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We consider the pairs of general weakly nonlocal Poisson brackets of hydrodynamic type
(Ferapontov brackets) and the corresponding integrable hierarchies. We show that, under
the requirement of the nondegeneracy of the corresponding “first” pseudo-Riemannian
metric g(v(f‘) and also some nondegeneracy requirement for the nonlocal part, it is possible
to introduce a “canonical” set of “integrable hierarchies” based on the Casimirs, momen-
tum functional and some “canonical Hamiltonian functions.” We prove also that all the
“higher” “positive” Hamiltonian operators and the “negative” symplectic forms have the
weakly nonlocal form in this case. The same result is also true for “negative” Hamiltonian
operators and “positive” symplectic structures in the case when both pseudo-Riemannian
metrics g(g) and g,{) are nondegenerate.

2000 Mathematics Subject Classification: 35Q58, 37K05, 37K10, 37K25.

1. Introduction. We discuss in this paper the Poisson pencils of weakly nonlocal
Poisson brackets of hydrodynamic type (Ferapontov brackets). This means that we
consider the following pair of Hamiltonian operators:

. d 90
Ji6) = 96 (U) 75 + P8 (DUR+ Y. ooy (UURD ™ wipyee (U) U,
k=1

(1.1)
R d g1 B
Tt =9t () 5 + P (DUR+ Y. epawlyy o (U URD ™ wh e (U) U,
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where e)x,e1)x = £1 and D! = (d/dX) ! are defined in a “skew-symmetric” way

Dl= %Ui dX—L:de} (1.2)

and require that the expression
L= +AJH (1.3)

defines the Poisson bracket satisfying Jacobi identity for any A.
We mention here that the brackets of this kind are the generalization of Dubrovin-
Novikov local homogeneous brackets of hydrodynamic type [6, 7, 8]:

(UY(X), UM (Y)} = g"" ()& (X -Y)+by" (U)UFS(X-Y) (1.4)
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with the Hamiltonian operator
FVU V“(U) d bvu([r)lrn (1 5)
N dX " ’ ’

THEOREM 1.1 (Dubrovin and Novikov). Consider the bracket (1.4) with non-
degenerate tensor g¥#(U). From the Leibnitz identity, it follows that g**(U) and
Th (U) = —gye (U)D (U) (gyeg¥ = 85) transforms as a metric with upper indices and
the Christoffel symbols under the pointwise coordinate transformations U = U (U).

Bracket (1.4) is skew-symmetric if and only if g¥¥ is symmetric and the connection
Iy is compatible with the metric V,g"* = 0.

Bracket (1.4) satisfies the Jacobi identity if and only if the connection ¥, is symmetric

and has zero curvature R;é’ =0.

It follows from Dubrovin-Novikov theorem that any bracket (1.4) with non-
degenerate g"# can be written locally in the “constant form”

nV(X),n* ()} =€"6" 5" (X-Y), € ==1 (1.6)

in the flat coordinates n¥ = nv(U).
The functionals

NV=J Don"(X)dX (1.7)

are Casimirs of bracket (1.4) and the functional
+oo ] N
pP= J 5 >evnY(X)nY(X)dX (1.8)
® Sy=1

is a momentum operator generating the flow Uy = Uy. Form (1.6) can be considered
as the canonical form for the DN-bracket (1.4) with the nondegenerate tensor g**.
It can be also seen that any functional of “hydrodynamic type”

+ o
H- J h(U) dX (1.9)
generates a “hydrodynamic type system”
Uy =V, (U)Ux (1.10)
according to bracket (1.4).
We also mention that bracket (1.4) with degenerate tensor g¥#(U) of constant rank
has more complicated but also nice differential geometric structure (see [18]).

The first generalization of DN-bracket to the weakly nonlocal case was the Mokhov-
Ferapontov bracket [29]

(UV(X), UM (Y)} = g""(U)§ (X =Y)+by* (U)UFS (X -Y) +cU¥v(X-Y)U¥, (1.11)
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where v(X—-Y) =1/2sgn(X-Y), corresponding to the Hamiltonian operator
f};ﬁ;:g"“(U)%+b,‘7’”(U)U)'}+cU§D’1U§. (1.12)

THEOREM 1.2 (Mokhov and Ferapontov). Consider bracket (1.11) with nondegener-
ate tensor g*#*(U). Then
(1) bracket (1.11) is skew-symmetric and satisfies Leibnitz identity if and only if the
tensor gv* (U) is a metric with upper indices and I, = —gvgb;é,” are the connec-
tion coefficients compatible with g¥*(U);
(2) bracket (1.11) satisfies the Jacobi identity if and only if the connection T¥, is
symmetric and has the constant curvature equal to c, that is,

RYT = (8,87~ 556Y). (1.13)

Bracket (1.11) has a weakly nonlocal form. However, any local translationally invari-
ant functional

H:Jh(U)dX (1.14)

generates a local system of hydrodynamic type with respect to (1.11). Indeed, we have

oh
H =" =5yvh 1.1
Uy Sun = %X (1.15)
if h does not depend on X explicitly; so, the application of D! gives the local expres-
sion for the corresponding flow.
The canonical form of bracket (1.11) was first presented by Pavlov in [31] and can
be written as

MV (X),n* ()} = ("8 —cn"n*)6' (X -Y) —cnyn*6(X-Y)
u (1.16)
+cnyxv(X-Y)ny,

where n¥ = nY(U) are the annihilators for bracket (1.11) (on the space of rapidly
decreasing functions n¥(X) at X — +o0). Also, the implicit expression for the density
of P was represented in [31].

We will see, however, that the Casimirs and the momentum operator for bracket
(1.11) actually depend on the boundary conditions imposed on the functions U (X)
for X — oo (see [25]) (the condition UY — 0, X — +o0, in general, is not invariant under
the pointwise transformations U” = UY (U)). As pointed out in [25], we cannot speak
about the Casimirs and momentum functional until we fix the boundary conditions
at infinity, and, in the general case, it is better to speak about the invariant set of
N + 1 (for MF-bracket) functionals playing the role of either Casimirs of momentum
operator according to the boundary conditions. We consider this later for the case of
more general Ferapontov brackets.
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The general Ferapontov bracket [11, 12, 13, 16] has the form

{UV(X),UM(Y)} =g " () S (X-Y) +by" (UL (X -Y)

g c (1.17)
+ > exwy, (D) Uy (X —Y)wi (U) Uy,
k=1
ex = =1, which corresponds to the weakly nonlocal Hamiltonian operator
v d vu n 4 npmy-1,,H 4
JF" = g"™(U) o5 + by (U)Ux + > exwy, (U)UYD ' wie (U)Uy. (1.18)

k=1

THEOREM 1.3 (Ferapontov [11, 16]). Consider bracket (1.17) with nondegenerate
tensor g*#(U). Then,

(1) bracket (1.17) is skew-symmetric and satisfies Leibnitz identity if and only if ten-
sor gv*(U) is a metric with upper indices and Ty, = —gvgbg” are the connection
coefficients compatible with g"# (U);

(2) bracket (1.11) satisfies the Jacobi identity if and only if the connection Ty is
symmetric and the metric g"* and tensors wy, (U) satisfy the equations

u u u
gVka'r = g”Twl‘:T’ vakr] = VnWiy»
g (1.19)
VT _ v T T v
le - Z €k (wkuwkr] _wkuwkn)'
k=1

Moreover, this set is commutative [wy, wy ] = 0.

