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We consider the pairs of general weakly nonlocal Poisson brackets of hydrodynamic type
(Ferapontov brackets) and the corresponding integrable hierarchies. We show that, under
the requirement of the nondegeneracy of the corresponding “first” pseudo-Riemannian
metric gνµ(0) and also some nondegeneracy requirement for the nonlocal part, it is possible
to introduce a “canonical” set of “integrable hierarchies” based on the Casimirs, momen-
tum functional and some “canonical Hamiltonian functions.” We prove also that all the
“higher” “positive” Hamiltonian operators and the “negative” symplectic forms have the
weakly nonlocal form in this case. The same result is also true for “negative” Hamiltonian
operators and “positive” symplectic structures in the case when both pseudo-Riemannian
metrics gνµ(0) and gνµ(1) are nondegenerate.
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1. Introduction. We discuss in this paper the Poisson pencils of weakly nonlocal

Poisson brackets of hydrodynamic type (Ferapontov brackets). This means that we

consider the following pair of Hamiltonian operators:

Ĵνµ(0) = gνµ(0)(U)
d
dX

+bνµ(0)η(U)UηX+
g0∑
k=1

e(0)kwν
(0)kη(U)U

η
XD−1wµ

(0)kζ(U)U
ζ
X ,

Ĵνµ(1) = gνµ(1)(U)
d
dX

+bνµ(1)η(U)UηX+
g1∑
k=1

e(1)kwν
(1)kη(U)U

η
XD−1wµ

(1)kζ(U)U
ζ
X ,

(1.1)

where e(0)k,e(1)k =±1 and D−1 = (d/dX)−1 are defined in a “skew-symmetric” way

D−1 = 1
2

[∫ X
−∞
dX−

∫ +∞
X
dX

]
(1.2)

and require that the expression

Ĵνµλ = Ĵνµ(0)+λĴνµ(1) (1.3)

defines the Poisson bracket satisfying Jacobi identity for any λ.

We mention here that the brackets of this kind are the generalization of Dubrovin-

Novikov local homogeneous brackets of hydrodynamic type [6, 7, 8]:

{
Uν(X),Uµ(Y)

}= gνµ(U)δ′(X−Y)+bνµη (U)UηXδ(X−Y) (1.4)
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with the Hamiltonian operator

ĴνµDN = gνµ(U)
d
dX

+bνµη (U)UηX. (1.5)

Theorem 1.1 (Dubrovin and Novikov). Consider the bracket (1.4) with non-

degenerate tensor gνµ(U). From the Leibnitz identity, it follows that gνµ(U) and

Γµνη(U)=−gνξ(U)bξµη (U) (gνξgξµ = δµν) transforms as a metric with upper indices and

the Christoffel symbols under the pointwise coordinate transformations Ũν = Ũν(U).
Bracket (1.4) is skew-symmetric if and only if gνµ is symmetric and the connection

Γµνη is compatible with the metric ∇ηgνµ ≡ 0.

Bracket (1.4) satisfies the Jacobi identity if and only if the connection Γµνη is symmetric

and has zero curvature Rνµηξ ≡ 0.

It follows from Dubrovin-Novikov theorem that any bracket (1.4) with non-

degenerate gνµ can be written locally in the “constant form”

{
nν(X),nµ(Y)

}= ενδνµδ′(X−Y), εν =±1 (1.6)

in the flat coordinates nν =nν(U).
The functionals

Nν =
∫ +∞
−∞
nν(X)dX (1.7)

are Casimirs of bracket (1.4) and the functional

P =
∫ +∞
−∞

1
2

N∑
ν=1

ενnν(X)nν(X)dX (1.8)

is a momentum operator generating the flow UνT = UνX . Form (1.6) can be considered

as the canonical form for the DN-bracket (1.4) with the nondegenerate tensor gνµ .

It can be also seen that any functional of “hydrodynamic type”

H =
∫ +∞
−∞
h(U)dX (1.9)

generates a “hydrodynamic type system”

UνT = Vνµ (U)UµX (1.10)

according to bracket (1.4).

We also mention that bracket (1.4) with degenerate tensor gνµ(U) of constant rank

has more complicated but also nice differential geometric structure (see [18]).

The first generalization of DN-bracket to the weakly nonlocal case was the Mokhov-

Ferapontov bracket [29]

{
Uν(X),Uµ(Y)

}= gνµ(U)δ′(X−Y)+bνµη (U)UηXδ(X−Y)+cUνXν(X−Y)UµY , (1.11)
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where ν(X−Y)= 1/2sgn(X−Y), corresponding to the Hamiltonian operator

ĴνµDN = gνµ(U)
d
dX

+bνµη (U)UηX+cUνXD−1UµX. (1.12)

Theorem 1.2 (Mokhov and Ferapontov). Consider bracket (1.11) with nondegener-

ate tensor gνµ(U). Then

(1) bracket (1.11) is skew-symmetric and satisfies Leibnitz identity if and only if the

tensor gνµ(U) is a metric with upper indices and Γµνη =−gνξbξµη are the connec-

tion coefficients compatible with gνµ(U);
(2) bracket (1.11) satisfies the Jacobi identity if and only if the connection Γµνη is

symmetric and has the constant curvature equal to c, that is,

Rντµη = c
(
δνµδτη−δτµδνη

)
. (1.13)

Bracket (1.11) has a weakly nonlocal form. However, any local translationally invari-

ant functional

H =
∫
h(U)dX (1.14)

generates a local system of hydrodynamic type with respect to (1.11). Indeed, we have

UµX
∂h
∂Uµ

≡ ∂Xh (1.15)

if h does not depend on X explicitly; so, the application of D−1 gives the local expres-

sion for the corresponding flow.

The canonical form of bracket (1.11) was first presented by Pavlov in [31] and can

be written as

{
nν(X),nµ(Y)

}= (
ενδνµ−cnνnµ)δ′(X−Y)−cnνXnµδ(X−Y)
+cnνXν(X−Y)nµY ,

(1.16)

where nν = nν(U) are the annihilators for bracket (1.11) (on the space of rapidly

decreasing functions nν(X) at X →±∞). Also, the implicit expression for the density

of P was represented in [31].

We will see, however, that the Casimirs and the momentum operator for bracket

(1.11) actually depend on the boundary conditions imposed on the functions Uν(X)
forX →±∞ (see [25]) (the conditionUν → 0,X →±∞, in general, is not invariant under

the pointwise transformations Ũν = Ũν(U)). As pointed out in [25], we cannot speak

about the Casimirs and momentum functional until we fix the boundary conditions

at infinity, and, in the general case, it is better to speak about the invariant set of

N+1 (for MF-bracket) functionals playing the role of either Casimirs of momentum

operator according to the boundary conditions. We consider this later for the case of

more general Ferapontov brackets.
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The general Ferapontov bracket [11, 12, 13, 16] has the form

{
Uν(X),Uµ(Y)

}= gνµ(U)δ′(X−Y)+bνµη (U)UηXδ(X−Y)
+

g∑
k=1

ekwν
kη(U)U

η
Xν(X−Y)wµ

kζ(U)U
ζ
Y ,

(1.17)

ek =±1, which corresponds to the weakly nonlocal Hamiltonian operator

ĴνµF = gνµ(U) d
dX

+bνµη (U)UηX+
g∑
k=1

ekwν
kη(U)U

η
XD−1wµ

kζ(U)U
ζ
X . (1.18)

Theorem 1.3 (Ferapontov [11, 16]). Consider bracket (1.17) with nondegenerate

tensor gνµ(U). Then,

(1) bracket (1.17) is skew-symmetric and satisfies Leibnitz identity if and only if ten-

sor gνµ(U) is a metric with upper indices and Γµνη =−gνξbξµη are the connection

coefficients compatible with gνµ(U);
(2) bracket (1.11) satisfies the Jacobi identity if and only if the connection Γµνη is

symmetric and the metric gνµ and tensors wν
kη(U) satisfy the equations

gντwµ
kτ = gµτwν

kτ, ∇νwµ
kη =∇ηwµ

kν,

Rντµη =
g∑
k=1

ek
(
wν
kµw

τ
kη−wτ

kµw
ν
kη
)
.

(1.19)

Moreover, this set is commutative [wk,wk′]= 0.

It was pointed out by Ferapontov that the equations written above are Gauss and

Petersson-Codazzi equations for the submanifold �N with flat normal connection in

the pseudo-Euclidean space EN+g . In this consideration, the tensor gνµ is the first

quadratic form of �N , and wν
kη are the Weingarten operators corresponding to g

parallel vector fields in the normal bundle Nk, such that 〈Nk,Nm〉 = ekδkm. It was also

proved by Ferapontov that these brackets can be constructed as a Dirac restriction of

the local DN-bracket

{
ZI(X),ZJ(Y)

}= εIδIJδ′(X−Y), I,J = 1, . . . ,N+g, εI =±1 (1.20)

in EN+g to the submanifold �N [12, 16].

As far as we know, the cases of brackets (1.11), (1.17) with the degenerate tensors

gνµ(U) were not studied in the literature.

All brackets (1.4), (1.11), and (1.17) are closely connected with the diagonalizable

integrable systems (1.10).

