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FIXED-WIDTH CONFIDENCE INTERVAL FOR A LOGNORMAL MEAN
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We consider the problem of constructing a fixed-width confidence interval for a lognormal
mean. We give a Birnbaum-Healy type two-stage procedure to construct such a confidence
interval. We discuss some asymptotic properties of the procedure. A three-stage procedure
and an accelerated sequential procedure are also given for the comparison of efficiency
among these three multistage methodologies.
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1. Introduction. Suppose there is a lognormal distribution with unknown param-

eters µ and σ 2. Let X1,X2, . . . be a random sequence from this distribution. Then

Y1,Y2, . . . is a random sequence from N(µ,σ 2), where Yi = lnXi, i = 1,2, . . . . The

mean of the lognormal distribution is a nonlinear function of (µ,σ 2) as E(X) =
exp(µ + σ 2/2) (= θ, say) and it is unknown since µ and σ 2 are unknown. Also,

note that V(X) = {exp(σ 2)−1}exp(2µ+σ 2). Let θ̂n be an estimator of θ based on

Yi = lnXi, i= 1,2, . . . ,n, defined by

θ̂n = exp
(
Ȳn+

S2
Y ,n

2

)
, (1.1)

where

Ȳn = 1
n

n∑
i=1

Yi, S2
Y ,n =

1
n−1

n∑
i=1

(
Yi− Ȳn

)2. (1.2)

Then, the problem is to construct a confidence interval for θ such that

P
(∣∣θ̂n−θ∣∣≤ d)≥ 1−α (1.3)

for givend (> 0) andα (0<α< 1) by choosing the sizen. Since Ȳn and (n−1)S2
Y ,n/σ 2

are independently distributed as N(µ,σ 2/n) and χ2
n−1, respectively, we have

E
(
θ̂n
)= θ{1+ σ

2

2n

(
1+ σ

2

2

)
+O(n−2)},

Var
(
θ̂n
)= θ2σ 2

n

(
1+ σ

2

2

)
+ θ

2σ 4

2n2
+O(n−3). (1.4)

Let A = (σ 2/2)(1+ σ 2/2). Then, the coverage probability is given for sufficiently

large n as

P
(∣∣θ̂n−θ∣∣<d)≈ Φ(d−θA/nθ

√
2A/n

)
−Φ

(−d−θA/n
θ
√

2A/n

)
≥ 2Φ

(
d−θA/n
θ
√

2A/n

)
−1, (1.5)
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where Φ(·) denotes the N(0,1) distribution function. Hence, it is easy to see that the

requirement (1.3) is satisfied asymptotically when d is small if n is chosen as

n≥ 2θA
d2

(
d+θz2) (=n�, say

)
, (1.6)

where z is the upper point α/2 of theN(0,1) distribution, that is, Φ(z)= 1−α/2. That

is, n� given by (1.6) is an asymptotically optimal sample size and the requirement

(1.3) is satisfied only if θ2A2/n2 → 0 for large n. However, the fixed-sample size n� is

unknown since µ and σ 2 are unknown.

Takada [16] showed that there is no fixed-sample size procedure to construct a

fixed-width confidence interval for the mean of lognormal distribution with at least

the nominal value uniformly for all µ andσ 2. So, we resort to some sequential method-

ology for this problem. Takada gave a solution to this problem by extending Nagao’s

[13] sequential procedure to a Birnbaum-Healy-type two-stage procedure. However,

the procedure given there tends to require very large sample sizes in order to meet

the requirement (1.3). In this paper, we give a two-stage procedure which is also a

Birnbaum-Healy-type two-stage procedure, but it is more efficient than Takada’s pro-

cedure. For the reference on other applications of Birnbaum-Healy-type two-stage pro-

cedure, see Graybill and Connell [8, 9] and Govindarajulu [5, 6, 7]. For the original idea

of sequential sampling in two stages, see Stein [15] and Cox [4].