It was pointed out by Ferapontov that the equations written above are Gauss and
Petersson-Codazzi equations for the submanifold N with flat normal connection in
the pseudo-Euclidean space EN*9, In this consideration, the tensor g** is the first
quadratic form of MY, and wy, are the Weingarten operators corresponding to g
parallel vector fields in the normal bundle Ny, such that (Ng,N;,) = exOxm. It was also
proved by Ferapontov that these brackets can be constructed as a Dirac restriction of
the local DN-bracket

(ZUX), 2/ (Y)} =€ldYs' (X-Y), I1,J]=1,....N+g, €l ==+1 (1.20)

in EN*9 to the submanifold "N [12, 16].

As far as we know, the cases of brackets (1.11), (1.17) with the degenerate tensors
gVH#(U) were not studied in the literature.

All brackets (1.4), (1.11), and (1.17) are closely connected with the diagonalizable
integrable systems (1.10).

The general procedure of integration of the so-called “semi-Hamiltonian” diagonal
systems of hydrodynamic type was constructed by Tsarév [34, 35]. It can be shown that
any diagonal system (1.10) which is Hamiltonian with respect to bracket (1.4), (1.11),
or (1.17) (with diagonal g¥#(U)) satisfies Tsarév “semi-Hamiltonian” property, and
S0, it can be integrated by Tsarév’s method. Probably, all semi-Hamiltonian systems
are in fact Hamiltonian corresponding to some weakly nonlocal H.T.P.B. with (maybe)
an infinite number of terms in the nonlocal tail. Some investigation of this problem
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can be found in [3, 16], but, in general, this problem is still open. We also mention
that the examples of nondiagonalizable Hamiltonian integrable (by inverse scattering
methods) systems (1.10) were also investigated in [14, 15].

As was pointed out in [13, 16], if the manifold (N has a holonomic net of lines of
curvature, the metric g¥#(U) and all the operators w,‘c’n can be written in the diago-
nal form in the corresponding coordinates v¥ = vY (U). Here, we do not impose this
requirement and consider any brackets of Ferapontov type.

We will assume that the flows w,fn(U)UQ in the nonlocal part of (1.17) are linearly
independent (with constant coefficients). (The nonlocal part in (1.17) actually repre-
sents the nondegenerate quadratic form on the linear space generated by w,fn oy,
k =1,...,g written in the canonical form with ey = +1.) As pointed out by Ferapontov,
the local functional

H:Jh(U)dX (1.21)

generates in this case the local flow with respect to bracket (1.17) if and only if the
functional H is a conservation law for any of the flows wy, (U )Uy such that the ex-
pressions

(1.22)

oh
Wi (DUR 575

represent the total derivatives with respect to X of some functions Q (U) for any k.
This fact is also true for more general weakly nonlocal Poisson brackets having the
form

G ..
{@'(), ()} = 2 B(@,@x,...) 60 (x - )

k=l (1.23)

g )
+ > eSHP, @x,. ) V(X = Y)Si (@, @y, ...),
k=1

where 6% (x —y) = (d/dx)¥§(x — ¥), ex = =1, and the set {S}(@,@x,...)} is linearly
independent.

As far as we know, the first example written precisely in this form was the Sokolov
bracket [33]

@), e} =-pxvx-)@, (1.24)
for the Krichever-Novikov equation

3 @i, h()
2 4 —r7 1.2
Pt Pxxx > N N ’ ( 5)
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where h(@) = c3@3 +co@? +¢1 @ + ¢o, with the Hamiltonian function

_ ((loix ;h(cp))
H—J(Z ol T3 gz )% (1.26)

As established in [23, 24], the flows S,i (@, Px,...) commute with each other for any
general bracket (1.23) and conserve the corresponding Hamiltonian structure (1.23)
on the phase space {@(x)} (this fact was important for the averaging procedure for
such brackets considered there). However, for general brackets (1.23), they are not
necessarily generated by the local Hamiltonian functions having the form

H:Jh(cp,cpx,...)dx. (1.27)

Actually, brackets (1.23) are very common for so-called “integrable systems” (like
KdV or NLS) possessing the multi-Hamiltonian structures connected by the recursion
operator according to the Lenard-Magri scheme [20]. As such, it was proved in [10]
that all the higher PB brackets for KdV given by the recursion scheme starting from
Gardner-Zakharov-Faddev bracket

@), ()} =6 (x-y) (1.28)

and the Magri bracket
(@), )} ==8"(x-y)+4@(x)5 (x—Y) +2@PS(x —y) (1.29)

have exactly form (1.23). In [25], the same fact was proved for the case of NLS hierarchy,
and also the weakly nonlocal form of the “negative” symplectic forms for KdV and NLS
was established.

Brackets (1.4), (1.11), and (1.17) appear in these systems as the “dispersionless”
limit of the corresponding bracket (1.23) or, in more general case, as a result of the
averaging of (1.23) on the families of quasiperiodic solutions of corresponding evolu-
tion system connected with the Whitham method for slow modulations of parameters
[1,2,6,7,8,21, 22,23, 24, 26, 30, 32].

We consider here the compatible brackets of Ferapontov type and prove the sim-
ilar facts for the case of the nondegenerate pencils (i.e., det gz’o“) + 0) with also some
nondegeneracy conditions for nonlocal part of J ) + AJ (1)-

We also mention that the wide classes of local pencils of hydrodynamic type (DN-
brackets) were investigated in detail in [4] (see also [5, 9] and the references therein),
where they play an important role in the structure of Dubrovin-Frobenius manifolds
connected with solutions of WDVV equation for topological field theories. In [16, 27],
some important questions of weakly nonlocal pencils of hydrodynamic type (H.T.)
were also considered. In [17, 28], also the generic diagonal compatible flat pencils in
terms of inverse scattering method (see [19, 36]) were discussed.

2. On the canonical form and symplectic operator for the general F-bracket. We
now formulate the properties of brackets (1.17) established in [25] which we will need
in further consideration.
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Consider bracket (1.17) with nondegenerate tensor g"#(U). According to Ferapon-
tov results, we can represent it as a Dirac restriction of DN-bracket in RN*9 to the
submanifold MN ¢ RN*9 with flat normal connection. We fix the point z € MY and
introduce the corresponding loop space in the vicinity of z

LN, z) ={y : Rl — MY : y(~0) = y(+0) = z € MN]. (2.1)

So, we fix the boundary conditions for the functions UY (X) and require that these
functions rapidly approach their boundary values at X — +oo.