The general procedure of integration of the so-called “semi-Hamiltonian” diagonal

systems of hydrodynamic type was constructed by Tsarëv [34, 35]. It can be shown that

any diagonal system (1.10) which is Hamiltonian with respect to bracket (1.4), (1.11),

or (1.17) (with diagonal gνµ(U)) satisfies Tsarëv “semi-Hamiltonian” property, and

so, it can be integrated by Tsarëv’s method. Probably, all semi-Hamiltonian systems

are in fact Hamiltonian corresponding to some weakly nonlocal H.T.P.B. with (maybe)

an infinite number of terms in the nonlocal tail. Some investigation of this problem
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can be found in [3, 16], but, in general, this problem is still open. We also mention

that the examples of nondiagonalizable Hamiltonian integrable (by inverse scattering

methods) systems (1.10) were also investigated in [14, 15].

As was pointed out in [13, 16], if the manifold �N has a holonomic net of lines of

curvature, the metric gνµ(U) and all the operators wν
kη can be written in the diago-

nal form in the corresponding coordinates rν = rν(U). Here, we do not impose this

requirement and consider any brackets of Ferapontov type.

We will assume that the flows wν
kη(U)U

η
X in the nonlocal part of (1.17) are linearly

independent (with constant coefficients). (The nonlocal part in (1.17) actually repre-

sents the nondegenerate quadratic form on the linear space generated by wν
kη(U)U

η
X ,

k= 1, . . . ,g written in the canonical form with ek =±1.) As pointed out by Ferapontov,

the local functional

H =
∫
h(U)dX (1.21)

generates in this case the local flow with respect to bracket (1.17) if and only if the

functional H is a conservation law for any of the flows wν
kη(U)U

η
X such that the ex-

pressions

wν
kη(U)U

η
X
∂h
∂Uν

(1.22)

represent the total derivatives with respect to X of some functions Qk(U) for any k.

This fact is also true for more general weakly nonlocal Poisson brackets having the

form

{
ϕi(x),ϕj(y)

}= G∑
k=1

Bijk
(
ϕ,ϕx,. . .

)
δ(k)(x−y)

+
g∑
k=1

ekSik
(
ϕ,ϕx,. . .

)
ν(x−y)Sjk

(
ϕ,ϕy,. . .

)
,

(1.23)

where δ(k)(x−y)= (d/dx)kδ(x−y), ek =±1, and the set {Sik(ϕ,ϕx,. . .)} is linearly

independent.

As far as we know, the first example written precisely in this form was the Sokolov

bracket [33]

{
ϕ(x),ϕ(y)

}=−ϕxν(x−y)ϕy (1.24)

for the Krichever-Novikov equation

ϕt =ϕxxx− 3
2

ϕ2
xx
ϕx

+ h(ϕ)
ϕx

, (1.25)
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where h(ϕ)= c3ϕ3+c2ϕ2+c1ϕ+c0, with the Hamiltonian function

H =
∫ (

1
2

ϕ2
xx

ϕ2
x
+ 1

3
h(ϕ)
ϕ2
x

)
dx. (1.26)

As established in [23, 24], the flows Sik(ϕ,ϕx,. . .) commute with each other for any

general bracket (1.23) and conserve the corresponding Hamiltonian structure (1.23)

on the phase space {ϕi(x)} (this fact was important for the averaging procedure for

such brackets considered there). However, for general brackets (1.23), they are not

necessarily generated by the local Hamiltonian functions having the form

H =
∫
h
(
ϕ,ϕx,. . .

)
dx. (1.27)

Actually, brackets (1.23) are very common for so-called “integrable systems” (like

KdV or NLS) possessing the multi-Hamiltonian structures connected by the recursion

operator according to the Lenard-Magri scheme [20]. As such, it was proved in [10]

that all the higher PB brackets for KdV given by the recursion scheme starting from

Gardner-Zakharov-Faddev bracket

{
ϕ(x),ϕ(y)

}= δ′(x−y) (1.28)

and the Magri bracket

{
ϕ(x),ϕ(y)

}=−δ′′′(x−y)+4ϕ(x)δ′(x−y)+2ϕxδ(x−y) (1.29)

have exactly form (1.23). In [25], the same fact was proved for the case of NLS hierarchy,

and also the weakly nonlocal form of the “negative” symplectic forms for KdV and NLS

was established.

Brackets (1.4), (1.11), and (1.17) appear in these systems as the “dispersionless”

limit of the corresponding bracket (1.23) or, in more general case, as a result of the

averaging of (1.23) on the families of quasiperiodic solutions of corresponding evolu-

tion system connected with the Whitham method for slow modulations of parameters

[1, 2, 6, 7, 8, 21, 22, 23, 24, 26, 30, 32].

We consider here the compatible brackets of Ferapontov type and prove the sim-

ilar facts for the case of the nondegenerate pencils (i.e., detgνµ(0) ≠ 0) with also some

nondegeneracy conditions for nonlocal part of Ĵ(0)+λĴ(1).
We also mention that the wide classes of local pencils of hydrodynamic type (DN-

brackets) were investigated in detail in [4] (see also [5, 9] and the references therein),

where they play an important role in the structure of Dubrovin-Frobenius manifolds

connected with solutions of WDVV equation for topological field theories. In [16, 27],

some important questions of weakly nonlocal pencils of hydrodynamic type (H.T.)

were also considered. In [17, 28], also the generic diagonal compatible flat pencils in

terms of inverse scattering method (see [19, 36]) were discussed.

2. On the canonical form and symplectic operator for the general F -bracket. We

now formulate the properties of brackets (1.17) established in [25] which we will need

in further consideration.
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Consider bracket (1.17) with nondegenerate tensor gνµ(U). According to Ferapon-

tov results, we can represent it as a Dirac restriction of DN-bracket in RN+g to the

submanifold �N ⊂ RN+g with flat normal connection. We fix the point z ∈ �N and

introduce the corresponding loop space in the vicinity of z

L
(
�N,z

)= {
γ :R1 �→�N : γ(−∞)= γ(+∞)= z ∈�N}. (2.1)

So, we fix the boundary conditions for the functions Uν(X) and require that these

functions rapidly approach their boundary values at X →±∞.

Theorem 2.1 (Maltsev and Novikov [25]). Consider the bracket (1.17) with non-

degenerate gνµ(U) defined on the loop space L(�N,z). Consider the corresponding

embedding �N ⊂RN+g with flat normal connection. Consider the flat orthogonal coor-

dinates ZI in RN+g such that

(1) ZI(z) = 0, I = 1, . . . ,N+g, and the corresponding DN-bracket in RN+g has the

form

{
ZI(X),ZJ(Y)

}= EIδIJδ′(X−Y), I,J = 1, . . . ,N+g, EI =±1; (2.2)

(2) the first N coordinates Z1, . . . ,ZN are tangential to �N at the point z;

(3) the last g coordinates ZN+1, . . . ,ZN+g are orthogonal to �N at the point z.

Then,

(1) bracket (1.17) has exactly N local Casimirs given by the functionals

Nν =
∫ +∞
−∞
nν(X)dX, (2.3)

wherenν(U) are the restrictions of the firstN (tangential to �N at z) coordinates

Z1, . . . ,ZN on �N ,

(2) all the flows

Uνtk =wν
kη(U)U

η
X (2.4)

are Hamiltonian with respect to (1.17) with local Hamiltonian functionals

Hk =
∫ +∞
−∞
hk(X)dX, k= 1, . . . ,g, (2.5)

where hk(U) are the restriction of the last g coordinates ZN+k, k = 1, . . . ,g on

�N and wν
kη(U) are the Weingarten operators corresponding to parallel vector

fields Nk(U) in the normal bundle with the normalization

Nk(z)=
(
0, . . . ,0,−EN+k,0, . . . ,0)T , (2.6)

where −EN+k stays at the position N + k, in the coordinates Z1, . . . ,ZN+g , so

〈Nk(U),Nl(U)〉 = EN+kδkl (there is an arithmetic mistake in the journal vari-

ant of [25] where the generated flows are written as EN+kwν
kη(U)U

η
X ),
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(3) bracket (1.17) has in coordinates nν(U) the “canonical form” corresponding to

the space L(�N,z), that is,

{
nν(X),nµ(Y)

}=
(
ενδνµ−

g∑
k=1

ekf νk (n)f
µ
k (n)

)
δ′(X−Y)

−
g∑
k=1

ek
(
fνk (n)

)
Xf

µ
k (n)δ(X−Y)

+
g∑
k=1

ek
(
fνk (n)

)
Xν(X−Y)

(
fµk (n)

)
Y ,

(2.7)

where εν = Eν , ν = 1, . . . ,N, ek = EN+k, k = 1, . . . ,g, nν(z) = 0, fνk (z) = 0 (i.e.,

fνk (0) = 0). (Actually, we have the equality fνk (U) ≡ Nνk (U), where Nνk (U) are

the first N components of the vectors Nk(U) in the coordinates Z1, . . . ,ZN+g .)

