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Using the generalized Möbius functions, µα, first introduced by Hsu (1995), two charac-
terizations of completely multiplicative functions are given; save a minor condition they
read (µαf)−1 = µ−αf and fα = µ−αf .
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1. Introduction. Hsu [6], see also Brown et al. [3], introduced a very interesting

arithmetic function

µα(n)=
∏
p|n

(
α

νp(n)

)
(−1)νp(n), (1.1)

where α∈R, and n=∏p primepνp(n) denotes the prime factorization of n.

This function is called the generalized Möbius function because µ1 = µ, the well-

known Möbius function. Note that µ0 = I, the identity function with respect to Dirichlet

convolution, µ−1 = ζ, the arithmetic zeta function and µα+β = µα∗µβ; α, β being real

numbers. Recall that an arithmetic function f is said to be completely multiplicative if

f(1)≠ 0 and f(mn)= f(m)f(n) for allm andn. As a tool to characterize completely

multiplicative functions, Apostol [1] or Apostol [2, Problem 28(b), page 49], it is known

that for a multiplicative function f , f is completely multiplicative if and only if

(µf)−1 = µ−1f = µ−1f . (1.2)

Our first objective is to extend this result to µα.

Theorem 1.1. Let f be a nonzero multiplicative function and α a nonzero real

number. Then f is completely multiplicative if and only if

(
µαf

)−1 = µ−αf . (1.3)

In another direction, Haukkanen [5] proved that if f is a completely multiplicative

function and α a real number, then fα = µ−αf . Here and throughout, all powers

refer to Dirichlet convolution; namely, for positive integral α, define fα := f ∗···∗f
(α times) and for real α, define fα = Exp(αLogf), where Exp and Log are Rearick’s

operators [9]. Our second objective is to establish the converse of this result. There
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is an additional hypothesis, referred to as condition (NE) which appears frequently.

By condition (NE), we refer to the condition that: if α is a negative even integer, then

assume that f(p−α−1)= f(p)−α−1 for each prime p.

Theorem 1.2. Let f be a nonzero multiplicative function and α ∈ R−{0,1}. As-

suming condition (NE), if fα = µ−αf , then f is completely multiplicative.

Because of the different nature of the methods, the proof of Theorem 1.2 is divided

into two cases, namely, α ∈ Z and α �∈ Z. As applications of Theorem 1.2, we deduce

an extension of Corollary 3.2 in [11] and a modified extension of [7, Theorem 4.1(i)].

2. Proof of Theorem 1.1. If f is completely multiplicative, then (µαf)−1 = µ−αf
follows easily from Haukkanen’s theorem [5]. To prove the other implication, it suffices

to show that f(pk)= f(p)k for each prime p and nonnegative integer k. This is trivial

for k= 0,1. Assuming f(pj)= f(p)j for j = 0,1, . . . ,k−1, we proceed by induction to

settle the case j = k > 1. From hypothesis, we get

µαf ∗µ−αf = I. (2.1)

Thus

0= I(pk)= ∑
i+j=k

µ−α
(
pi
)
f
(
pi
)
µα
(
pj
)
f
(
pj
)

= (−1)k
∑
i+j=k

(−α
i

)(
α
j

)
f
(
pi
)
f
(
pj
)
.

(2.2)

Simplifying and using induction hypothesis, we get

−
[(
α+k−1

k

)
+(−1)k

(
α
k

)]
f
(
pk
)= k−1∑

j=1

[
(−1)j

(
α
j

)(
α+k−j−1

k−j

)]
f(p)k. (2.3)

From Riordan [10, identity (5), page 8], the coefficient of f(p)k on the right-hand

side is equal to

0−
[
(−1)0

(
α
0

)(
α+k−1

k

)
+(−1)k

(
α
k

)(
α+k−k−1

k−k

)]

=−
[(
α+k−1

k

)
+(−1)k

(
α
k

)]
≠ 0

(2.4)

and the desired result follows.