THEOREM 2.1 (Maltsev and Novikov [25]). Consider the bracket (1.17) with non-
degenerate g"*(U) defined on the loop space L(MN,z). Consider the corresponding
embedding MN c RN*9 with flat normal connection. Consider the flat orthogonal coor-
dinates Z" in RN*9 such that

(1) Z(z) =0,1 =1,...,N + g, and the corresponding DN-bracket in RN*9 has the

form

{Z'X),z7(Y)} =E'6Y8 (X-Y), I,J=1,...,.N+g, El = =1; (2.2)

(2) the first N coordinates Z%,...,ZN are tangential to MN at the point z;

(3) the last g coordinates ZN*1,...,ZN*9 are orthogonal to MN at the point z.
Then,

(1) bracket (1.17) has exactly N local Casimirs given by the functionals

NY = Jmnv(X)dX, (2.3)

wherenY (U) are the restrictions of the first N (tangential to MN at z) coordinates
ZY, ..., ZN on MmN,
(2) all the flows

Uy =wy, (U)UY (2.4)

are Hamiltonian with respect to (1.17) with local Hamiltonian functionals
+ 00
Hk:_[ hk(X)dX, k=1,...,g, (2.5)

where hy(U) are the restriction of the last g coordinates ZN**, k = 1,...,g on
MN and w,‘c’n(U) are the Weingarten operators corresponding to parallel vector
fields N (U) in the normal bundle with the normalization

Nk(z) = (0,...,0,—EN**.0,...,0)", (2.6)

where —EN*k stays at the position N + k, in the coordinates Z*,...,ZN*9, so
(Nr(U),N;(U)) = EN*k§y; (there is an arithmetic mistake in the journal vari-
ant of [25] where the generated flows are written as EN*kw{n(U)U;'}),
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(3) bracket (1.17) has in coordinates n” (U) the “canonical form” corresponding to
the space L(MN,z), that is,

g
(Y (X),n"(Y)} = (e"(S"” -> ekf,:(n)f,i‘(n))é’(x— Y)
k=1
g
=D e (fF () fl(M)S(X-Y) (2.7)

k=1

+

Me

ex(fY () yv(X=Y)(f (n)y,

k=1

where ¢ =EY,v =1,...,N, e = EN*k k=1,...,g,n"(2) =0, f{(2) =0 (ie,
J2 (0) = 0). (Actually, we have the equality f;(U) = N,/ (U), where N} (U) are
the first N components of the vectors N (U) in the coordinates Z',...,ZN*9.)

We note here that the Casimirs and “canonical functionals,” as well as the canonical
forms, depend on the phase space L(MN,z). So, if we do not fix the loop space, it is
better to speak just about the N + g canonical functions (the restrictions of the flat co-
ordinates from RN*9) playing the role of Casimirs or canonical functionals depending
on the boundary conditions. (Also, we will have many “canonical forms” of bracket
(1.17) with different f (U) in this case.)

For the case of Mokhov-Ferapontov bracket, the canonical form will be (1.16) for
any fixed space L(MN,z) (although the coordinates n (U) will be different for differ-
ent loop spaces). The explicit form of canonical functional, which is the momentum
operator in this case, can then be written as (see [25])

1 +00 N
P=—J 1- |1-c > envnv |dX. (2.8)

v=1

Using the restriction of the symplectic form of DN-bracket on MY, it is also possi-
ble to get the symplectic form Q,,(X,Y) for the F-bracket (1.17) with nondegenerate
g¥#(U) [25]. The symplectic form appears to be also weakly nonlocal and can be writ-
ten as

N+g

0z'(U) 3Z1(U)
- T 3
Quu(X,Y) = I; E' == (Xv(X = Y) = ()
N 3 5 g o h (2.9)
— T n’ _ nt k B X
_T%e 5uv XIv(X Y)aUH(Y)Jrk;ekaUv COV(X=Y) 50 (V)
on N,
We can also write the corresponding symplectic operator Q,, on L(MN,z) as
N g
A onT __.on" ohe ., ohy
_ T 1o 1 Ohi
vu = ;6 o aun +k§ekaUVD 30K (2.10)

with D~! defined in the skew-symmetric way.
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We introduce the space ¥y (z) of vector fields &Y (X) rapidly decreasing at X — *oo
on L(MN,z). It is easy to see that all the hydrodynamic type systems (1.10) satisfy
this requirement as the vector fields on L(MN,z) and so belong to ¥ (z). We can then
naturally define the action of symplectic operator QW on the space 1y (z).

We will also need the space %((z) of 1-forms w, (X) rapidly decreasing at X — +oo
on L(MYN,z). We note here that Qqu“ (X) ¢ Fo(z) in the general case.

We will now prove by the direct calculation that the symplectic form va is the
inverse of the Hamiltonian operator f}'“ on the appropriate functional spaces.

THEOREM 2.2. (I) On the functional space V((z), the relation
TP, =1 (2.11)

is true, where I is the identity operator on the space Vo(z).
(I) On the functional space %, (z), the relation

Qe =1 (2.12)

is true, where I is the identity operator on Fy(z).

PROOF. (I) We have

AVE A d g
TYEQs, = [gvf(U)H +hy UL+ Y ekw,fn(U)UQDlw,fg(U)U)%]

Noonm onm & k:lahl on! e
X [TZfTaule U +l§elaU§DlaU“}’
where the operators w,jn (U) correspond to the vector fields N, (U) such that
N (2) = (0,...,0,—ex,0,...,0)" (2.14)

(—ex stays at the position N + k), and we have identically (N, (U),Nq) (U)) = exxi-
Since the integrals of n7(U), and h!(U) generate the local flows according to f}’” ,
we have

con’

oh!
wEC(U)UXm = s

@)y, WeUg5z=PW)x  (215)

for some functions g; (U) and ;o,l((U). Moreover, consider N tangential vectors to Jly
in RN*9 corresponding to the coordinates U

on' onN on! ohaNT

U =(—,...,—,—,...,—) 2.16

eo (W)= \3pe e que " Ut (2.16)

and our parallel orthogonal vector fields N, (U) defined by condition (2.14) in the
coordinates (Z1,...,ZN+*9),
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Since by the following definition:

d
2N (U) = wigUke (U),

we have from (2.15)

(@) x=Ni)x (P)x=WONHy, T=1,...,N,l=1,..g

for the components of N (U).
We normalize the functions g} (U) and p(U) such that

a4i(2)=0, piz)=
We then have
QZ(U):N(T]()(U); p,ﬂ(U)zN%”(U)+ek6}(.