In Section 2, a two-stage procedure is given for constructing a confidence interval

which satisfies (1.3) asymptotically. In Section 3, some asymptotic properties of the

procedure are discussed when compared with Takada’s procedure asymptotically. In

Sections 4 and 5, we give a three-stage procedure and an accelerated sequential pro-

cedure for this problem. Finally, in Section 6, a Monte-Carlo study is presented to

compare the efficiency among these three multistage procedures for moderate sam-

ples.

2. Two-stage procedure. We first take the preliminary sample X1, . . . ,Xm of size

m (≥ 2) and compute

θ̂m = exp
(
a+ Ȳm+ b

2
S2
Y ,m

)
, Âm =

bS2
Y ,m

2

(
1+ bS

2
Y ,m

2

)
, (2.1)

where Ȳm and S2
Y ,m are defined like (1.2), and the constants a (≤ 0) and b (≥ 1) are

determined later so as to satisfy the requirement (1.3) asymptotically. Next, we take

the second sample Xm+1, . . . ,Xm+N of size N defined by using (2.1) as

N =
[

2θ̂mÂm
d2

(
d+ θ̂mz2)]+1, (2.2)

where [x] denotes the largest integer less than x. Then, a confidence interval for θ is

constructed by using θ̂N defined as (1.1) on the basis of the second sample of size N.

The coverage probability (CP) is given for sufficiently large N by

CP≈ E
[
Φ
(
d−θA/N
θ
√

2A/N

)
−Φ

(−d−θA/N
θ
√

2A/N

)]
≥ 2E

[
Φ
(
d−θA/N
θ
√

2A/N

)]
−1. (2.3)
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We determine the design constants a and b so as to satisfy

E
[
Φ
(
d−θA/N
θ
√

2A/N

)]
≥ 1− α

2
. (2.4)

In order to meet the requirement (1.3) asymptotically, we write that

E
[
Φ
(
d−θA/N
θ
√

2A/N

)]
= E

[
Φ
({

θ̂m
θ
Âm
A

(
δ+ θ̂m

θ
z2

)}1/2

− δ
2

{
θ̂m
θ
Âm
A

(
δ+ θ̂m

θ
z2

)}−1/2)]
,

(2.5)

where δ= d/θ. Since it increases as δ increases, we have

Equation(2.5)≥ E
Φ
z θ̂m

θ

√
Âm
A

. (2.6)

We note that

θ̂m
θ
= exp

√σ 2

m
Z+a+ σ

2

2
(bW −1)

≈ exp
(
a+ σ

2

2
(bW −1)

)
(2.7)

for sufficiently large m, and

Âm
A
= bW

(
2+bWσ 2

)
2+σ 2

, (2.8)

where Z and νW are independently distributed as the N(0,1) and χ2
ν with ν =m−1,

respectively. Then, we write the right-hand side of (2.6) for sufficiently large m as

∫∞
0
Φ
(
zexp

(
a+ σ

2

2
(bW −1)

)√
bW

(
2+bWσ 2

)
2+σ 2

)
gν(W)dW, (2.9)

where gν(·) denotes the density function of the random variable χ2
ν/ν . We seth(σ 2)=

zexp(a + (σ 2/2)(bW − 1))
√
bW(2+bWσ 2)/(2+σ 2). Then, since minσ2>0h(σ 2) =

zea
√
bW for 1/b <W <∞ and minσ2>0h(σ 2)= 0 for 0<W < 1/b, we obtain that

Integral(2.9)≥
∫∞

1/b
Φ
(
zea

√
bW

)
gν(W)dW + 1

2

∫ 1/b

0
gν(W)dW. (2.10)

So, we use the constants a and b such that∫∞
1/b
Φ
(
zea

√
bW

)
gν(W)dW + 1

2

∫ 1/b

0
gν(W)dW = 1− α

2
. (2.11)

Since
∫∞
1/bΦ(zea

√
bW)gν(W)dW → (1/2)(1−α/2) and

∫ 1/b
0 gν(W)dW → 1−α/2 as

m→∞, we consider (a,b) satisfying∫∞
1/b
Φ
(
zea

√
bW

)
gν(W)dW = 1

2

(
1− α

2

)
, (2.12)∫ 1/b

0
gν(W)dW = 1− α

2
. (2.13)
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However, we can see that there is no solution to (2.12) when m < ∞, because∫∞
1/bΦ(zea