We note here that the Casimirs and “canonical functionals,” as well as the canonical

forms, depend on the phase space L(�N,z). So, if we do not fix the loop space, it is

better to speak just about theN+g canonical functions (the restrictions of the flat co-

ordinates from RN+g) playing the role of Casimirs or canonical functionals depending

on the boundary conditions. (Also, we will have many “canonical forms” of bracket

(1.17) with different fνk (U) in this case.)

For the case of Mokhov-Ferapontov bracket, the canonical form will be (1.16) for

any fixed space L(�N,z) (although the coordinates nν(U) will be different for differ-

ent loop spaces). The explicit form of canonical functional, which is the momentum

operator in this case, can then be written as (see [25])

P = 1
c

∫ +∞
−∞


1−

√√√√√1−c
N∑
ν=1

ενnνnν


dX. (2.8)

Using the restriction of the symplectic form of DN-bracket on �N , it is also possi-

ble to get the symplectic form Ωνµ(X,Y) for the F -bracket (1.17) with nondegenerate

gνµ(U) [25]. The symplectic form appears to be also weakly nonlocal and can be writ-

ten as

Ωνµ(X,Y)=
N+g∑
I=1

EI
∂ZI(U)
∂Uν

(X)ν(X−Y)∂Z
I(U)
∂Uµ

(Y)

=
N∑
τ=1

ετ
∂nτ

∂Uν
(X)ν(X−Y) ∂n

τ

∂Uµ
(Y)+

g∑
k=1

ek
∂hk
∂Uν

(X)ν(X−Y) ∂hk
∂Uµ

(Y)

(2.9)

on �N .

We can also write the corresponding symplectic operator Ω̂νµ on L(�N,z) as

Ω̂νµ =
N∑
τ=1

ετ
∂nτ

∂Uν
D−1 ∂nτ

∂Uµ
+

g∑
k=1

ek
∂hk
∂Uν

D−1 ∂hk
∂Uµ

(2.10)

with D−1 defined in the skew-symmetric way.
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We introduce the space �0(z) of vector fields ξν(X) rapidly decreasing at X →±∞
on L(�N,z). It is easy to see that all the hydrodynamic type systems (1.10) satisfy

this requirement as the vector fields on L(�N,z) and so belong to �0(z). We can then

naturally define the action of symplectic operator Ω̂νµ on the space �0(z).
We will also need the space �0(z) of 1-forms ων(X) rapidly decreasing at X →±∞

on L(�N,z). We note here that Ω̂νµξµ(X) ∉�0(z) in the general case.

We will now prove by the direct calculation that the symplectic form Ω̂νµ is the

inverse of the Hamiltonian operator ĴνµF on the appropriate functional spaces.

Theorem 2.2. (I) On the functional space �0(z), the relation

ĴνξF Ω̂ξµ = Î (2.11)

is true, where Î is the identity operator on the space �0(z).
(II) On the functional space �0(z), the relation

Ω̂νξĴ
ξµ
F = Î (2.12)

is true, where Î is the identity operator on �0(z).

Proof. (I) We have

ĴνξF Ω̂ξµ =

gνξ(U) d

dX
+bνξη (U)UηX+

g∑
k=1

ekwν
kη(U)U

η
XD−1wξ

kζ(U)U
ζ
X




×

 N∑
τ=1

ετ
∂nτ

∂Uξ
D−1 ∂nτ

∂Uµ
+

g∑
l=1

el
∂hl

∂Uξ
D−1 ∂hl

∂Uµ


,

(2.13)

where the operators wν
kη(U) correspond to the vector fields N(k)(U) such that

N(k)(z)=
(
0, . . . ,0,−ek,0, . . . ,0

)T
(2.14)

(−ek stays at the position N+k), and we have identically 〈N(k)(U),N(l)(U)〉 = ekδkl.
Since the integrals of nτ(U), and hl(U) generate the local flows according to ĴνµF ,

we have

wξ
kζ(U)U

ζ
X
∂nτ

∂Uξ
≡ (
qτk(U)

)
X, wξ

kζ(U)U
ζ
X
∂hl

∂Uξ
≡ (
plk(U)

)
X (2.15)

for some functions qτk (U) and plk(U). Moreover, consider N tangential vectors to �N

in RN+g corresponding to the coordinates Uν

e(ξ)(U)=
(
∂n1

∂Uξ
, . . . ,

∂nN

∂Uξ
,
∂h1

∂Uξ
, . . . ,

∂hg

∂Uξ

)T
(2.16)

and our parallel orthogonal vector fields N(k)(U) defined by condition (2.14) in the

coordinates (Z1, . . . ,ZN+g).
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Since by the following definition:

d
dX

N(k)(U)=wξ
kζU

ζ
Xe(ξ)(U), (2.17)

we have from (2.15)

(
qτk

)
X =

(
Nτ(k)

)
X,

(
plk

)
X =

(
NN+l(k)

)
X, τ = 1, . . . ,N, l= 1, . . .g (2.18)

for the components of N(k)(U).
We normalize the functions qτk(U) and plk(U) such that

qτk (z)= 0, plk(z)= 0. (2.19)

We then have

qτk (U)=Nτ(k)(U), plk(U)=NN+l(k) (U)+ekδlk. (2.20)

Now, using the equalities

(
qτk

)
X =

d
dX

qτk −qτk
d
dX

,
(
plk

)
X =

d
dX

plk−plk
d
dX

(2.21)

on L(�N,z), we can write

ĴνξF Ω̂ξµ|�0(z) =
N∑
τ=1

ετ
[
gνξ

(
∂nτ

∂Uξ

)
X
+bνξη UηX

∂nτ

∂Uξ
+

g∑
k=1

ekwν
kηU

η
XD−1 d

dX
qτk

]
D−1 ∂nτ

∂Uµ

+
g∑
l=1

el

[
gνξ

(
∂hl

∂Uξ

)
X
+bνξη UηX

∂hl

∂Uξ
+

g∑
k=1

ekwν
kηU

η
XD−1 d

dX
plk

]
D−1 ∂hl

∂Uµ

+gνξ

 N∑
τ=1

ετ
∂nτ

∂Uξ
d
dX

D−1 ∂nτ

∂Uµ
+

g∑
l=1

el
∂hl

∂Uξ
d
dX

D−1 ∂hl

∂Uµ




−
g∑
k=1

N∑
τ=1

ekετwν
kηU

η
XD−1qτk

d
dX

D−1 ∂nτ

∂Uµ

−
g∑
k=1

g∑
l=1

ekelwν
kηU

η
XD−1plk

d
dX

D−1 ∂hl

∂Uµ
.

(2.22)

We can here replace (d/dX)D−1 by identity, and we have

(
D−1fX

)= f(X)− 1
2

[
f(−∞)+f(+∞)] (2.23)

for any function f(U) on L(�N,z) according to the definition of D−1. So, according to

normalization (2.19), we can replace the operators D−1(d/dX)qτk and D−1(d/dX)plk
just by qτk and plk on L(�N,z).
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According to the same normalization, the expressions within the brackets in the

first two terms are equal to

[
ĴνξF

∂nτ

∂Uξ

]
L(�N,z)

= 0,
[
ĴνξF

∂hl

∂Uξ

]
L(�N,z)

=wν
lηU

η
X. (2.24)

So, we have

ĴνξF Ω̂ξµ|�0(z) =
g∑
l=1

elwν
lηU

η
xD−1 ∂hl

∂Uµ
+gνξ


 N∑
τ=1

ετ
∂nτ

∂Uξ
∂nτ

∂Uµ
+

g∑
l=1

el
∂hl

∂Uξ
∂hl

∂Uµ




−
g∑
k=1

ekwν
kηU

η
XD−1


 N∑
τ=1

ετqτk
∂nτ

∂Uµ
+

g∑
l=1

elplk
∂hl

∂Uµ


.

(2.25)

Using (2.20) and (2.16), we now get

N∑
τ=1

ετqτk
∂nτ

∂Uµ
+

g∑
l=1

elplk
∂hl

∂Uµ
= 〈

N(k),e(µ)
〉+ ∂hk

∂Uµ
= ∂hk

∂Uµ
. (2.26)

Also, using the evident relation

N∑
τ=1

ετ
∂nτ

∂Uξ
∂nτ

∂Uµ
+

g∑
l=1

el
∂hl

∂Uξ
∂hl

∂Uµ
≡ gξµ(U), (2.27)

we get the statement (I) of the theorem.

(II) We have

Ω̂νξĴ
ξµ
F =


 N∑
τ=1

ετ
∂nτ

∂Uν
D−1 ∂nτ

∂Uξ
+

g∑
l=1

el
∂hl

∂Uν
D−1 ∂hl

∂Uξ




×
(
gξµ

d
dX

+bξµη UηX+
g∑
k=1

ekw
ξ
kηU

η
XD−1wµ

kζU
ζ
X

)

=
N∑
τ=1

ετ
∂nτ

∂Uν
D−1 d

dX
∂nτ

∂Uξ
gξµ+

g∑
l=1

∂hl

∂Uν
D−1 d

dX
∂hl

∂Uξ
gξµ

−
N∑
τ=1

ετ
∂nτ

∂Uν
D−1

(
∂nτ

∂Uξ
gξµ

)
X
−

g∑
l=1

∂hl

∂Uν
D−1

(
∂hl

∂Uξ
gξµ

)
X

+
N∑
τ=1

ετ
∂nτ

∂Uν
D−1 ∂nτ

∂Uξ
bξµη U

η
X+

g∑
l=1

el
∂hl

∂Uν
D−1 ∂hl

∂Uξ
bξµη U

η
X

+
N∑
τ=1

g∑
k=1

ετek
∂nτ

∂Uν
D−1

(
d
dX

qτk −qτk
d
dX

)
D−1wµ

kζU
ζ
X

+
g∑
l=1

g∑
k=1

elek
∂hl

∂Uν
D−1

(
d
dX

plk−plk
d
dX

)
D−1wµ

kζU
ζ
X .