Now, using the equalities

a a a a
T _ % vt 4 l LA SN il
(Qk)x_dqu qkdXi (pk)X prk pkdX

on L(MN,z), we can write

d

FVEA on’
JFEQEHWO(Z) Z [ <8U5> +b,7 QaUE + Z ekwanXD 1 qu

pl:|Dla_]/Ll

N g
on® d on’ ohl d oh!
vE T -1 % -1
"9 L;E JUEAX" BuH ZelaUE dx BU”}
g N
a on”
-> > exe"wy, UyD'qf —=D ' —
k=1T=1 ! ax ouH
9 9 !
_ d oh
- > > exeqwy, UYD 1pkﬁD laU“

=
Il
—
—
Il
—

We can here replace (d/dX)D~! by identity, and we have

[f(—o00)+ f(+00)]

N | =

(D' fx) = fF(X) -

T:|D1 al‘r

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

oUH

oUH

(2.22)

(2.23)

for any function f(U) on L(MN,z) according to the definition of D~!. So, according to
normalization (2.19), we can replace the operators D! (d/dX)qy and D‘l(d/dX)p,l(

just by gf and p} on L(MN,z).
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According to the same normalization, the expressions within the brackets in the
first two terms are equal to

[ng on’

L0 [ 55
Faug 1 2

w) Uy. 2.24
F 8U§]L(MNz> Win®x ( )

So, we have

g N T T 9 l l
VEA L N1 a vE on' on oh' oh
Jr™Qgulvoe) = lzlelwm xD” +g { Z dUE oUn lzzlelaUa Uk

(2.25)
g

_ onT < on!
- > exwy, UyD ™ { > eTqf Tirhd Zelp,l(aUu}.
k=1 T=1 =1

Using (2.20) and (2.16), we now get

ahl ohk  ohk
= (N, ew) + 37 SUR = U (2.26)

N
g q" aUu

Also, using the evident relation

N g .
on’ on’ oh! oh!
Z oUE oUH Z CL3UEaUr 9eu(U), (2.27)
we get the statement (I) of the theorem.
(II) We have

N g 1
N sEn LT onT oh! | dht
eli = (Zl aU"D oUE l:zl' GuvP aut

T=

d b2 g I3 - <
x (gg“ x* bHUY + g:lekwan;'}D 1w,‘ngX>

N g l
a onT oh d oh'
z D—l Eu E -1 Eu
8UV ax 8U§g :laUV ax 8U§g

T=1

N 9 l
on” oh oh!
Z &) _ £
aUv (aUEg “)X l; 00D (aUEg “)X (2.28)

on' -1 on'! Eurmn
auv P puEbn Ux

N on’
1
Z aUvD Ut

3
2]

g
bguUX + z e

(d d

-1, H 11C
dXQk deX)D wy Uy

e3P
dy
oo (PPl ) wkeus.

g
D€
1k=1
g
Z o0 ahl (d .

Again, we can replace the operators (d/dX)D~! by identity and D~ (d/dX)q} and
D~'(d/dX)pl, by qf and p}. Then, according to the definition of coordinates h!, we
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have (oh!/0U%)(z) = 0; so,we also put D~ (d/dX) (0h!/oU%) = (0h!/oU%). Now, using
the same arguments, We get

Queft =T+ 2 €T

[D’ld j]an &

aUv ax 'laugY

g 1
wug ONT ] oh [ jue on! ]
aUV [JF a[]E LN ,z) EelaUV F aUE LN 2) (229)

N
2
g N on!

(we used the skew-symmetry of the operator J Fg for the action from the right).
Again, using (2.24) and (2.26), we get

N
~ ST TanT[ ld_]anT tu
Qvel —I+TZ::1€ sov | P oy T 5pEe™ (2.30)
that is,
3 NoonT
- - - .
Qe fu(X) = fu(X) ZfTaUv (X)aUE (2)9%(2) fu(2) (2.31)

for any f,(X). From the definition of %,(z), we now obtain the part (I) of the theorem.
O

REMARK 2.3. We can also say that the operator f}"’ff)gu isidentity if itis acting from
the left on %((z) and from the right on ¥ ¢(z). This interpretation will be convenient
later for the consideration of the recursion operator.

We also introduce the momentum functional P generating the flow
Uy =Uy (2.32)

with respect to the general bracket (1.17) (with nondegenerate g"#(U)).

LEMMA 2.4. Any F-bracket (1.17) with nondegenerate tensor g**(U) has the local
momentum operator P generating the flow (2.32) on the space L(MN, z). The functional
P can be written in the form

P:J 00]o(U)dX:%J W(Ze n'n +Zekhkhk>d (2.33)
- - k=1

where the functions n™ and h* correspond to the loop space L(MN,z).

PrROOF. We should here just prove the relation

op
oUv

= 0, UL (2.34)
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on L(MN,z) according to part (I) of Theorem 2.2. So, we have

N
on” ohk ohk
-1 -1
; aUvD BU§UX+Z T aU§UX
(2.35)
nT onk 2
g N +kZekath = s P .

3. The A-pencils and the integrable hierarchies. We now consider the operator

d

R =T+ AT = (9 +aath) o ax t + (bigy + Ab(H, ) UR
90 _— c (3.1
+ 2. kW) URD ™ Wi U +4 X et} UD ™ wi e Ux
k=1 k=1

for fv and f(vl) haVing form (1.18). We will call the A-pencil (3.1) nondegenerate, for
small 2\ if detg y(U) = 0.
We will admit here that the linear spaces W) and W), generated by the sets

v n v n v n v n
{wm)anX,...,w(o)gonUX}, {w(m,’UX,...,w(l)gmUX}, (3.2)

can have a nontrivial intersection V.
We introduce the basis in ¥

{0V, Uxs..., 03, UR}, (3.3)

where d = dim%, and consider the linear space W, generated by all the flows from
Wy and Wy (dimW = go + g1 — d) with basis

_ [ n ~ n sy o Sy o oA n N n
%—{w(vomUX,...,w(‘{))(go_deX,vlanX,...,v(}l’nUX,w(Vl)mUX,...,w(vl)(gl_deX}

y 0 (3.4)
- {wln(U)UX! g0+q1 dr[ )UX}!

where W, , and W), are some linear combinations of operators w() and w(),
respectively, and the flows corresponding to w )k, Om, and 1w 1) are all linearly inde-

pendent.
The flows
{00017 UN - W0 (g0 -y Uxs D1 Un o D, U T 55
N n N n s n - n ’
{vfnUX,...,v{;nUX,w("l)anX,...,w("l)(grd)nUX}
will then give bases in W) and W), respectively.
The nonlocal part of the bracket j}*
90
> ekWy,UxD 'w O)kCUX +A Z e)sw) s, UxD i) CUX (3.6)
k=1 s=1

will correspond in our case to some quadratic form Q’f (linear in A), k,s =1,...,g0 +
g1 —d on the space W.
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In our further consideration, the question if Q’ﬁ is nondegenerate on ‘W for A + 0
or not will be important, and we will mainly consider the pencils (3.1) such that Q’f
is nondegenerate on W.