√
bW)gν(W)dW increases in m since∫∞

1/b
Φ
(
zea

√
bW

)
gν(W)dW ≈

∫∞
√
ν/2(1/b−1)

Φ
(
zea

√
b
)
φ(Z)dZ (2.14)

for sufficiently large m, where φ(·) denotes the N(0,1) density function. So, we de-

termine the constants a and b as follows: by using the normal approximation to νW
for sufficiently large ν , the left-hand side of (2.11) is written as

∫∞
√
ν/2(1/b−1)

Φ

zea
√√√√b(

√
2
ν
Z+1

)φ(Z)dZ+ 1
2
Φ
(√

ν
2

(
1
b
−1
))
. (2.15)

Now we consider that a and b are sequences depending on m such that a→ 0, b→ 1

as m→∞. Let ν =m−1 (sufficiently large),

a= k√
ν
, b = 1− 	√

ν
, (2.16)

where k and 	 (<−3
√

2) are constants, and expand (2.15) such that

Φ(z)
{

1−Φ
(
	√
2

)}
+zφ(z)

∫∞
	/
√

2

(
k+

√
2Z−	

2

)
φ(Z)dZ

1√
ν
+ 1

2
Φ
(
	√
2

)
+o
(

1√
ν

)
.

(2.17)

In the second term of the above expansion, we let∫∞
	/
√

2

(
k+

√
2Z−	

2

)
φ(Z)dZ = 0. (2.18)

Then, we have

k=
(
1/
√

2
)
φ
(
	/
√

2
)

Φ
(
	/
√

2
)−1

+ 	
2

(= f(	), say
)

(2.19)

and from (2.16)

a= f(	)√
ν
= f

(√
ν
(
1/b−1

))
√
ν

. (2.20)

To calculate the values of a and b, we first substitute the constant a given by (2.20)

into (2.11). Then, we obtain the value of b by solving (2.11) for given (α,m) with the

bisection method. The value of a is given by (2.20) with b determined above. Here,

the 128-point Gauss-Legendre numerical quadrature formula was used to evaluate the

left-hand side of (2.11). Since the integral∫∞
1/b
Φ
(
zea

√
bW

)
gν(W)dW

(= h(a,b), say
)

(2.21)

is over an infinite range, we instead calculate∫ u
1/b
Φ
(
zea

√
bW

)
gν(W)dW

(= hu(a,b), say
)
. (2.22)
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We choose the constant u such that

ε ≥ ∣∣h(a,b)−hu(a,b)∣∣≥ 0, (2.23)

for given ε (> 0). Since

∣∣h(a,b)−hu(a,b)∣∣= ∫∞
u
Φ
(
zea

√
bW

)
gν(W)dW ≤

∫∞
u
gν(W)dW = 1−Gν(uν),

(2.24)

where Gν(·) denotes the χ2
ν distribution function, we have

u= G
−1
ν (1−ε)
ν

(2.25)

satisfying (2.23) for given ε (> 0). Table 2.1 gives the values of a and b for given m
(= ν+1)= 20(20)100(100)500 and α= 0.01, 0.05, and 0.10. This table was obtained

by setting ε = 10−5.

Table 2.1. The values of a and b for given m and α (the upper entry is for
a and the lower entry is for b).

α\m 20 40 60 80 100 200 300 400 500

0.01
−0.332 −0.259 −0.223 −0.200 −0.184 −0.141 −0.120 −0.107 −0.098

2.819 2.043 1.792 1.661 1.578 1.391 1.315 1.272 1.243

0.05
−0.302 −0.234 −0.201 −0.181 −0.166 −0.128 −0.109 −0.097 −0.089

2.354 1.836 1.653 1.553 1.489 1.339 1.277 1.240 1.216

0.10
−0.288 −0.223 −0.192 −0.173 −0.159 −0.122 −0.104 −0.093 −0.085

2.189 1.758 1.599 1.511 1.454 1.319 1.262 1.228 1.205

Note that a→ 0 and b→ 1 as m→∞.