(2.28)

Again, we can replace the operators (d/dX)D−1 by identity and D−1(d/dX)qτk and

D−1(d/dX)plk by qτk and plk. Then, according to the definition of coordinates hl, we
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have (∂hl/∂Uξ)(z)= 0; so, we also putD−1(d/dX)(∂hl/∂Uξ)= (∂hl/∂Uξ). Now, using

the same arguments, We get

Ω̂νξĴ
ξµ
F = Î+

N∑
τ=1

ετ
∂nτ

∂Uν

[
D−1 d

dX
− Î

]
∂nτ

∂Uξ
gξµ

−
N∑
τ=1

ετ
∂nτ

∂Uν
D−1

[
ĴµξF

∂nτ

∂Uξ

]
L(�N,z)

−
g∑
l=1

el
∂hl

∂Uν
D−1

[
ĴµξF

∂hl

∂Uξ

]
L(�N,z)

+
g∑
k=1


 N∑
τ=1

ετ
∂nτ

∂Uν
qτkD

−1wµ
kζU

ζ
X +

g∑
l=1

el
∂hl

∂Uν
plkD

−1wµ
kζU

ζ
X




(2.29)

(we used the skew-symmetry of the operator ĴµξF for the action from the right).

Again, using (2.24) and (2.26), we get

Ω̂νξĴ
ξµ
F = Î+

N∑
τ=1

ετ
∂nτ

∂Uν

[
D−1 d

dX
− Î

]
∂nτ

∂Uξ
gξµ, (2.30)

that is,

Ω̂νξĴ
ξµ
F fµ(X)= fµ(X)−

N∑
τ=1

ετ
∂nτ

∂Uν
(X)

∂nτ

∂Uξ
(z)gξµ(z)fµ(z) (2.31)

for any fµ(X). From the definition of �0(z), we now obtain the part (II) of the theorem.

Remark 2.3. We can also say that the operator ĴνξF Ω̂ξµ is identity if it is acting from

the left on �0(z) and from the right on �0(z). This interpretation will be convenient

later for the consideration of the recursion operator.

We also introduce the momentum functional P generating the flow

UνT =UνX (2.32)

with respect to the general bracket (1.17) (with nondegenerate gνµ(U)).

Lemma 2.4. Any F -bracket (1.17) with nondegenerate tensor gνµ(U) has the local

momentum operator P generating the flow (2.32) on the space L(�N,z). The functional

P can be written in the form

P =
∫ +∞
−∞
p(U)dX = 1

2

∫ +∞
−∞


 N∑
τ=1

ετnτnτ+
g∑
k=1

ekhkhk

dX, (2.33)

where the functions nτ and hk correspond to the loop space L(�N,z).

Proof. We should here just prove the relation

∂p
∂Uν

= Ω̂νξUξX (2.34)
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on L(�N,z) according to part (I) of Theorem 2.2. So, we have

N∑
τ=1

ετ
∂nτ

∂Uν
D−1 ∂nτ

∂Uξ
UξX+

g∑
k=1

ek
∂hk

∂Uν
D−1 ∂hk

∂Uξ
UξX

=
N∑
τ=1

ετ
∂nτ

∂Uν
nτ+

g∑
k=1

ek
∂hk

∂Uν
hk = ∂

∂Uν
p.

(2.35)

3. The λ-pencils and the integrable hierarchies. We now consider the operator

Ĵνµλ = Ĵνµ(0)+λĴνµ(1) =
(
gνµ(0)+λgνµ(1)

) d
dX

+
(
bνµ(0)η+λbνµ(1)η

)
UηX

+
g0∑
k=1

e(0)kwν
(0)kηU

η
XD−1wµ

(0)kζU
ζ
X +λ

g1∑
k=1

e(1)kwν
(1)kηU

η
XD−1wµ

(1)kζU
ζ
X

(3.1)

for Ĵνµ(0) and Ĵνµ(1) having form (1.18). We will call the λ-pencil (3.1) nondegenerate, for

small λ, if detgνµ(0)(U)≠ 0.

We will admit here that the linear spaces �(0) and �(1), generated by the sets

{
wν
(0)1ηU

η
X, . . . ,w

ν
(0)g0ηU

η
X
}
,

{
wν
(1)1ηU

η
X, . . . ,w

ν
(1)g1ηU

η
X
}
, (3.2)

can have a nontrivial intersection �.

We introduce the basis in �

{
v̂ν1ηU

η
X, . . . , v̂

ν
dηU

η
X
}
, (3.3)

where d = dim�, and consider the linear space �, generated by all the flows from

�(0) and �(1) (dim�= g0+g1−d) with basis

�= {
ŵν
(0)1ηU

η
X, . . . ,ŵ

ν
(0)(g0−d)ηU

η
X,v̂

ν
1ηU

η
X, . . . , v̂

ν
dηU

η
X,ŵ

ν
(1)1ηU

η
X, . . . ,ŵ

ν
(1)(g1−d)ηU

η
X
}

= {
w̃ν

1η(U)U
η
X, . . . ,w̃

ν
g0+g1−d,η(U)U

η
X
}
,

(3.4)

where ŵν
(0)kη and ŵν

(1)sη are some linear combinations of operators w(0) and w(1),

respectively, and the flows corresponding to ŵ(0)k, v̂m, and ŵ(1)s are all linearly inde-

pendent.

The flows {
ŵν
(0)1ηU

η
X, . . . ,ŵ

ν
(0)(g0−d)ηU

η
X,v̂

ν
1ηU

η
X, . . . , v̂

ν
dηU

η
X
}
,{

v̂ν1ηU
η
X, . . . , v̂

ν
dηU

η
X,ŵ

ν
(1)1ηU

η
X, . . . ,ŵ

ν
(1)(g1−d)ηU

η
X
} (3.5)

will then give bases in �(0) and �(1), respectively.

The nonlocal part of the bracket Ĵνµλ

g0∑
k=1

e(0)kwν
(0)kηU

η
XD

−1wµ
(0)kζU

ζ
X +λ

g1∑
s=1

e(1)swν
(1)sηU

η
XD

−1wµ
(1)sζU

ζ
X (3.6)

will correspond in our case to some quadratic form Qks
λ (linear in λ), k,s = 1, . . . ,g0+

g1−d on the space �.
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In our further consideration, the question if Qks
λ is nondegenerate on � for λ ≠ 0

or not will be important, and we will mainly consider the pencils (3.1) such that Qks
λ

is nondegenerate on �.

We now formulate the properties of nondegenerate pencils (3.1) also satisfying the

requirement of nondegeneracy of the form Qks
λ for λ≠ 0 connected with the “canoni-

cal” integrable hierarchies.

Theorem 3.1. Consider the nondegenerate pencil (3.1) (detgνµ(0) ≠ 0) such that the

form Qks
λ is also nondegenerate on � for λ≠ 0 (small enough). Then,

(I) it is possible to introduce the local functionals

Nν(λ)=
∫ +∞
−∞
nν(U,λ)dX, ν = 1, . . . ,N,

P(λ)=
∫ +∞
−∞
p(U,λ)dX,

Hk
(0)(λ)=

∫ +∞
−∞
hk(0)(U,λ)dX, k= 1, . . . ,g0,

Hs
(1)(λ)=

∫ +∞
−∞
hs(1)(U,λ)dX, s = 1, . . . ,g1,

(3.7)

which are the Casimirs, momentum operator and the Hamiltonian functions for

the flows wν
(0)kη(U)U

η
X and wν

(1)sη(U)U
η
X for the bracket Ĵνµλ , respectively;

(II) all the functions nν(U,λ), p(U,λ), hk(0)(U,λ), and hs(1)(U,λ) are regular at λ→
0 and can be represented as regular series

nν(U,λ)=
+∞∑
q=0

nνq(U)λq, p(U,λ)=
+∞∑
q=0

pq(U)λq,

hk(0)(U,λ)=
+∞∑
q=0

hk(0),q(U)λ
q, hs(1)(U,λ)=

+∞∑
q=0

hs(1),q(U)λ
q.