We now formulate the properties of nondegenerate pencils (3.1) also satisfying the
requirement of nondegeneracy of the form Q’f for A = 0 connected with the “canoni-
cal” integrable hierarchies.

THEOREM 3.1. Consider the nondegenerate pencil (3.1) (detg g, + 0) such that the
form Q’f is also nondegenerate on W for A = 0 (small enough). Then,
(I) it is possible to introduce the local functionals

+ 00

NY(A) :J n"(U,A\)dX, v=1,...,,N,

P = pwaax,
- (3.7)
H(ko)(/\)=L hfy, (U, dX, k=1,...,40,

+ 00
H) () = LQ R, (UN X, s=1,...,91,

which are the Casimirs, momentum operator and the Hamiltonian functions for
the flows W, (U)UY and w}) ., (U)UY. for the bracket J*, respectively;
(I1) all the functions n¥ (U,A), p(U,A), h{‘o) (U,A), and hfl) (U,A) are regular at A —

0 and can be represented as regular series

+00 + 00
nY(U,A) = > n)(U)AY, p(UA) = > pa(U)AY,
q=0 q=0
e . (3.8)
hio)(U,A) = 3. hio) (AT, Ry (UA) = 3 iy 0 (U)AT.
q=0 q=0
Moreover, we can choose these functionals in such a way that
0P, ah’(CO),q ahfl).q
Sus (D=0, @) =0, —5(2)=0, 420,
- Sy (3.9)
a _ Ny _ L,V
30k (z2)=0, g=1, Uk (z) =ey,

where dete); + 0;
() the integrals NY(0), P(0), Hf‘o)(O), and Hfl)(O) are the Casimirs, momentum
operator, and the Hamiltonian functions for the flows w(‘i))kn(U)U; and

w("l)m(U)UQ with respect to J ("0’“;, while the flows generated by the functionals

Fy= Lo fa(U)dX (3.10)

are connected by the relation

e df e O,
£9J@a+1) _ ¢ YJa
J(VO) UE - (Vl)aUg (3.11)
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for any functional F(A) from the set (3.7). All the functionals F; given by the
expansions (3.8) generate the local flows and commute with each other with
respect to both brackets jo, and j ).

PROOF. We now put A > 0 and write J;* in the form

B = (gl + gt 2 v ()t + A, ) UL

ax
90 .
+ Z e(o)sz’o)k,,U;D’lwﬁ,)k,;UX (3.12)
k=1

g1
+ Z emk\/Xw(VDknUQD’lx/Xw(“l)kCUE.
k=1

In the case of the nondegenerate form Qf‘\s on W, we can consider the corresponding
embedding of MY to RN*90+91 depending on A. Indeed, all the flows 1w, from the set
9% will in this case satisfy conditions

gl = gt vk = vk,
k k (3.13)
RUC = kZ (wkn Swslj wkn ‘w z_j)
S

for nondegenerate gﬁ\‘g according to Ferapontov theorem.

Since the operators w,,, (U) and w ), (U) are just linear combinations of wy,, (U)
(with constant coefficients) and the form Q’)fs coincides with the nonlocal part of (3.12),
we will have the corresponding Gauss and Petersson-Codazzi equations for these flows
and the curvature tensor R, 7. So, for nondegenerate g,*, we will get the local embed-
ding of MY to RN*+90+91 (actually, to some subspace RN*+90+91-d c RN+d0+91) depending
on A.

Since the embedding is defined up to the Poincaré transformation in RN*90+91 we
can choose, at all A, the coordinates Z/, I = 1,...,N + go + g1 in such a way that

(1) all Z! =0 at the point z € MV, and the metric G/ in RN*90+91 has the form

G = E'sY, (3.14)

where EN*K = e(gyx, k = 1,...,g0, ENt90*S = e (15, s = 1,...,91;

(2) the first N coordinates ZV, v = 1,...,N are tangential to N at the point z € MY
atall A;

(3) the last go + g1 coordinates are orthogonal to .V at the point z, and the Wein-
garten operators

W1 (U)o s W gon () NAWY (U)o NAWY (U (3.15)

correspond to the parallel vector fields N o)) (U), N(1)(s) (U) in the normal bun-
dle such that

T

Ny (2) = (0,...,0,—EN*k,0,...,0) (3.16)
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(—EN*k stays at the position N+k) k = 1,...,4do,
Ny (2) = (0,...,0,—EN*90+s o, ... 0)" (3.17)

(—EN*90+s gtays at the position N+gg+5) s =1,...,91.
So, according to [25], the restriction of the first N coordinates Z1,...,ZN gives the
Casimirs of bracket (3.12) on L(MY,z)

+00

NV(A)=J fl"(U,)\)dX=JlooZ"IKMN(U,A)dX, v=1,...,N, (3.18)

while the restrictions of the last go + g1 coordinates give the Hamiltonian functions
for the flows w, Uy

+00 - + 00
Hf,(A) = J_m hty, (U,A) dX = Lo ZN*K N (U, A dX, k=1,...,90 (3.19)

and VAw,, Uy

+ 00

+ o0
ﬁfn(?\):J hfl)(U,A)dij ZNY0tS | N (U, A dX, s=1,...,91.  (3.20)

REMARK 3.2. For A < 0, the signature of RN*90791 may be different from the case
A > 0, but all the statements of the theorem will certainly be also true.

We now study the A-dependence of the functions 72" (U,A), hify, (U,A), and h{}, (U, Q)
at A — 0.

Consider N tangential vectors to LY, corresponding to the coordinate system {U"},
that is,

oz} 0ZN+g90+91 T
e(V)=<W"“’T) , v=1,...,N. (3.21)

We have the following relations (in RN*90+41) for the differentials of e(,)(U,A),
N(O)(k)(U,/\), and N(l)(g)(U,A) on ./i/lN:

90
de(,) = Fé‘n(U,A)e<u)dU” — Z EN+kgv,,(U,/\)w(‘g)kn(U,/\)N(())(k)dU”
k=1
g1
—Ja Z ENJrgO“gvu(U,A)w(ul)m(U,A)N(l)(s)dUn; (3.22)

s=1

AN (o) (k) = W{g)k, (U, A e dU",

AN@1yis) = VAw s, (U, Ne,dU™,

where T, = —g,eb5", gyeg®H = 8.
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So, for any curve y(t) on N (y(0) = z), we have the evolution system for e, (t),
N0y (£), and N(1)(s) (t) having the general form

e (t) *(t,A)  *k(t,A)  VAx(t,A) en)(t)
Ny (£) | = *(t,A) 0 0 Ny (t) |, (3.23)
Ny () VA (t,A) 0 0 Ny (1)

where all *x(t,A) are regular at A — 0 (matrix-) functions of A.
The formal solution of (3.23) can be written as the chronological exponent

t +o0 t tn
Texp(JOH(t)dt>—i+Z:UJO St TH(t))---H(ty))dt, -+ -dt,  (3.24)
n=1""

applied to the initial data e, (0), N (0), and N1)) (0), where H(t) is the matrix
of system (3.23).
It is now easy to verify that, for any n > 1, we have