3. Asymptotic property. Throughout this section, we assume that m=m(d), a=
a(d), and b = b(d) are sequences such that

m(d) �→∞, a(d) �→ 0, b(d) �→ 1, as d �→ 0. (3.1)

Then, the two-stage procedure given in Section 3 has the following asymptotic prop-

erties.

Theorem 3.1. Under condition (3.1), the two-stage procedure is asymptotically con-

sistent, that is, for CP= CP(d,m,µ,σ 2,a,b),

lim
d→0

CP
(
d,m,µ,σ 2,a,b

)= 1−α. (3.2)

Proof. Since for sufficiently large N we recall that

CP≈ E
[
Φ
(
d−θA/N
θ
√

2A/N

)
−Φ

(−d−θA/N
θ
√

2A/N

)]
, (3.3)

then it yields that

2E
[
Φ
(
d−θA/N
θ
√

2A/N

)]
−1≤ CP≤ 2E

[
Φ
(
d+θA/N
θ
√

2A/N

)]
−1. (3.4)
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The left-hand side is bounded below as follows:

2E
[
Φ
(
d−θA/N
θ
√

2A/N

)]
−1≥ 2

(
1− α

2

)
−1= 1−α. (3.5)

By using the dominated convergence theorem, the right-hand side is as follows:

2E
[
Φ
(
d+θA/N
θ
√

2A/N

)]
−1 �→ 2

(
1− α

2

)
−1= 1−α as d �→ 0. (3.6)

Hence, from (3.5) and (3.6), we conclude that

lim
d→0

CP
(
d,m,µ,σ 2,a,b

)= 1−α. (3.7)

The proof is complete.

Theorem 3.2. Under condition (3.1) and d2m(d)→ 0 as d→ 0, the two-stage pro-

cedure is asymptotically first-order efficient, that is,

lim
d→0

m+E(N)
n�

= 1, (3.8)

where n� is defined by (1.6).

Proof. Since N ≤m+N ≤ 2m+N, we have

E
(
θ̂mÂm

(
d+ θ̂mz2

))
θA
(
d+θz2

) ≤ m+E(N)
n�

≤
md2+E

(
θ̂mÂm

(
d+ θ̂mz2

))
θA
(
d+θz2

) . (3.9)

By using the facts that θ̂m → θ and Âm →A as d→ 0 and the dominated convergence

theorem, we have that

lim
d→0

m+E(N)
n�

= 1. (3.10)

The proof is complete.

Remark 3.3. It should be noted that the procedure is second-order inefficient as

usual in the two-stage sampling, that is, limd→0(m+E(N)−n�) = ∞, which leads to

substantial oversampling in the second stage especially if m happens to be chosen

�n�.

Takada [16] proposed a different Birnbaum-Healy type two-stage procedure for this

problem. The procedure can be summarized as follows: first take the preliminary

sample X1, . . . ,Xm of size m (≥ 2) and compute µ̂m = Ȳm−a′
√
S2
Y ,m/m and σ̂ 2m =

S2
Y ,m/b′, where Ȳm and S2

Y ,m are defined by (1.2) and the constants a′ and b′ are

chosen so as to satisfy (1.3). Then we determine K̂m (> 0) such that θ̂m(eK̂m−1)= d
with θ̂m = exp(µ̂m+ σ̂ 2m/2). Next, take the second sample Xm+1, . . . ,Xm+N of size N
defined as a solution to (3.11) given as follows:

P
(∣∣θ̂N−θ∣∣≤ d | µ ≤ µ̂m, σ 2 ≤ σ̂ 2m

)
> P

(∣∣ȲN−µ∣∣≤ K̂m
2
,
∣∣S2

Y ,N−σ 2
∣∣≤ K̂m | µ ≤ µ̂m, σ 2 ≤ σ̂ 2m

)
= 1−γ,

(3.11)
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where θ̂N = exp(ȲN+S2
Y,N/2) and 0< γ <α. The coverage probability is given by