(3.8)

Moreover, we can choose these functionals in such a way that

∂pq
∂Uµ

(z)= 0,
∂hk(0),q
∂Uµ

(z)= 0,
∂hs(1),q
∂Uµ

(z)= 0, q ≥ 0,

∂nνq
∂Uµ

(z)= 0, q ≥ 1,
∂nν0
∂Uµ

(z)= eνµ,
(3.9)

where deteνµ ≠ 0;

(III) the integrals Nν(0), P(0), Hk
(0)(0), and Hs

(1)(0) are the Casimirs, momentum

operator, and the Hamiltonian functions for the flows wν
(0)kη(U)U

η
X and

wν
(1)sη(U)U

η
X with respect to Ĵνµ(0), while the flows generated by the functionals

Fq =
∫ +∞
−∞
fq(U)dX (3.10)

are connected by the relation

Ĵνξ(0)
∂f(q+1)

∂Uξ
=−Ĵνξ(1)

∂fq
∂Uξ

(3.11)
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for any functional F(λ) from the set (3.7). All the functionals Fq given by the

expansions (3.8) generate the local flows and commute with each other with

respect to both brackets Ĵ(0) and Ĵ(1).

Proof. We now put λ > 0 and write Ĵνµλ in the form

Ĵνµλ =
(
gνµ(0)+λgνµ(1)

) d
dX

+
(
bνµ(0)η+λbνµ(1)η

)
UηX

+
g0∑
k=1

e(0)kwν
(0)kηU

η
XD−1wµ

(0)kζU
ζ
X

+
g1∑
k=1

e(1)k
√
λwν

(1)kηU
η
XD−1

√
λwµ

(1)kζU
ζ
X .

(3.12)

In the case of the nondegenerate formQks
λ on �, we can consider the corresponding

embedding of �N to RN+g0+g1 depending on λ. Indeed, all the flows w̃s from the set

� will in this case satisfy conditions

gνξλ w̃
µ
sξ = gµξλ w̃ν

sξ, ∇νw̃µ
sη =∇ηw̃µ

sν ,

Rνµηζ =
∑
k,s

(
w̃ν
kηQ

ks
λ w̃

µ
sζ−w̃µ

kηQ
ks
λ w̃

ν
sζ
) (3.13)

for nondegenerate gµξλ according to Ferapontov theorem.

Since the operatorswν
(0)kη(U) andwν

(1)sη(U) are just linear combinations of w̃ν
nη(U)

(with constant coefficients) and the formQks
λ coincides with the nonlocal part of (3.12),

we will have the corresponding Gauss and Petersson-Codazzi equations for these flows

and the curvature tensor Rνµηζ . So, for nondegenerate gνµλ , we will get the local embed-

ding of �N toRN+g0+g1 (actually, to some subspaceRN+g0+g1−d ⊂RN+g0+g1 ) depending

on λ.

Since the embedding is defined up to the Poincaré transformation in RN+g0+g1 , we

can choose, at all λ, the coordinates ZI , I = 1, . . . ,N+g0+g1 in such a way that

(1) all ZI = 0 at the point z ∈�N , and the metric GIJ in RN+g0+g1 has the form

GIJ = EIδIJ , (3.14)

where EN+k = e(0)k, k= 1, . . . ,g0, EN+g0+s = e(1)s , s = 1, . . . ,g1;

(2) the first N coordinates Zν , ν = 1, . . . ,N are tangential to �N at the point z ∈�N

at all λ;

(3) the last g0+g1 coordinates are orthogonal to �N at the point z, and the Wein-

garten operators

wν
(0)1η(U), . . . ,w

ν
(0)g0η(U),

√
λwν

(1)1η(U), . . . ,
√
λwν

(1)g1η(U) (3.15)

correspond to the parallel vector fields N(0)(k)(U), N(1)(s)(U) in the normal bun-

dle such that

N(0)(k)(z)=
(
0, . . . ,0,−EN+k,0, . . . ,0)T (3.16)
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(−EN+k stays at the position N+k) k= 1, . . . ,g0,

N(1)(k)(z)=
(
0, . . . ,0,−EN+g0+s ,0, . . . ,0

)T
(3.17)

(−EN+g0+s stays at the position N+g0+s) s = 1, . . . ,g1.

So, according to [25], the restriction of the first N coordinates Z1, . . . ,ZN gives the

Casimirs of bracket (3.12) on L(�N,z)

Ñν(λ)=
∫ +∞
−∞
ñν(U,λ)dX =

∫ +∞
−∞
Zν |�N (U,λ)dX, ν = 1, . . . ,N, (3.18)

while the restrictions of the last g0+g1 coordinates give the Hamiltonian functions

for the flows wν
(0)kηU

η
X

H̃k
(0)(λ)=

∫ +∞
−∞
h̃k(0)(U,λ)dX =

∫ +∞
−∞
ZN+k|�N (U,λ)dX, k= 1, . . . ,g0 (3.19)

and
√
λwν

(1)sηU
η
X

H̃s
(1)(λ)=

∫ +∞
−∞
h̃s(1)(U,λ)dX =

∫ +∞
−∞
ZN+g0+s|�N (U,λ)dX, s = 1, . . . ,g1. (3.20)

Remark 3.2. For λ < 0, the signature of RN+g0+g1 may be different from the case

λ > 0, but all the statements of the theorem will certainly be also true.

We now study the λ-dependence of the functions ñν(U,λ), h̃k(0)(U,λ), and h̃s(1)(U,λ)
at λ→ 0.

ConsiderN tangential vectors to �N , corresponding to the coordinate system {Uν},
that is,

e(ν) =
(
∂Z1

∂Uν
, . . . ,

∂ZN+g0+g1

∂Uν

)T
, ν = 1, . . . ,N. (3.21)

We have the following relations (in RN+g0+g1 ) for the differentials of e(ν)(U,λ),
N(0)(k)(U,λ), and N(1)(s)(U,λ) on �N :

de(ν) = Γµνη(U,λ)e(µ)dUη−
g0∑
k=1

EN+kgνµ(U,λ)w
µ
(0)kη(U,λ)N(0)(k)dUη

−
√
λ
g1∑
s=1

EN+g0+sgνµ(U,λ)w
µ
(1)sη(U,λ)N(1)(s)dUη,

dN(0)(k) =wν
(0)kη(U,λ)e(ν)dU

η,

dN(1)(s) =
√
λwν

(1)sη(U,λ)e(ν)dU
η,

(3.22)

where Γµνη =−gνξbξµη , gνξgξµ ≡ δµν .
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So, for any curve γ(t) on �N(γ(0) = z), we have the evolution system for e(ν)(t),
N(0)(k)(t), and N(1)(s)(t) having the general form

d
dt




e(ν)(t)
N(0)(k)(t)
N(1)(s)(t)


=




∗(t,λ) ∗(t,λ) √
λ∗(t,λ)

∗(t,λ) 0 0√
λ∗(t,λ) 0 0






e(ν)(t)
N(0)(k)(t)
N(1)(s)(t)


 , (3.23)

where all ∗(t,λ) are regular at λ→ 0 (matrix-) functions of λ.

The formal solution of (3.23) can be written as the chronological exponent

T exp

(∫ t
0
Ĥ(t)dt

)
= Î+

+∞∑
n=1

1
n!

∫ t1
0
···

∫ tn
0
T
(
Ĥ
(
t1
)···Ĥ(

tn
))
dt1 ···dtn (3.24)

applied to the initial data e(ν)(0), N(0)(k)(0), and N(1)(s)(0), where Ĥ(t) is the matrix

of system (3.23).

It is now easy to verify that, for any n≥ 1, we have

T
(
Ĥ
(
t1
)···Ĥ(

tn
))=




∗(t,λ) ∗(t,λ) √
λ∗(t,λ)

∗(t,λ) ∗(t,λ) √
λ∗(t,λ)√

λ∗(t,λ) √
λ∗(t,λ) λ∗(t,λ)


 , (3.25)

where all ∗(t,λ) are regular matrix-functions at λ→ 0.

For the densities of Casimirs (3.18) and Hamiltonian functions (3.19) and (3.20), we

can now write the equations

dñν(t,λ)
dt

= [
Uµt e(µ)(t,λ)

]ν = εν〈Uµt e(µ)(t,λ),eν(0)
〉

dh̃k(0)(t,λ)
dt

=−〈Uµt e(µ)(t,λ),N(0)(k)(0)
〉

dh̃s(1)(t,λ)
dt

=−〈Uµt e(µ)(t,λ),N(1)(s)(0)
〉

(3.26)

along the same curve γ(t) on �N . Since γ(t) is just the arbitrary curve, we have

ñν(U,λ)=∗(U,λ), h̃k(0)(U,λ)=∗(U,λ), h̃s(1)(U,λ)=
√
λ∗(U,λ), (3.27)

where ∗(U,λ) are regular at λ→ 0.

It is easy to see that expression (2.33) for the momentum operator is regular at

λ→ 0 in this case, and we can put

hk(0)(U,λ)= h̃k(0)(U,λ), hs(1)(U,λ)=
1√
λ
h̃s(1)(U,λ) (3.28)

to be regular at λ→ 0 densities of Hamiltonian functions Hk
(0)(λ) and Hs

(1)(λ).
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According to the geometric construction, we have

∂hk(0)(U,λ)
∂Uµ

∣∣∣∣
z
≡ 0,

∂hs(1)(U,λ)
∂Uµ

∣∣∣∣
z
≡ 0 (3.29)

and also

∂p(U,λ)
∂Uµ

∣∣∣∣
z
≡ 0. (3.30)

Since the functions ñν(U,λ) locally give the coordinate system on �N at every λ,

we have

det
(
∂ñν

∂Uµ
(z,λ)

)
≠ 0, (3.31)

and we can put

nν(U,λ)= ∂ñ
ν

∂Uξ
(z,0)

∂Uξ

∂ñη
(z,λ)ñη(U,λ) (3.32)

such that

∂nν(U,λ)
∂Uµ

∣∣∣∣
z
≡ ∂n

ν

∂Uµ
(z,0)= (

e(µ)
)ν , ν = 1, . . . ,N, (3.33)

where e(µ) are the tangent vectors at the point z for λ= 0, nν(U,0)= ñν(U,0). So, we

get parts (I) and (II) of the theorem.

