} {\binom{k-1+\alpha}{k-1}} x_{k}t_{n}^{k} \right|$$

$$= \frac{(1-t_{n})^{\alpha+1}}{t_{n}} \left| \sum_{k=1}^{\infty} {\binom{k+\alpha}{k}} x_{k}t_{n}^{k}\frac{k}{k+\alpha} \right|$$

$$= \frac{(1-t_{n})^{\alpha+1}}{t_{n}} \left| \sum_{k=1}^{\infty} {\binom{k+\alpha}{k}} x_{k}t_{n}^{k}\left(1-\frac{\alpha}{k+\alpha}\right) \right|$$

$$\leq A_{n}+B_{n},$$
(3.4)

where

$$A_{n} = \frac{(1-t_{n})^{\alpha+1}}{t_{n}} \left| \sum_{k=1}^{\infty} {\binom{k+\alpha}{k}} x_{k} t_{n}^{k} \right|,$$

$$B_{n} = \frac{|\alpha|(1-t_{n})^{\alpha+1}}{t_{n}} \left| \sum_{k=1}^{\infty} {\binom{k+\alpha}{k}} \frac{x_{k}}{k+\alpha} t_{n}^{k} \right|.$$
(3.5)

The use of the triangle inequality is legitimate as the radii of convergence of the two power series are at least 1. Now if we show both *A* and *B* are in G_w , then (1) holds. But the conditions that $A \in G_w$ and $B \in G_w$ follow easily from the given hypothesis that $x \in G_w(A_{\alpha,t})$ and $\{x_k/k\} \in G_w$, respectively.

Next we will show that (2) holds. Observe that

$$(A_{\alpha,t}S_{x})_{n} = (1-t_{n})^{\alpha+1} \left| \sum_{k=1}^{\infty} {\binom{k+\alpha}{k}} x_{k-1}t_{n}^{k} \right|$$

$$= (1-t_{n})^{\alpha+1} \left| \sum_{k=0}^{\infty} {\binom{k+\alpha+1}{k+1}} x_{k}t_{n}^{k+1} \right|$$

$$= (1-t_{n})^{\alpha+1} \left| \sum_{k=0}^{\infty} {\binom{k+\alpha}{k}} x_{k}t_{n}^{k+1} \left(\frac{k+\alpha+1}{k+1}\right) \right|$$

$$= (1-t_{n})^{\alpha+1} \left| \sum_{k=0}^{\infty} {\binom{k+\alpha}{k}} x_{k}t_{n}^{k+1} \left(1+\frac{\alpha}{k+1}\right) \right|$$

$$\leq E_{n}+F_{n},$$
(3.6)

where

$$E_{n} = (1 - t_{n})^{\alpha + 1} \left| \sum_{k=0}^{\infty} {\binom{k+\alpha}{k}} x_{k} t_{n}^{k} \right|,$$

$$F_{n} = (1 - t_{n})^{\alpha + 1} |\alpha| \left| \sum_{k=0}^{\infty} {\binom{k+\alpha}{k}} \frac{x_{k}}{k + 1} t_{n}^{k+} \right|.$$
(3.7)

Now the given hypothesis that $x \in G_w(A_{\alpha,t})$ and $\{x_k/k\} \in G_w$ implies that both *E* and *F* are in G_w . Consequently, (2) holds and hence the theorem follows.

THEOREM 3.9. Suppose that $-1 < \alpha \le 0$; then every G_w - G_w matrix $A_{\alpha,t}$ is G_w -translative for each A_α -summable sequence x in $G_w(A_{\alpha,t})$.

PROOF. Since the case $\alpha = 0$ can be easily proved using the technique used in the proof of [4, Theorem 4.1], here we only consider the case $-1 < \alpha < 0$. Let $x \in c(A_{\alpha}) \cap G_w(A_{\alpha,t})$. Then we will show that

(1) $T_x \in G_w(A_{\alpha,t})$ and

(2)
$$S_x \in G_w(A_{\alpha,t})$$
.