P
(∣∣θ̂N−θ∣∣≤ d)= P(∣∣θ̂N−θ∣∣≤ d | µ ≤ µ̂m, σ 2 ≤ σ̂ 2m

)
P
(
µ ≤ µ̂m, σ 2 ≤ σ̂ 2m

)
> 1−α,

(3.12)

if it holds that

P
(
µ ≤ µ̂m, σ 2 ≤ σ̂ 2m

)
≥ 1−α

1−γ . (3.13)

Hence, the values of a′ and b′ are chosen such that

P
(
µ ≤ µ̂m, σ 2 ≤ σ̂ 2m

)
= P

(
µ ≤ Ȳm−a′

√
S2
Y,m/m, σ 2 ≤ S2

Y,m/b′
)

=
∫∞
b′

(
1−Φ(a′√W))gν(W)dW ≥ 1−α

1−γ .
(3.14)

However, the values of a′ and b′ are not given in Takada [16].

When we compare the efficiency of the procedure given in Section 2 with Takada’s

procedure, the following theorem holds.

Theorem 3.4. Under condition (3.1), the expected second sample size in the two-

stage procedure is smaller than that in Takada’s procedure for 0 < d < d0 with suffi-

ciently small d0 (> 0).

Proof. Let N0 and NT represent the second sample sizes in the two-stage pro-

cedure and in Takada’s procedure, respectively. Let H(N) be the left-hand side of

(3.11). When N = NT , H(NT) = 1− γ for sufficiently small d (> 0). When N = N0,

H(N0) = {2Φ(c
√

1+η)−1}{2Φ(c√1+1/η)−1}+O(d) = h(η)+O(d) (say) for suffi-

ciently small d (> 0) under (3.1), where c = z/2 and η= σ 2/2. For 0< η≤ 1 we have

h(η) < 2Φ(c
√

2)−1< 2Φ(2c)−1= 1−α, since
√

1+η≤√2≤ √1+1/η <∞. For 1< η
we also have h(η) < 1−α, since

√
1+1/η <

√
2 <

√
1+η < ∞. Thus, we claim that

H(N0) ≤ 1−α < 1−γ = H(NT) for sufficiently small d (> 0). By noting H(N) is an

increasing function of N, the proof is complete.

Thus, the two-stage procedure given in Section 2 is more efficient than Takada’s

procedure asymptotically. We have observed that Takada’s procedure performs badly

for the practical size of d. We omit the details for brevity.

4. Three-stage procedure. In Section 2, we gave a two-stage procedure for estimat-

ing the mean of a lognormal distribution, whose coverage probability is the specified

one. We tried to ensure this asymptotically by introducing constants (a,b) and deter-

mining them suitably. Also, due to mathematical difficulties, the information about

the preliminary sample of size m is ignored in the final estimation of the confidence

interval. This will be justifiable ifm is small relative to the size of the second sample.

However, in the case of Stein’s two-stage procedure for estimating the normal mean

with specified width 2d and specified coverage probability 1−α, Cox [4] pointed out

that the difference between the expected value of the combined sample size and n0

tends to infinity as d→ 0, ifm/n0(d)→ 0 as d→ 0, wheren0(d) is the “optimal” fixed-

sample size which would have been used had σ 2 been known. Thus, the two-stage
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procedure is likely to lead to considerable oversampling. To overcome this difficulty,

Hall [10] proposed a three-stage procedure for estimating the normal mean which en-

sures that the difference between the expectation of the final sample size and n0 is

bounded as d→ 0. In the following we improvise Hall’s method to our problem.