For part (III), we first prove here the following lemma.

Lemma 3.3. Under the conditions formulated in Theorem 3.1 the functionals

Nνp =
∫ +∞
−∞
nνp(U)dX, Pq =

∫ +∞
−∞
pq(U)dX,

Hk
(0)l =

∫ +∞
−∞
hk(0)l(U)dX, Hs

(1)t =
∫ +∞
−∞
hs(1)t(U)dX,

(3.34)

p,q,l,t = 0,1, . . . , generate the local flows with respect to both Ĵ(0) and Ĵ(1) and com-

mute with the functionals Nµ0 , P0, Hm
(0)0, and Hn

(1)0 with respect to the bracket Ĵ(0).

Proof. Since the functionals Nµ0 are the annihilators of Ĵ(0), they commute with

all other functionals with respect to Ĵ(0) on L(�N,z). Also, from the translational

invariance of all functionals Nνp , Pq, Hk
(0)l, and Hs

(1)t , we get that they also commute

with the momentum operator P0 of Ĵ(0) with respect to Ĵ(0).
We then know that the functionals Nν(λ), P(λ), Hk

(0)(λ), and Hs
(1)(λ) generate the

local flows with respect to Ĵλ. In the case of nondegenerate formQks
λ (on �), this means

that they are the conservation laws for all the flows w̃ν
nη(U)U

η
X introduced in (3.4).

So, they are the conservation laws for the flows wν
(0)kη(U)U

η
X and wν

(1)sη(U)U
η
X and

generate the local flows with respect to Ĵ(0) and Ĵ(1). Now, since the flowswν
(0)mη(U)U

η
X

andwν
(1)nη(U)U

η
X are generated by the functionals Hm

(0)0 and Hn
(1)0 with respect to Ĵ(0),

we get that all Nνp , Pq, Hk
(0)l, and Hs

(1)t should commute with Hm
(0)0 and Hn

(1)0 with

respect to Ĵ(0) on L(�N,z).
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For the commutativity of allNνp , Pq,Hk
(0)l, andHs

(1)t with respect to both brackets, we

can now use just the common approach for the bi-Hamiltonian systems [20] writing

δFqĴ(0)δGk =−δFq−1Ĵ(1)δGk = δFq−1Ĵ(0)δGk+1 = ··· = δF0Ĵ(0)δGk+q = 0 (3.35)

for any two functionals Fq and Gk from the set (3.34) (the same for the bracket Ĵ(1)).

Remark 3.4. We point out here that the requirement of nondegeneracy of the form

Qks
λ on � is important, and, in general, Theorem 3.1 is not true without it. As example,

we consider here the Poisson pencil Ĵλ = Ĵ(0)+λĴ(1) where

Ĵ(0) =
(

1 0

0 −1

)
d
dX

+
(
U1 U2

−U2 −U1

)(
U1
X

U2
X

)
D−1

(
1 0

0 1

)(
U1
X

U2
X

)

+
(

1 0

0 1

)(
U1
X

U2
X

)
D−1

(
U1 U2

−U2 −U1

)(
U1
X

U2
X

)
,

Ĵ(1) =
(

0 1

1 0

)
d
dX

+
(

0 0

2U1 0

)(
U1
X

U2
X

)
D−1

(
1 0

0 1

)(
U1
X

U2
X

)

+
(

1 0

0 1

)(
U1
X

U2
X

)
D−1

(
0 0

2U1 0

)(
U1
X

U2
X

)
.

(3.36)

We have here the three-dimensional space � generated by the flows

w̃ν
1ηU

η
X =

(
U1 U2

−U2 −U1

)(
U1
X

U2
X

)
, w̃ν

2ηU
η
X =

(
U1
X

U2
X

)
,

w̃ν
3ηU

η
X =

(
0 0

2U1 0

)(
U1
X

U2
X

)
.

(3.37)

Operator Ĵλ can be written as

Ĵλ =
(

1 λ
λ −1

)
d
dX

+
(

U1 U2

−U2+2λU1 −U1

)(
U1
X

U2
X

)
D−1

(
U1
X

U2
X

)

+
(
U1
X

U2
X

)
D−1

(
U1 U2

−U2+2λU1 −U1

)(
U1
X

U2
X

)
,

(3.38)

and the form

Qλ =




0 1 0

1 0 λ
0 λ 0


 (3.39)

is degenerate on �.

The metric

gνµλ (U)=
(

1 λ
λ −1

)
(3.40)
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here is just the flat metric on R2, detgνµλ ≠ 0, and it is easy to check the equations

gνξλ W
µ
1ξ(λ)= gµξλ Wν

1ξ(λ), gνξλ W
µ
2ξ = gµξλ Wν

2ξ, (3.41)

where

Wµ
1ξ(λ)=

(
U1 U2

−U2+2λU1 −U1

)
, Wµ

2ξ(λ)=
(

1 0

0 1

)
. (3.42)

Also,

∂νW
ξ
1µ(λ)= ∂µWξ

1ν(λ), ∂νW
ξ
2µ = ∂µWξ

2ν (3.43)

in the flat coordinates U1, U2, and

R12
12 =W 1

11(λ)W
2
22+W 1

21W
2
12(λ)−W 2

11(λ)W
1
22−W 2

21W
1
12(λ)

=W 1
11(λ)+W 2

12(λ)≡ 0;
(3.44)

so, Ĵλ represents a Poisson bracket of Ferapontov type for all λ.

Both gνµ(0) and gνµ(1) are nondegenerate in this case. However, the flow w̃ν
1ηU

η
X is not

Hamiltonian with respect to Ĵ(1), and w̃ν
3ηU

η
X is not Hamiltonian with respect to Ĵ(0)

as follows from

gνξ(0)w̃
µ
3ξ ≠ g

µξ
(0)w̃

ν
3ξ, gνξ(1)w̃

µ
1ξ ≠ g

µξ
(1)w̃

ν
1ξ. (3.45)

It is also easy to check that the flows w̃ν
1ηU

η
X and w̃ν

3ηU
η
X do not commute with each

other.

4. The recursion operator and the higher Hamiltonian structures. We now use the

symplectic operator (2.10) for nondegenerate bracket Ĵ(0) and consider the recursion

operator R̂νµ = Ĵντ(1)Ω̂(0)τµ under the assumptions of Theorem 3.1.

We put vτ(U,λ) = nτ(U,λ), τ = 1, . . . ,N, vN+k(U,λ) = hk(0)(U,λ), k = 1, . . . ,g0,

vs0(U)≡ vs(U,0), Eτ(0) = ετ , τ = 1, . . . ,N, and EN+k(0) = e(0)k, k= 1, . . . ,g0 (where nτ(U,λ)
and hk(0)(U,λ) are the functions from Theorem 3.1) and write the symplectic form

Ω̂(0)τµ as

Ω̂(0)τµ =
N+g0∑
k=1

Ek(0)
∂vk0
∂Uτ

D−1 ∂v
k
0

∂Uµ
. (4.1)

We can also write the operator Ĵνµ(0) as

Ĵνµ(0) = gνµ(0)
d
dX

+bνµ(0)ηUηX+
N+g0∑
k=1

Ek(0)

[
Ĵντ(0)

∂vk0
∂Uτ

]
D−1

[
Ĵµσ(0)

∂vk0
∂Uσ

]
. (4.2)
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For R̂νµ , we have the expression

R̂νµ = Ĵντ(1)Ω̂(0)τµ =
N+g0∑
k=1

Ek(0)g
ντ
(1)

( ∂vk0
∂Uτ

)
X
D−1 ∂v

k
0

∂Uµ

+
N+g0∑
k=1

Ek(0)g
ντ
(1)
∂vk0
∂Uτ

∂vk0
∂Uµ

+
N+g0∑
k=1

Ek(0)b
ντ
(1)ηU

η
X
∂vk0
∂Uτ

D−1 ∂v
k
0

∂Uµ

+
g1∑
s=1

N+g0∑
k=1

e(1)sEk(0)w
ν
(1)sηU

η
XD−1wτ

(1)sζU
ζ
X
∂vk0
∂Uτ

D−1 ∂v
k
0

∂Uµ
,

(4.3)

where

wτ
(1)sζU

ζ
X
∂vk0
∂Uτ

≡ (
Qk
s
)
X =

d
dX

Qk
s −Qk

s
d
dX

(4.4)

for some Qk
s (U) according to Theorem 3.1.