Remark 2.1. (1) To prove the “only if” part of Theorem 1.1, instead of using

Haukkanen’s result, a direct proof based on [1, Theorem 4(a)] can be done as follows:

if f is completely multiplicative, then (µαf)∗(µ−αf)= (µα∗µ−α)f = µ0f = If = I.
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(2) To prove the “if” part of Theorem 1.1, instead of using [10, identity (5)], a self-

contained proof can be done as follows: from (1+z)α ·(1+z)−α = 1 we infer that, for

k > 1,

∑
i+j=k

(−α
i

)(
α
j

)
= 0 (2.5)

which implies

(−α
k

)
+
(
α
k

)
=−

[k−1∑
i=1

(−α
i

)(
α
k−i

)]
. (2.6)

Thus,

0=
∑
i+j=k

(−α
i

)(
α
j

)
f
(
pi
)
f
(
pj
)

=
[(−α

k

)
+
(
α
k

)]
f
(
pk
)+

[k−1∑
i=1

(−α
i

)(
α
k−i

)]
f(p)k

(2.7)

implies f(pk)= f(p)k.

3. Proof of Theorem 1.2. The proof of Theorem 1.2 is much more involved and we

treat the integral and nonintegral cases separately. This is because the former can be

settled using only elementary binomial identities, while the proof of the latter, which

is also valid for integral α, makes use of Rearick logarithmic operator, which deems

nonelementary to us.

Proposition 3.1. Let f be a nonzero multiplicative function and r a positive integer

≥ 2. If f r = µ−r f , then f is completely multiplicative.

Proof. Since f is multiplicative, it is enough to show that

f
(
pk
)= f(p)k, (3.1)

where p is a prime and k a nonnegative integer. This clearly holds for k= 0,1. As an

induction hypothesis, assume this holds for 0,1, . . . ,k−1 (≥ 1).
From

(
µ−r f

)(
pk
)= f r (pk), (3.2)

we get, using induction hypothesis,

(−r
k

)
(−1)kf

(
pk
)= ∑

j1+···+jr=k
f
(
pj1

)
f
(
pj2

)···f (pjr )

= rf (pk)+f(p)k ∑
j1+···+jr=k

all ji≠k

1.
(3.3)
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Simplifying, we arrive at

[(
k+r −1

r −1

)
−r

](
f
(
pk
)−f(p)k)= 0. (3.4)

Since r ≥ 2, then
(k+r−1
r−1

)−r ≠ 0, and we have the result.

Remark 3.2. The case r = 1 is excluded for µ−1f = ζf is always equal to f , and

so the assumption is empty. The case r = 0 is excluded because I = f 0 = µ0f = If
holds for any arithmetic function f with f(1)= 1.

Proposition 3.3. Let f be a nonzero multiplicative function and −α= r a positive

integer. Assuming condition (NE), if f−r = µrf , then f is completely multiplicative.

Proof. As in Proposition 3.1, we show by induction that f(pk)= f(p)k for prime

p and nonnegative integer k, noting that it holds trivially for k = 0,1. The main as-

sumption of the theorem gives

µrf ∗f r = I. (3.5)

We have, for k≥ 2,

0= I(pk)= ∑
i+j1+···+jr=k

(
µrf

)(
pi
)
f
(
pj1

)···f (pjr ). (3.6)

Using induction hypothesis and [10, identity (5)], the right-hand expression is

∑
j1+···+jr=k

f
(
pj1

)···f (pjr )+f(p)k k−1∑
i=1

(−1)i
(
r
i

) ∑
j1+···+jr=k−i

1+(µrf )(pk)

= rf (pk)+f(p)k
[(
k+r −1

r −1

)
−r

]
+f(p)k

k−1∑
i=1

(−1)i
(
r
i

)(
k−i+r −1

r −1

)

+(−1)k
(
r
k

)
f
(
pk
)=

[
r +(−1)k

(
r
k

)](
f
(
pk
)−f(p)k).

(3.7)

For positive integers r and k (≥ 2), observe that r + (−1)k
(r
k
) = 0 if and only if

k= r −1 and k is odd. The conclusion hence follows.

Remark 3.4. In the case of r being a positive even integer, without an additional as-

sumption on f(pr−1), Proposition 3.3 fails to hold as seen from the following example.

Take r = 4. For each prime p, set

f(1)= f(p)= f (p2)= 1, f
(
p3)= 0 (3.8)

and for k≥ 4, define f(pk) by the relation (µ4f ∗f 4)(pk)= I(pk)= 0.