As before, letm denote the size of an available preliminary sample. Let ρ (0< ρ < 1)
be a fixed number in advance. Take the second sample of size M−m where

M =max
{
m,
[

2ρAmθ̂m
d2

(
d+ θ̂mz2)]+1

}
(4.1)

with θ̂m = exp(Ȳm+S2
Y ,m/2), Am = S2

Y ,m(2+S2
Y ,m)/4 (that is, we set a= 0 and b = 1 in

(2.1)) and z is a constant such that Φ(z)= 1−α/2. Next, calculate S2
Y ,M . Now, take the

third sample of size N−M where

N =max
{
M,
[

2AMθ̂M
d2

(
d+ θ̂Mz2+K)]+1

}
, (4.2)

where K is a non-negative integer. Let ȲN and S2
Y ,N be the mean and variance of the

pooled sample Y1, . . . ,YN . Then, an approximate 1−α level confidence interval for θ
is given by (θ̂N−d,θ̂N+d).

5. Accelerated sequential procedure. For a N(µ,σ 2) population with both µ and

σ unknown, if one wishes to estimate µ with a given accuracy, there are two ways to

go about. In particular, suppose we wish to construct a confidence interval for µ with

specified coverage probability and width. Stein’s [15] two-stage procedure allows us

to do so by only two operations. However, Stein’s method can be considerably less

efficient than the fully sequential procedure proposed by Anscombe [1], Robbins [14],

and Chow and Robbins [3] in the sense that it leads to substantial oversampling. On

the contrary, if N� is the size of the final sample in the Anscombe-Chow-Robbins

(ACR) procedure, then E(N�)−n0 is bounded as d→ 0. However, the ACR procedure

will have coverage probability very nearly 1−α especially for small d. In spite of the

greater efficiency of the ACR procedure, it can be more expensive to carry out. The

sample values must be taken one at a time and a decision is made after each sam-

pling operation. In many situations, significant saving can be achieved by collecting

many sample values together, in which case it could be more economical than to em-

ploy Stein’s method. Hall [10] provided an accelerated method which combines the

advantages of two-stage procedure with those of the ACR procedure. In the following

we adapt Hall’s [11] accelerated procedure for the problem of estimating the lognor-

mal mean. The accelerated sequential procedure may be viewed as robustizing the

two-stage procedure against the possibility of a small initial sample size.

Fix ρ (0< ρ < 1). Stop the first-stage sampling as soon as

n≥ 2θ̂nÂnρ
d2

(
d+ θ̂nz2), n≥m (≥ 2), (5.1)

where Ân = S2
Y ,n(2+S2

Y ,n)/4, θ̂n = exp(Ȳn+(1/2)S2
Y ,n), and z is a constant such that

Φ(z)= 1−α/2. According to (5.1), call the initial sample size M1. Now set

M2 =
[

2θ̂M1ÂM1

d2

(
d+ θ̂M1z

2+ε)]+1 (5.2)
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for any ε ≥ 0. Define the total sample size as

N =max
(
M1,M2

)
. (5.3)

Draw N−M1 additional observations. Construct (θ̂N−d,θ̂N+d) as a confidence inter-

val for θ of width 2d with coverage probability nearly 1−α. According to Hall [11], a

safe value for ρ is 0.5 from the practical point of view.

6. Monte-Carlo simulation. In this section, we present findings regarding the mod-

erate and small sample size performances of the two-stage procedure given in Section

2, three-stage procedure given in Section 4 and the accelerated sequential procedure

given in Section 5. For all the methodologies, we consider the case when m = 20,

α = 0.05, and µ = 0. The scale parameter σ is set equal to 0.3 and 0.5. Note that

the coefficient of variation (CV) = {exp(σ 2)− 1}1/2 = 0.307 and 0.533 in the case

when σ = 0.3 and 0.5, respectively. We fix n� = 20, 60, 100, and then, from (1.6),

d = (θA+ θ√A2+2Az2n�)/n� is determined with A = (σ 2/2)(1+σ 2/2) for each

n� and σ . For the two-stage procedure, we let (a,b) = (−0.302,2.354) in (2.2) with

(2.1) from Table 2.1. For the three-stage procedure, we let (ρ,K)= (0.5,3) in (4.1) and