We normalize the functions Qk
s (U) such that Qk

s (z)= 0, and we have

···D−1 d
dX

Qk
s ··· = ···Qk

s ··· (4.5)

on L(�N,z).
Also, d/dXD−1 ≡ Î on L(�N,z), and

N+g0∑
k=1

Ek(0)g
ντ
(1)

(
∂vk0
∂Uτ

)
X
D−1 ∂v

k
0

∂Uµ
+
N+g0∑
k=1

Ek(0)b
ντ
(1)ηU

η
X
∂vk0
∂Uτ

D−1 ∂v
k
0

∂Uµ

+
g1∑
s=1

N+g0∑
k=1

e(1)sEk(0)w
ν
(1)sηU

η
XQk

sD−1 ∂v
k
0

∂Uµ

=
N+g0∑
k=1

Ek(0)

[
Ĵντ(1)

∂vk0
∂Uτ

]
D−1 ∂v

k
0

∂Uµ
.

(4.6)

Also, using the relation

N+g0∑
k=1

Ek(0)
∂vk0
∂Uµ

Qk
s = Ω̂(0)µτwτ

(1)sηU
η
X =

∂hs(1)(U,0)
∂Uµ

= ∂h
s
(1)0(U)
∂Uµ

(4.7)

on L(�N,z) (since ∂hs(1)q/∂Uµ(z)= 0, q ≥ 0), we can write

R̂νµ = gντ(1)g(0)τµ+
N+g0∑
k=1

Ek(0)

[
Ĵντ(1)

∂vk0
∂Uτ

]
D−1 ∂v

k
0

∂Uµ
−

g1∑
s=1

e(1)swν
(1)sηU

η
XD−1

∂hs(1)0
∂Uµ

= Vνµ −
N+g0∑
k=1

Ek(0)

[
Ĵντ(0)

∂vk1
∂Uτ

]
D−1 ∂v

k
0

∂Uµ
−

g1∑
s=1

e(1)s

[
Ĵντ(0)

∂hs(1)0
∂Uτ

]
D−1

∂hs(1)0
∂Uµ

,

(4.8)
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where

vk(U,λ)=
+∞∑
q=0

vkq(U)λq, hs(1)(U,λ)=
+∞∑
q=0

hs(1)q(U)λ
q (4.9)

and Vνµ (U)= gντ(1)(U)g(0)τµ(U).
We mention here that, according to this definition, R̂νµ will act from the left on the

vector-fields (on �0(z)) and from the right on the gradients of functionals on L(�N,z).

Theorem 4.1. Consider the nondegenerate pencil (3.1) with detgνµ(0) ≠ 0 such that

the form Qks
λ is also nondegenerate on � for small enough λ≠ 0. Then,

(I) any power [R̂n], n≥ 1 of the recursion operator can be written in the form

[
R̂n

]ν
µ =

[
V̂n

]ν
µ+(−1)n

N+g0∑
k=1

Ek(0)


 n∑
s=1

[
Ĵντ(0)

∂vks
∂Uτ

]
D−1 ∂vkn−s

∂Uµ




+(−1)n
g1∑
k=1

e(1)k


 n∑
s=1

[
Ĵντ(0)

∂hk(1),s−1

∂Uτ

]
D−1

∂hk(1),n−s
∂Uµ


;

(4.10)

(II) the higher Hamiltonian structures Ĵνµ(n) = [R̂n]νξ Ĵξµ(0) can be written on �0(z) in

the following weakly nonlocal form:

Ĵνµ(n) =
[
V̂n

]ν
ξg

ξµ
(0)

d
dX

+[
V̂n

]ν
ξb

ξµ
(0)ηU

η
X

+(−1)n
N+g0∑
k=1

Ek(0)


 n∑
s=1

[
Ĵντ(0)

∂vks
∂Uτ

]
∂vkn−s
∂Uξ

gξµ(0)




+(−1)n
g1∑
k=1

e(1)k


 n∑
s=1

[
Ĵντ(0)

∂hk(1),s−1

∂Uτ

]
∂hk(1),n−s
∂Uξ

gξµ(0)




+(−1)n+1
N+g0∑
k=1

Ek(0)


n−1∑
s=1

[
Ĵντ(0)

∂vks
∂Uτ

]
D−1

[
Ĵµξ(0)

∂vkn−s
∂Uξ

]

+(−1)n+1
g1∑
k=1

e(1)k


 n∑
s=1

[
Ĵντ(0)

∂hk(1),s−1

∂Uτ

]
D−1

[
Ĵµξ(0)

∂hk(1),n−s
∂Uξ

]


(4.11)

for n≥ 2;

(III) all the “negative” symplectic forms

Ω̂(−n)νµ = Ω̂(0)νµ
[
R̂n

]ξ
µ, n≥ 1 (4.12)

can be represented on �0(z) in the form

Ω̂(−n)νµ = (−1)n
N+g0∑
k=1

Ek(0)


 n∑
s=0

∂vks
∂Uν

D−1 ∂vkn−s
∂Uµ




+(−1)n
g1∑
k=1

e(1)k


 n∑
s=1

∂hk(1),s−1

∂Uν
D−1

∂hk(1),n−s
∂Uµ


.

(4.13)
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Proof. (I) By induction, we have

R̂νξ
[
R̂n

]ξ
µ =

[
V̂n+1]ν

µ+(−1)n
N+g0∑
k=1

Ek(0)


 n∑
s=1

[
R̂νξ Ĵ

ξσ
(0)
∂vks
∂Uσ

]
D−1 ∂vkn−s

∂Uµ




+(−1)n
g1∑
k=1

e(1)k


 n∑
s=1

[
R̂νξ Ĵ

ξσ
(0)
∂hk(1),s−1

∂Uσ

]
D−1

∂hk(1),n−s
∂Uµ




+(−1)n
N+g0∑
q=1

N+g0∑
k=1

Eq(0)


 n∑
s=1

[
Ĵντ(0)

∂vq1
∂Uτ

]
D−1Pqk0s

∂vkn−s
∂Uµ




+(−1)n
N+g0∑
q=1

g1∑
k=1

Eq(0)


 n∑
s=1

[
Ĵντ(0)

∂vq1
∂Uτ

]
D−1Qqk

0s
∂hk(1),n−s
∂Uµ




−
N+g0∑
q=1

Eq(0)

[
Ĵντ(0)

∂vq1
∂Uτ

]
D−1 ∂v

q
0

∂Uξ
[
V̂n

]ξ
µ

+(−1)n
g1∑
q=1

N+g0∑
k=1

e(1)q


 n∑
s=1

[
Ĵντ(0)

∂hq(1),0
∂Uτ

]
D−1Sqk0s

∂vkn−s
∂Uµ




+(−1)n
g1∑
q=1

g1∑
k=1

e(1)q


 n∑
s=1

[
Ĵντ(0)

∂hq(1),0
∂Uτ

]
D−1Tqk0s

∂hk(1),n−s
∂Uµ




−
g1∑
q=1

e(1)q

[
Ĵντ(0)

∂hq(1),0
∂Uτ

]
D−1

∂hq(1),0
∂Uξ

[
V̂n

]ξ
µ,

(4.14)

where we have

Ek(0)
∂vq0
∂Uξ

[
Ĵξσ(0)

∂vks
∂Uσ

]
≡ (
Pqk0s

)
X =

d
dX

Pqk0s −Pqk0s
d
dX

,

e(1)k
∂vq0
∂Uξ

[
Ĵξσ(0)

∂hk(1),s
∂Uσ

]
≡ (
Qqk

0s
)
X =

d
dX

Qqk
0s −Qqk

0s
d
dX

,

Ek(0)
∂hq(1),0
∂Uξ

[
Ĵξσ(0)

∂vks
∂Uσ

]
≡ (
Sqk0s

)
X =

d
dX

Sqk0s −Sqk0s
d
dX

,

e(1)k
∂hq(1),0
∂Uξ

[
Ĵξσ(0)

∂hk(1),s
∂Uσ

]
≡ (
Tqk0s

)
X =

d
dX

Tqk0s −Tqk0s
d
dX

(4.15)

for some functions Pqk0s (U), Q
qk
0s (U), S

qk
0s (U), T

qk
0s (U) according to Theorem 3.1, and

we use the normalization

Pqk0s (z)=Qqk
0s (z)= Sqk0s (z)= Tqk0s (z)= 0. (4.16)

From Theorem 3.1, we have

∂vks
∂Uτ

(z)= 0, s ≥ 1
(

actually
∂hk(0),0
∂Uτ

(z)= 0 also
)
,

∂hk(1),s−1

∂Uτ
(z)= 0, s ≥ 1;

(4.17)
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so, for s ≥ 1, we can write

[
Ω̂(0)νξĴ

ξτ
(0)
∂vks
∂Uτ

]
= ∂vks
∂Uν

,
[
Ω̂(0)νξĴ

ξτ
(0)
∂hk(1),s−1

∂Uτ

]
= ∂h

k
(1),s−1

∂Uν
(4.18)

on L(�N,z) and

[
R̂νξ Ĵ

ξτ
(0)
∂vks
∂Uτ

]
=
[
Ĵντ(1)

∂vks
∂Uτ

]
=−

[
Ĵντ(0)

∂vks+1

∂Uτ

]
, (4.19)

[
R̂νξ Ĵ

ξτ
(0)
∂hk(1),s−1

∂Uτ

]
=
[
Ĵντ(1)

∂hk(1),s−1

∂Uτ

]
=−

[
Ĵντ(0)

∂hk(1),s
∂Uτ

]
(4.20)

according to Theorem 2.2.