*(t,A) *(5,A) VA% (L,A)
T(H(t)---H(tp)) =| *(t,2) *(LA) VA% (LA) |, (3.25)
VA (EA) VAR (A Ak (t,A)

where all *(t,A) are regular matrix-functions at A — 0.
For the densities of Casimirs (3.18) and Hamiltonian functions (3.19) and (3.20), we
can now write the equations

nV
W = [Uf'ew (t,)]" = € (Ut'eq (t,1),,(0))
dnk, (t,A
% = —(Ut'e (t,A),N(0)k) (0)) (3.26)
ans,, (t,A
% = —(Ut'e( (t,A),N1)(5)(0))

along the same curve y(t) on JN. Since y(t) is just the arbitrary curve, we have
Y (U,A) = x(U,A), ki (UA) =*(U,Q),  h{(UA) =VA%(U,A), (3.27)

where *(U,A) are regular at A — 0.
It is easy to see that expression (2.33) for the momentum operator is regular at
A — 0 in this case, and we can put

1

h{y, (U,A) = h{y,(U,A),  h{},(U,A) = 7

iy, (U,A) (3.28)

to be regular at A — 0 densities of Hamiltonian functions Hfy (A) and Hf, (7).
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According to the geometric construction, we have

ohk (U,A) ohi, (U,A)
0 \Ys _ 'Y, _
— |, =0, —oo— . =0 (3.29)
and also
op(U,A) | _
FTiT = 0. (3.30)

Since the functions 72 (U,A) locally give the coordinate system on .tV at every A,
we have

det(gZZ (2.0) #0, (3.31)
and we can put
ww.n) = 2 2,02 Conanw.a (3.32)
8U§ onn
such that
MAUN) | _ 0% ) (o), v=1,....N, (3.33)

oUH - OUH

where e, are the tangent vectors at the point z for A = 0, n¥(U,0) = 1Y (U, 0). So, we
get parts (I) and (II) of the theorem.

For part (IIT), we first prove here the following lemma.

LEMMA 3.3. Under the conditions formulated in Theorem 3.1 the functionals

+00 +oo
Ny = L ny(U)dx, Py = LO pa(U)dX,
- (3.34)
H{y), = J hio, (V) dX, H(Sm:J iy (U) dX,
v,q,l,t = ., generate the local flows with respect to both f ) and f(l) and com-

mute with the functzonals NO, Py, H«) 0 andH 1o With respect to the bracket J<0

PROOF. Since the functionals N0 are the annihilators of J (0), they commute with
all other functionals with respect to f(o) on L(MN,z). Also, from the translational
invariance of all functionals Ny, P;, H ("0) 1» and Hf)),, we get that they also commute
with the momentum operator Py of J(o) with respect to J(o)-

We then know that the functionals NV (A), P(A), H("O) (A), and Hfl) (A) generate the
local flows with respect to Jy. In the case of nondegenerate form Q’f (on W), this means
that they are the conservation laws for all the flows wnn(U)UX introduced in (3.4).
So, they are the conservation laws for the flows w O)kn(U)UX and w l)m(U)U;'} and
generate the local flows with respect to J 0y and J (1)- Now, since the flows w (0ymn (U) UX
and w(,, (U) Uy are generated by the functionals H{f}, and H{}, with respect to Jos
we get that all Ny, P, H (o1 and Hf}), should commute with H{), and H{},, with
respect to J) on L(MY, z). O
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For the commutativity of all N}, P, H ("0) pand H (Sl)t with respect to both brackets, we
can now use just the common approach for the bi-Hamiltonian systems [20] writing

8F3J(0)8Gk = —0F;-1J(1)8Gy = 8F4-1J(0)0Gks1 =+ = - = 5FoJ(0)0Grsq =0  (3.35)

for any two functionals F; and Gy from the set (3.34) (the same for the bracket J )
O

REMARK 3.4. We point out here that the requirement of nondegeneracy of the form
Q’f on W is important, and, in general, Theorem 3.1 is not true without it. As example,
we consider here the Poisson pencil Jx = j) + AJ1) where

. 1 0\ d Ut U\ (Ux\,.,(1 O)/[Ux
J“”_(o —1>d_X+<—U2 —U1>(U§D 0o 1)\v?
1 0\ (Ux\.,(U" U2\ /[(Ux
(o D) (e ) (@)

. ) (3.36)
. (0 1\ d 0 0\ (Ux), (1 0)(Ux
Jay= (1 o) ax <2U1 o) (U§)D (o 1) (U§
1 0\ (Ux\,.,( 0 0)\(Ux
+(0 1) <U§>D 2ut o) \u2)
We have here the three-dimensional space W generated by the flows
N Ul u?\ (Ux 3 Ul
wfnU)r} = (_UZ _Ul) (UE) ’ w;nU)’} = (Uj%{) ’
. (3.37)
. 0 0\ /[Uxg
w02 oo o) ()
Operator Jy can be written as
. (1 A\ d u! U2\ (UL ., (Ux
= (?\ —1) ax " (—U2+2)\U1 —Ul) (U,% D \w; 8
. Uy . Ul U2\ (Uk ’
Us —U2+2AUY -UY)\UE)’
and the form
0 1 0
Qx=|1 0 A (3.39)
0 A O

is degenerate on W.
The metric

. 1 A
g ) = ( ) (3.40)
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here is just the flat metric on R?, det gX“ + 0, and it is easy to check the equations

GEWE Q) = giEWh (), axiwhe = ghtwy, (3.41)
where
u U! U? . 1 0
ng()\) = _UZ +2)\U1 _Ul 5 WZ§()\) = 0 1 . (342)
Also,
WWE,(A) =0, WE (N), WL, =0, W5 (3.43)
lu HYY 1y ’ vir2u K2y .

in the flat coordinates U!, U2, and

Ri3 = Wi (W3, + W3 Wi, () = Wi (MW, = Wi W, (A)
) , (3.44)
=W A)+W5L(A)=0
s0, J) represents a Poisson bracket of Ferapontov type for all A.
Both g, and g({} are nondegenerate in this case. However, the flow wy, Uy is not
Hamiltonian with respect to J), and wy, Uy is not Hamiltonian with respect to Jo
as follows from

VE ~ HE ~ vE ~ U HE ~
IO Wig * J)W3sr Iy Wig * (1) Wig- (3.45)

It is also easy to check that the flows w7, Uy and w3, U3 do not commute with each
other.