(4.2) as suggested in Hall [10, page 1230]. For the accelerated sequential procedure,

we let (ρ,ε) = (0.5,0) in (5.1) and (5.2). Efficiency of each procedure is evaluated by

average numbers of the sample sizes required in the procedure and of coverage prob-

abilities via the Monte-Carlo simulation with 10,000 (= R, say) independent trials. The

algorithm of the pseudo random number generator in the simulation is

an = 630360016an−1 mod 231−1. (6.1)

This generator is called URN30 in Karian and Dudewicz [12, page 118] and passed the

TESTRAND set of tests. In further testing by Bernhofen, Dudewicz, Levendovszky, and

van der Meulen [2], this generator is best among all 12 generators which have passed

the tests in TESTRAND. Let nr be the observed value of N and pr = 1 (or 0) accord-

ing to whether the intervals constructed by each procedure include θ or not for r =
1, . . . ,R. We denote n̄ = ∑R

r=1nr/R, s2(n̄) = ∑R
r=1(nr − n̄)2/(R2−R), p̄ = ∑R

r=1pr/R
and s2(p̄)= p̄(1− p̄)/R. The quantities n̄ and p̄, respectively, estimate E(N) and the

coverage probability, while s(n̄) and s(p̄) stand for their corresponding estimated

standard errors. The last column gives the sample size ratio relative to n�, that is,

(n̄+m)/n� for the two-stage procedure and n̄/n� for the three-stage procedure and

the accelerated sequential procedure.

As observed from Table 6.2, the two-stage procedure does oversampling compared

with the other procedures even though it cuts down the number of sampling opera-

tions compared to other procedures. The accelerated sequential procedure seems to

perform better than the other procedures in terms of smaller amount of oversampling.

The accelerated sequential procedure as well as the three-stage procedure involve the

choice of proper parameters. Naturally, one would expect that the choice of these

parameters will very likely impact the performances of these methodologies for mod-

erate values of n�. Actually, there is no available optimality criteria yet in order to
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Table 6.2. Comparisons of the procedures with m= 20 when α= 0.05.

n� d n̄ s(n̄) p̄ s(p̄) Ratio

Two-stage
20 0.1431 33.1192 0.1518 0.9739 0.0016 2.6560

(2.2)
60 0.0820 97.8104 0.4536 0.9713 0.0017 1.9635

100 0.0634 161.648 0.7438 0.9686 0.0017 1.8165

Three-stage
20 0.1431 35.7552 0.1243 0.9853 0.0012 1.7878

(4.1) and (4.2)
60 0.0820 94.8263 0.2897 0.9780 0.0015 1.5804

100 0.0634 160.465 0.4286 0.9787 0.0014 1.6047

Accelerated 20 0.1431 29.5706 0.0274 0.9868 0.0011 1.4785

Sequential 60 0.0820 67.3769 0.0847 0.9670 0.0018 1.1229

(5.1), (5.2), and (5.3) 100 0.0634 103.763 0.1479 0.9550 0.0021 1.0376

(a) σ = 0.3.

n� d n̄ s(n̄) p̄ s(p̄) Ratio

Two-stage
20 0.2715 48.8365 0.3542 0.9798 0.0014 3.4418

(2.2)
60 0.1547 146.211 1.033 0.9815 0.0013 2.7702

100 0.1194 241.143 1.720 0.9795 0.0014 2.6114

Three-stage
20 0.2715 34.9506 0.1358 0.9871 0.0011 1.7475

(4.1) and (4.2)
60 0.1547 90.3725 0.3176 0.9714 0.0017 1.5062

100 0.1194 152.455 0.4965 0.9735 0.0016 1.5246

Accelerated 20 0.2715 36.7306 0.0359 0.9936 0.0008 1.8365

Sequential 60 0.1547 78.7741 0.0816 0.9835 0.0013 1.3129

(5.1), (5.2), and (5.3) 100 0.1194 110.224 0.1451 0.9672 0.0018 1.1022

(b) σ = 0.5.

choose the best set of parameters. Hence, we try various values of those parameters

and examine any visible effects or marks on such procedures. We report performances

here only for the set of parameters given in Table 6.2 for brevity.
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