We now multiply the equalities

[
Ĵξτ(1)

∂vks
∂Uτ

]
=−

[
Ĵξτ(0)

∂vks+1

∂Uτ

]
,

[
Ĵξτ(1)

∂hk(1),s
∂Uτ

]
=−

[
Ĵξτ(0)

∂hk(1),s+1

∂Uτ

]
(4.21)

by Ω̂(0)νξ from the left. Since

∂vks+1

∂Uτ
(z)= ∂h

k
(1),s+1

∂Uτ
(z)= 0, s ≥ 0, (4.22)

we get again from Theorem 2.2

∂vks+1

∂Uν
=−

[
Ω̂(0)νξĴ

ξτ
(1)
∂vks
∂Uτ

]
=−

[
∂vks
∂Uτ

R̂τν

]
, s ≥ 0,

∂hk(1),s+1

∂Uν
=−

[
Ω̂(0)νξĴ

ξτ
(1)
∂hk(1),s
∂Uτ

]
=−

[
∂hk(1),s
∂Uτ

R̂τν

]
, s ≥ 0

(4.23)

(action from the right).

Using the relation

[
fXD−1]=−f(X) (4.24)

for the action from the right of D−1 on any f(U) such that f(z) = 0, we get that the

last six terms in the expression for R̂νξ [R̂
n]ξµ can be written as

−
N+g0∑
q=1

Eq(0)

[
Ĵντ(0)

∂vq1
∂Uτ

]
D−1

[
∂vq0
∂Uξ

(
R̂n

)ξ
µ

]
−

g1∑
q=1

e(1)q

[
Ĵντ(0)

∂hq(1),0
∂Uτ

]
D−1

[
∂hq(1),0
∂Uξ

(
R̂n

)ξ
µ

]

= (−1)n+1
N+g0∑
q=1

Eq(0)

[
Ĵντ(0)

∂vq1
∂Uτ

]
D−1 ∂v

q
n

∂Uµ
+(−1)n+1

g1∑
q=1

e(1)q

[
Ĵντ(0)

∂hq(1),0
∂Uτ

]
D−1

∂hq(1),n
∂Uµ

.

(4.25)

Now, using relations (4.19) and (4.20), we get part (I) of the theorem.
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(II) To avoid much calculations, we just write that according to Theorem 3.1 we have

the relations

Ek(0)
∂vqn−s
∂Uξ

[
Ĵξσ(0)

∂vk0
∂Uσ

]
≡ (
Pqkn−s,0

)
X =

d
dX

Pqkn−s,0−Pqkn−s,0
d
dX

,

Ek(0)
∂hq(1),n−s
∂Uξ

[
Ĵξσ(0)

∂vk0
∂Uσ

]
≡ (
Sqkn−s,0

)
X =

d
dX

Sqkn−s,0−Sqkn−s,0
d
dX

(4.26)

for some Pqkn−s,0(U), S
qk
n−s,0(U), P

qk
n−s,0(z)= 0, and Sqkn−s,0(z)= 0, and so, the expression

Ĵ(n) = R̂nĴ(0) can be written according on �0(z) to (4.10) and (4.2) and Theorem 2.2

as

Ĵνµ(n) =
(
local part of R̂n

)×(
local part of Ĵ(0)

)

+(−1)n
N+g0∑
k=1

Ek(0)


 n∑
s=1

[
Ĵντ(0)

∂vks
∂Uτ

]
∂vkn−s
∂Uξ

gξµ(0)




+(−1)n
g1∑
k=1

e(1)k


 n∑
s=1

[
Ĵντ(0)

∂hk(1),s−1

∂Uτ

]
∂hk(1),n−s
∂Uξ

gξµ(0)




+
N+g0∑
q=1

Eq(0)

[(
R̂n

)ν
ξ Ĵ

ξτ
(0)
∂vq0
∂Uτ

]
D−1

[
Ĵµσ(0)

∂vq0
∂Uσ

]

−(−1)n
N+g0∑
k=1

Ek(0)


 n∑
s=1

[
Ĵντ(0)

∂vks
∂Uτ

]
D−1

[
Ĵµσ(0)

∂vkn−s
∂Uσ

]

−(−1)n
g1∑
k=1

e(1)k


 n∑
s=1

[
Ĵντ(0)

∂hk(1),s−1

∂Uτ

]
D−1

[
Ĵµσ(0)

∂hk(1),n−s
∂Uσ

]


(4.27)

(since Ĵ(0) is skew-symmetric, its action from the right differs by sign from the action

from the left). Now, using (4.19), we get part (II) of the theorem. We also mention that

it is important that we consider the space �0(z) to use the equality

D−1 d
dX

∂vk0
∂Uξ

= ∂vk0
∂Uξ

(4.28)

for k= 1, . . . ,N.

(III) We have

Ω̂(−n)νµ = Ω̂(0)νξ
(
R̂n

)ξ
µ. (4.29)

Again, using the functions Pqk0s (U) and Qqk
0s (U), we can write

Ω̂(−n)νµ =
N+g0∑
k=1

Ek(0)
∂vk0
∂Uν

D−1

[
∂vk0
∂Uξ

(
R̂n

)ξ
µ

]

+(−1)n
N+g0∑
k=1

Ek(0)


 n∑
s=1

[
Ω̂(0)νξĴ

ξτ
(0)
∂vks
∂Uτ

]
D−1 ∂vkn−s

∂Uµ




+(−1)n
g1∑
k=1

e(1)k


 n∑
s=1

[
Ω̂(0)νξĴ

ξτ
(0)
∂hk(1),s−1

∂Uτ

]
D−1

∂hk(1),n−s
∂Uµ


.

(4.30)
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Since

∂vks
∂Uτ

(z)= 0,
∂hk(1),s−1

∂Uτ
= 0, s ≥ 1, (4.31)

we get part (III) using Theorem 2.2 and (4.19) on L(�N,z).

We also mention that if both detgνµ(0) ≠ 0 and detgνµ(1) ≠ 0 (and the form Q in non-

degenerate on �), then also the series of “negative” Hamiltonian operators Ĵ(−n) =
R̂−nĴ(0) and “positive” symplectic forms Ω̂(n) = Ω̂(0)R̂−n will be weakly nonlocal. This

situation takes place, for example, in the Hamiltonian structures of Whitham systems

for KdV, NLS, and SG hierarchies. The local bi-Hamiltonian structure for the averaged

KdV hierarchy was constructed in [6] (see also [7, 8]) using the (Dubrovin-Novikov) pro-

cedure of averaging of local field-theoretical brackets for Gardner-Zakharov-Faddeev

and Magri brackets. Both metrics of the corresponding DN-brackets are nondegener-

ate in this case (and there is no requirements on Q). Also, in [7, 8], the local bracket

for the averaged “V-Gordon” equation

ϕtt−ϕxx+V ′(ϕ)= 0, (4.32)

which is the generalization of SG system using the same procedure was constructed.

In [32], all the brackets for averaged KdV, NLS, and SG hierarchies, having local (DN) or

constant curvature (MF) form, were enumerated using a nice differential-geometrical

approach. It can be shown that all the pencils represented in [6, 7, 8, 32] actually

satisfy the requirements of Theorems 3.1 and 4.1. The recursion operator approach

for the local bi-Hamiltonian structure for the averaged KdV hierarchy (in the diagonal

form) was investigated in [1, 2], and all the “positive” operators Ĵ(n) were explicitly

found in [1] in this case. In [23, 24], the general procedure of averaging of brack-

ets (1.23), which gives the weakly nonlocal Hamiltonian operators for the averaged

systems with Hamiltonian structure (1.23), was constructed. For many “integrable”

systems, this method also gives all the “positive” weakly nonlocal Poisson brackets of

Ferapontov type for the corresponding Whitham hierarchy. However, we see here that

the “negative” Hamiltonian operators and Symplectic structures for the averaged KdV,

NLS, and SG also should be weakly nonlocal according to Theorems 3.1 and 4.1. We

believe that there should be a good procedure of averaging of “negative” Hamiltonian

operators for the integrable systems giving the brackets of Ferapontov type and the

general averaging procedure for the weakly nonlocal symplectic structures

Ω̂νµ(x,y)=
N∑
k=1

C(k)νµ
(
ϕ,ϕx,. . .

)
δ(k)(x−y)+

G∑
k,s=1

dks
δH(k)
δϕ(x)

ν(x−y) δH(s)
δϕ(y)

(4.33)

giving the weakly nonlocal symplectic structures and the corresponding F-brackets

for the Whitham systems.

We also believe that the general compatible F-brackets should be important for the

integration of nondiagonalizable (bi-Hamiltonian) systems which cannot be integrated

by Tsarëv’s method.
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We also mention that the requirement of nondegeneracy of form Q on � is also

important in Theorem 4.1. As such, it is possible to show that the “negative” and

“positive” Poisson structures corresponding to the pair of operators (3.36) will not be

weakly nonlocal.
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