4. The recursion operator and the higher Hamiltonian structures. We now use the
symplectic operator (2.10) for nondegenerate bracket J (0) and consider the recursion
operator ﬁﬁ = f("f)@(o)w under the assumptions of Theorem 3.1.

We put v™(U,A) = n™(U,A), T = 1,...,N, vN*K(U,A) = h{; (U,A), k = 1,..., 90,
v§(U) =v*(U,0),Efy =€, T =1,...,N,and E}¥ = eo), k = 1,...,go (Where n™ (U,A)
and h’(‘O)(U ,A) are the functions from Theorem 3.1) and write the symplectic form
Q(o)-,—u as

N+go

ovk  ovf
Z Efo) 5570 5 (4.1)

We can also write the operator f (o) as

N+go k
v vu d v ovy | 1| sue OV
J&) =90 g + b0 Ux + Z E} [ VOT)aUT}D 1[]2‘0‘)’—8[]0]. 4.2)
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For I?“j, we have the expression

N+go k
- AT A 3110 _1 0Vp
N+go
IGEV RV
i k; Elo 9 557 30
Neg (4.3)
avo 1 avo
+ z E(O l)n 6UTD QUM
g1 N+go k
k ¢ 0§ -, 0vg
+s=21 k; esEowiispUxD ™ Wiy Ux 550 D™ S,
where
Wiy Us 3777 Ut =(Q5)x = EQS Q¥ -~ dX (4.4
for some Q¥ (U) according to Theorem 3.1.
We normalize the functions Q¥ (U) such that Q¥(z) = 0, and we have
-D~ 1—Q5 =---Qf- - (4.5)
on L(MN,z).
Also, d/dXD ' =1 on L(MY,z), and
N N
fOE v D1 ovg N fOE " Ul avo I
ouT oUH © aut? auw
g1 N+go vk
+> > eqsEfpwh,UyQkD™ =2 (4.6)
s=1 k=1 aU“
N
fOE e OUE D 611(’)‘.
(0) (1) oUT QUM
Also, using the relation
N+go s s
vk ohi,,(U,0) 0hj,,,(U)
k 9Vo 1) _ 9Ny
2. Eloggn @ = QowrwhyanUs = 55— = —5ps @9
on L(MN,z) (since 6h<1)q/aU“(z) =0, g = 0), we can write
b o k|7 av(’)‘ 1 81)(’)‘ Z np-1 ohiiy
Ry =gl g0+ > Efy [J<V1T) aUT] Uk Z e)swW(ysyUxD™ SUr
k=1 s=1 4.8)

N+go k s
ovf ] ovg Wo | -1 910
Z Ef [ J) aUT} o ze“” [J“” Ut aun
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where

+00 T
vRU,A) = D kWA, h{(U,A) = Y hiy,, (U)A1 (4.9)
a=0 a=0

and VJ(U) = g("f) (U)g(O)Tu(U)-
We mention here that, according to this definition, ﬁﬁ will act from the left on the
vector-fields (on ¥ (z)) and from the right on the gradients of functionals on L (M, z).

THEOREM 4.1. Consider the nondegenerate pencil (3.1) with detg(g) + 0 such that
the form Q’js is also nondegenerate on W for small enough A + 0. Then,
() any power [R"], n = 1 of the recursion operator can be written in the form
N+go n
. s vk | ovk.
[R™], = [V"],+ (=D > Ef, ( > [J(Vof)aUST}D ﬁ

k=1 s=1

(4.10)

n S h (1),s—1 ah(l)n s
+(=1) kz:e(l)k z J(O) oUT D QUM ’
=1

s=1

() the higher Hamiltonian structures J'* = [R™1YJ% can be written on Fo(z) in
(n) £7(0)
the following weakly nonlocal form:

~ a ~
Jot = V"1Eat 15 + [V IEb{E,UR
N+go n
81}
+ (=" Z E Z O)aUT aﬁgsgﬁu)
5:1
.. Ohf oht)) e
+(—1)"Ze(1>k > [Jv a;}j 1] all}g Sgiil)) (4.11)
k=1 s=1
N+go n-1
_ ov
+(=D)" Y Ef (Z [ Jio) BUT} 1[](0% 3555])
k=1 s=1
+(_1)n+1 %e(l)k(i [fVT a]’LI((I),S—1:| [] Eah(l)n S])
0) T
k=1 s=1 ( ou O ous

forn=2;
(I all the “negative” symplectic forms

Q(fn)vy = Q(())V“ [ﬁn]i, n>1 4.12)

can be represented on Vo (z) in the form

N+go n k k

. ovyg _,0vy_
Qnmyvu = (D" Z E<0)(Z aUSvD 135;15)
<0 (4.13)

g1 n ahk ahk
_1\n (1),s—1 ~—1 (1),n—s
+(-1) § e(1)k(§ U D U )

k=1 s=1
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PROOF. (I) By induction, we have
N+go
RY[R™ME = [V ]+ (-)™ > EX

k=1

k=1

(3o

rE0 av D—l av?”ifs
0>aU¢f ouH

. g1 n , h(l . ah{g),n,s
+(=1)" D e z Ry Jiy aUa D 5y

+(=D" > > E

q=1 k=1

N+goN+go (

N+go g1
+(=D" > D Ef (

q=1 k=1

N+go ov a
- Z E |: O)aU-r:|D

g1 N+go
(=D D e(l)q(

q=1 k=1

g1 91
=D e(l)q(

q=1k=1

3

s=1

sé
>

s=1

71qu av1l’<L—S
(maUT 0s duH

oh
qk (1),
[ <°)BUT] Qi aU)

a
10V

Vo ryoniE
suElV "l

ho | 1 cak VK
[ ouT ]D Sos 3w )

ql) 0 Dfquk ahl(cl),n—s
o Sy % aUw

where we have

Ek avo |:J§g av

© 5yt (maUU
v [ 2e0 0Ny s |
e(l)kan [](0) U7 |
Fk Ohiio [ +z0 2K ]
(ORI O aye
ah(ql),o 3 ah’((n,s 1
ek 5ye |Y 0 By

for some functions PIX(U), Q¥ (U), S¢
we use the normalization

P (2)

From Theorem 3.1, we have

ovk

aUST( z)=0, s=>1
ohk
—Wsmlzy—0, s=1;

ouT

= Q¥ (z) = sk

(Pgsk)x_ ;;P Pgskg{ix,

= (Qff)y = Sl - o,
= (53 = oSt -sp
zmh—éT'@é

609

(4.14)

(4.15)

(U) (U) according to Theorem 3.1, and

(z) =T (z) =

ah{(m,o _
actually W(z) =0 also |,

(4.16)