We first show that (1) holds. Note that

$$(A_{\alpha,t}T_{x})_{n} = (1-t_{n})^{\alpha+1} \left| \sum_{k=0}^{\infty} {\binom{k+\alpha}{k}} x_{k+1}t_{n}^{k} \right|$$

$$= \frac{(1-t_{n})^{\alpha+1}}{t_{n}} \left| \sum_{k=0}^{\infty} {\binom{k+\alpha}{k}} x_{k+1}t_{n}^{k+1} \right|$$

$$= \frac{(1-t_{n})^{\alpha+1}}{t_{n}} \left| \sum_{k=1}^{\infty} {\binom{k-1+\alpha}{k-1}} x_{k}t_{n}^{k} \right|$$

$$= \frac{(1-t_{n})^{\alpha+1}}{t_{n}} \left| \sum_{k=1}^{\infty} {\binom{k+\alpha}{k}} x_{k}t_{n}^{k}\frac{k}{k+\alpha} \right|$$

$$= \frac{(1-t_{n})^{\alpha+1}}{t_{n}} \left| \sum_{k=1}^{\infty} {\binom{k+\alpha}{k}} x_{k}t_{n}^{k}\left(1-\frac{\alpha}{k+\alpha}\right) \right|$$

$$\leq A_{n}+B_{n},$$
(3.8)

where

$$A_{n} = \frac{(1-t_{n})^{\alpha+1}}{t_{n}} \left| \sum_{k=1}^{\infty} \binom{k+\alpha}{k} x_{k} t_{n}^{k} \right|,$$

$$B_{n} = -\frac{\alpha(1-t_{n})^{\alpha+1}}{t_{n}} \left| \sum_{k=1}^{\infty} \binom{k+\alpha}{k} \frac{x_{k}}{k+\alpha} t_{n}^{k} \right|.$$
(3.9)

The use of the triangle inequality is legitimate as the radii of convergence of the two power series are at least 1. Now if we show that both *A* and *B* are in G_w , then (1) holds. The condition $A \in G_w$ follows from the hypothesis that $x \in G_w(A_{\alpha,t})$, and $B \in G_w$ will be shown as follows. Observe that

$$B_{n} = -\frac{\alpha(1-t_{n})^{\alpha+1}}{t_{n}} \left| x_{1}t_{n} + \sum_{k=2}^{\infty} \binom{k+\alpha}{k} \frac{x_{k}}{k+\alpha} t_{n}^{k} \right|$$

$$\leq -\alpha \left| x_{1} \right| (1-t_{n})^{\alpha+1} + \frac{-\alpha(1-t_{n})^{\alpha+1}}{t_{n}} \left| \sum_{k=2}^{\infty} \binom{k+\alpha}{k} \frac{x_{k}}{k+\alpha} t_{n}^{k} \right| \qquad (3.10)$$

$$\leq C_{n} + D_{n},$$

where

$$C_{n} = -\alpha \left| x_{1} \right| (1-t_{n})^{\alpha+1},$$

$$D_{n} = -\frac{\alpha (1-t_{n})^{\alpha+1}}{t_{n}} \left| \sum_{k=2}^{\infty} {\binom{k+\alpha}{k}} \frac{x_{k}}{k+\alpha} t_{n}^{k} \right|.$$
(3.11)