Define other values of f by multiplicativity, namely,

f
(
pa1

1 ···pakk
)= f (pa1

1

)···f (pakk ); (3.9)



CHARACTERIZING COMPLETELY MULTIPLICATIVE FUNCTIONS . . . 637

pi prime, ai nonnegative integer. This particular function satisfies µ4f = f−4 and is

multiplicative, but not completely multiplicative.

Now for the case of nonintegral index, we need one more auxiliary result. For more

details about the Rearick logarithm, see [8, 9].

Lemma 3.5. Let f be an arithmetic function, p a prime, k a positive integer, and let

Log denote the Rearick logarithmic operator defined by

Logf(1)= logf(1),

Logf(n)= 1
logn

∑
d|n
f(d)f−1

(
n
d

)
logd (n > 1). (3.10)

If f(1)= 1, f(pi)= f(p)i (i= 1,2, . . . ,k−1), then

(Logf)
(
pi
)= f(p)i

i
(i= 1,2, . . . ,k−1). (3.11)

Proof. From hypothesis, we have

f(1)= f−1(1)= 1, f−1(p)=−f(p), (3.12)

and so

Logf(1)= 0, Logf(p)= f(p). (3.13)

Next,

Logf
(
p2)= 1

logp2

[
f
(
p2) logp2+f(p)f−1(p) logp

]
= 1

2
f(p)2. (3.14)

Now proceed by induction noting, as in the lemma of Carroll [4], that f(1)= 1 and

f(pi)= f(p)i (i= 1, . . . ,k−1) imply f−1(pi)= 0 (i= 2,3, . . . ,k−1). We thus have

Logf
(
pi
)= 1

i

∑
s+t=i

sf
(
ps
)
f−1(pt)

= 1
i

(
if
(
pi
)−(i−1)f

(
pi−1)f(p))

= 1
i
f (p)i.

(3.15)

Now for the final case, we prove the following proposition.

Proposition 3.6. Let f be multiplicative and α ∈ R−Z. If fα = µ−αf , then f is

completely multiplicative.

Proof. As before, we proceed by induction on nonnegative integer k to show that

f(pk)= f(p)k the result being trivial for k= 0,1.

Let D be the log-derivation on the ring of arithmetic functions (cf. [7, 8, 9]). Since

D
(
fα
)=αfα−1∗Df =αfα∗D(Logf)=αµ−αf ∗D(Logf), (3.16)
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where Log denotes the Rearick logarithmic operator mentioned in Lemma 3.5, then

taking derivation D on both sides of µ−αf = fα and evaluating at pk, we get

(
µ−αf

(
pk
))

logpk =α
∑
i+j=k

(
µ−αf

(
pi
))
(Logf)

(
pj
)
logpj, (3.17)

that is,

(−1)kk
(−α
k

)
f
(
pk
)=α

[(−α
0

)
k(Logf)

(
pk
)

+···+(−1)k−1

( −α
k−1

)
f
(
pk−1)(Logf)(p)

]
.

(3.18)

Using induction hypothesis and the lemma, we have

(−1)kk
(−α
k

)
f
(
pk
)=α

(−α
0

)
k
(
− k−1

k
f(p)k+f (pk))

+···+α(−1)k−1

( −α
k−1

)
f
(
pk−1)f(p)

(3.19)

and so with the aid of [10, identity (5)], we get

[
(−1)kk

(−α
k

)
−αk

]
f
(
pk
)=

[
α
(
α+k−1

k−1

)
−αk

]
f(p)k. (3.20)

Since α ∈ R− Z, then the coefficients on both sides are the same nonzero real

number, which immediately yields the desired conclusion.

The following corollaries are immediate consequences of Theorem 1.2 and the main

theorem in [5].

Corollary 3.7 (cf. [11, Corollary 3.2]). Let α ∈R−{0,1}, k∈ R, and f a nonzero

multiplicative function. Define

Ek(n)=nk (n∈N), τ = µ−αf , φ(k)τ = Ek∗τ. (3.21)

If f is completely multiplicative, then φ(k)τ = Ek∗fα, and the converse is true provided

condition (NE) holds.

Corollary 3.8 (cf. [7, Theorem 4.1(i)]). Let α ∈ R−{0,1} and f a nonzero multi-

plicative function. If f is completely multiplicative, then

f ∗Logµ−αf =α(f ∗Logf) (3.22)

and the converse is true provided that condition (NE) holds.
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