(4.17)
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so, for s > 1, we can write

k k
gr OV ov¥ A LI L T
[ V‘ELOTaUT}_aUSv’ [Q(OWJ‘OT) Ut |~ auv 56

on L(MN,z) and

ovk . duk . ovk
[ JﬁoﬁaUT] = [J(Vf)an} = —[J&;ﬁ], (4.19)
T BTN B
[ o g 1} = [J(Vf)aliU'j = | T 5 (4.20)

according to Theorem 2.2.
We now multiply the equalities

k k
A £r OV cer Oy, cer 0Ny o1
[Ju?an} - [J«)T) alsfrl]’ [J(f) aUTS =-|Jo an+ (4.21)

by Q.0)ve from the left. Since

av5+1 h(1)5+1
U (z) = Ut (z)=0, s=0, (4.22)

we get again from Theorem 2.2

ovk . gr OV ovk
ﬁz_[ ovel ) aUT}Z [aUST ] =0,

a’/Ll(<1),s-¢—1 A 2ET ahl(cl ah(l) s (4.23)
WZ_[ el Gy ]z [ U Rs}’ $=0
(action from the right).
Using the relation
[fxD~'] = —f(X) (4.24)

for the action from the right of D~! on any f(U) such that f(z) = 0, we get that the
last six terms in the expression for ﬁg[ﬁ"]ﬁ can be written as

N+go a a a
avo 9h{0 On(i)0 e
Z Ei [ Jo 8UT]D [6U§ } Ze(“"[ o Sy [P | e R

N+go ! ¢ (
v vl o | M,
= (-t Z E [ 0)3UT}D 1aUu+(1)n+lg§e(l)q[J(voT) T T

(4.25)

Now, using relations (4.19) and (4.20), we get part (I) of the theorem.
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(I) To avoid much calculations, we just write that according to Theorem 3.1 we have
the relations

av“_ S av" k d k k d
Efm a{}gs [J(Eol:aU?,} (Pﬁ so) _d_XP’Z 5,0 PZ 50X’

(4.26)

ohly, o[ so OVK da a
k (1), 3 0 k
E(O) aUg : |:J(O(§6UU:| (Sn 50) dXSn 5,07 S*Z—S,OE

for some PZ o), S (), P 1 (2) = 0,and S¥ | 1 (2) = 0, and 50, the expression
f(m =R J(o) can be written according on %,(z) to (4.10) and (4.2) and Theorem 2.2
as

Jiny = (local part of R™) x (local part of j))

N+go n k
v OV | 0vy
+ (=" Z E(O)(Z[ 0>aUST} aggsg%'))

1 m ., 0ht Oht)) -
+(—1)”Ze<1>k(2[ U 1] SUE Sgi)“))

k=1

N+go

< covd | [ sue 0V (4.27)
+ Z E(0)|: Rn EJ(EO aUg]D 1|:]:'0(§8U(37:|

N+go n
VT avs - U'avn s
_(—1) Z E(O)(Z[ O)aUT:| 1[Ju U” :|)

nor o ank. e ORK
— (= anzle(l)k(z[J&S%]D_I[Jﬁg a(%};l S})

(since J(o) is skew-symmetric, its action from the right differs by sign from the action
from the left). Now, using (4.19), we get part (II) of the theorem. We also mention that
it is important that we consider the space %((z) to use the equality

L d ovk  ov

Lo 2 42
AX 3UE ~ 3UE (4.28)
fork=1,...,N.
(III) We have
Qv = Qopve (R™)S (4.29)
Again, using the functions ng (U) and ng(U ), we can write
N+go K
N vk oV A
_ k 9V 0 3
Qnyvu = gl Eo) aUvD [aU«s (Rn)“]
N+go n k
oV, 0V
+(=1" Eé‘o)(z [Qm)v&f«; aUT]D ! a{},f) (4.30)
= s=1

91 n
+(=1)" z 6(1)}((2

k=1 s=1

ah(l 1 B ah’{” _
[Q(owgﬁT 8U: D! aU‘ZlS .
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Since
0Us 2)—0 Misr o 521 4.31)
ouT o out " - ’
we get part (II) using Theorem 2.2 and (4.19) on L(MY, z). |

We also mention that if both detg}, # 0 and detg{ # 0 (and the form Q in non-
degenerate on W), then also the series of “negative” Hamiltonian operators f(_n) =
R, and “positive” symplectic forms Q) = Q)R will be weakly nonlocal. This
situation takes place, for example, in the Hamiltonian structures of Whitham systems
for KdV, NLS, and SG hierarchies. The local bi-Hamiltonian structure for the averaged
KdV hierarchy was constructed in [6] (see also [7, 8]) using the (Dubrovin-Novikov) pro-
cedure of averaging of local field-theoretical brackets for Gardner-Zakharov-Faddeev
and Magri brackets. Both metrics of the corresponding DN-brackets are nondegener-
ate in this case (and there is no requirements on Q). Also, in [7, 8], the local bracket
for the averaged “V-Gordon” equation

Pt — Pxx + V' (@) =0, (4.32)

which is the generalization of SG system using the same procedure was constructed.
In [32], all the brackets for averaged KdV, NLS, and SG hierarchies, having local (DN) or
constant curvature (MF) form, were enumerated using a nice differential-geometrical
approach. It can be shown that all the pencils represented in [6, 7, 8, 32] actually
satisfy the requirements of Theorems 3.1 and 4.1. The recursion operator approach
for the local bi-Hamiltonian structure for the averaged KdV hierarchy (in the diagonal
form) was investigated in [1, 2], and all the “positive” operators J m) were explicitly
found in [1] in this case. In [23, 24], the general procedure of averaging of brack-
ets (1.23), which gives the weakly nonlocal Hamiltonian operators for the averaged
systems with Hamiltonian structure (1.23), was constructed. For many “integrable”
systems, this method also gives all the “positive” weakly nonlocal Poisson brackets of
Ferapontov type for the corresponding Whitham hierarchy. However, we see here that
the “negative” Hamiltonian operators and Symplectic structures for the averaged KdV,
NLS, and SG also should be weakly nonlocal according to Theorems 3.1 and 4.1. We
believe that there should be a good procedure of averaging of “negative” Hamiltonian
operators for the integrable systems giving the brackets of Ferapontov type and the
general averaging procedure for the weakly nonlocal symplectic structures

O0H )
op(x)

O0Hs)
@(

4.
50 (y) (4.33)

N G
Quu(x,3) = > CRN(@, @, )8R (x =)+ D dis v(x-y)
k=1

k,s=1

giving the weakly nonlocal symplectic structures and the corresponding F-brackets
for the Whitham systems.

We also believe that the general compatible F-brackets should be important for the
integration of nondiagonalizable (bi-Hamiltonian) systems which cannot be integrated
by Tsarév’s method.
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We also mention that the requirement of nondegeneracy of form Q on W is also
important in Theorem 4.1. As such, it is possible to show that the “negative” and
“positive” Poisson structures corresponding to the pair of operators (3.36) will not be
weakly nonlocal.
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