By Theorem 3.1, the hypothesis that $A_{\alpha,t}$ is G_w - G_w implies that $C \in G_w$, hence there remains only to show $D \in G_w$ to prove that (1) holds. Now using the same techniques used in the proof of [3, Theorem 2], we can show that

$$D_n \le \frac{M_1 M_2}{\alpha} (1 - t_n) - \frac{M_1 M_2}{\alpha} (1 - t_n)^{\alpha + 1},$$
(3.12)

where M_1 and M_2 are some positive real numbers. Note that $A_{\alpha,t}$ being a G_w - G_w matrix implies that $(1-t)^{\alpha+1} \in G_w$ by Theorem 3.1, and $-1 < \alpha < 0$ yields $(1-t) \in G_w$. Consequently, we have $D \in G_w$ and hence (1) holds. Next we show that (2) holds. We have

$$(A_{\alpha,t}S_{x})_{n} = (1-t_{n})^{\alpha+1} \left| \sum_{k=1}^{\infty} {\binom{k+\alpha}{k}} x_{k-1}t_{n}^{k} \right|$$

$$= (1-t_{n})^{\alpha+1} \left| \sum_{k=0}^{\infty} {\binom{k+\alpha+1}{k+1}} x_{k}t_{n}^{k+1} \right|$$

$$= (1-t_{n})^{\alpha+1} \left| \sum_{k=0}^{\infty} {\binom{k+\alpha}{k}} x_{k}t_{n}^{k+1} \left(\frac{k+\alpha+1}{k+1}\right) \right|$$

$$= (1-t_{n})^{\alpha+1} \left| \sum_{k=0}^{\infty} {\binom{k+\alpha}{k}} x_{k}t_{n}^{k+1} \left(1+\frac{\alpha}{k+1}\right) \right|$$

$$\le E_{n}+F_{n},$$

$$(3.13)$$

108

where

$$E_{n} = (1 - t_{n})^{\alpha + 1} \left| \sum_{k=0}^{\infty} {\binom{k+\alpha}{k}} x_{k} t_{n}^{k} \right|,$$

$$F_{n} = -(1 - t_{n})^{\alpha + 1} \alpha \left| \sum_{k=0}^{\infty} {\binom{k+\alpha}{k}} \frac{x_{k}}{k + 1} t_{n}^{k+} \right|.$$
(3.14)

The hypothesis that $x \in G_w(A_{\alpha,t})$ implies that $E \in G_w$ and by proceeding as in the proof of (1) above, we can easily show that $F \in G_w$. Thus, (2) holds and hence our assertion follows.

THEOREM 3.10. Suppose that $\alpha > 0$ and $(1 - t) \in G_w$; then every $A_{\alpha,t}$ matrix is G_w -translative for each A_α -summable sequence x in $G_w(A_{\alpha,t})$.

PROOF. The theorem follows easily by using similar argument used in the proof of Theorem 3.9. \Box

Our next result is a Tauberian theorem for $A_{\alpha,t}$ matrix in the G_w - G_w setting.

THEOREM 3.11. Let $A_{\alpha,t}$ be a G_w - G_w matrix. If x is a sequence such that $A_{\alpha,t}x$ and Δx are in G_w , then x is in G_w .

PROOF. The theorem easily follows by an argument similar to the proof of [4, Theorem 2.1].

References

- D. Borwein, On a scale of Abel-type summability methods, Proc. Cambridge Philos. Soc. 53 (1957), 318-322. MR 19,134f. Zbl 082.27602.
- M. Lemma, *The Abel-type transformations into ℓ*, Int. J. Math. Math. Sci. 22 (1999), no. 4, 775-784. MR 2001b:40002. Zbl 961.40005.
- [3] _____, *The ℓ-translativity of Abel-type matrix*, Int. J. Math. Math. Sci. **23** (2000), no. 3, 189–195. MR 2001i:40005. Zbl 952.40002.
- [4] S. Selvaraj, Some theorems on the matrix transformations into G, Houston J. Math. 20 (1994), no. 2, 237–245. MR 95d:40007. Zbl 802.40003.

MULATU LEMMA: SAVANNAH STATE UNIVERSITY, SAVANNAH, GA 31404, USA *E-mail address*: lemmam@tigerpaw.ssu.peachnet.edu

George Tessema: Savannah State University, Savannah, GA 31404, USA