
IJMMS 32:3 (2002) 183–188
PII. S0161171202204093

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

FIXED POINT THEOREMS FOR DENSIFYING MAPPINGS
AND COMPACT MAPPINGS

ZEQING LIU, LI WANG, SHIN MIN KANG, and YONG SOO KIM

Received 8 April 2002

The purpose of this note is to establish fixed point theorems for densifying mappings and
compact mappings which are contractive in metric spaces and to investigate the existence
of fixed points for a family of mappings in bounded metric spaces. The results of this note
generalize the results of Bailey (1966) and Liu (1994).
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1. Introduction and preliminaries. Let f be a self-mapping of a metric space (X,d),
N denote the positive integers set, and N0 =N∪{0}. Contractive mappings in metric

spaces have been interested for many years, one of those is

d
(
fn(x,y)x,fn(x,y)y

)
<d(x,y) (1.1)

for all distinct x,y ∈ X, where n(x,y) ∈ N. Bailey [1] has investigated the existence

of fixed points for the contractive mapping (1.1) in compact metric spaces. Liu [4] first

introduced the definition of the family of mappings CISf , and showed fixed point the-

orems for CISf . In this note, we prove a few fixed point theorems for densifying and

compact mappings which satisfy (1.1) in complete metric spaces and metric spaces,

respectively. We also give an example to show that our results are the proper gener-

alizations of the result of Bailey [1]. On the other hand, we go on investigating the

existence of fixed points for CISf in bounded metric spaces, and our results extend

the result of Liu [4].

The following definitions were introduced by Bailey [1] and Nussbaum [5].

Definition 1.1 (see [1]). For x,y ∈X, x is proximal toy under f provided that for

each ε > 0 there exists n∈N such that d(fnx,fny) < ε. If x and y are not proximal,

they are said to be distal.

Definition 1.2 (see [5]). A nonempty subset M of X is said to be an attractor for

compact sets under f if (1) M is compact and f(M) ⊆M , and (2) given any compact

set C ⊆X and any open neighborhood U ofM , there exists k∈N such that fn(C)⊆U
for n≥ k.

For S ⊆ X, δ(S) and S̄ denote the diameter and the closure of S, respectively. For

A,B ⊆ X, δ(A,B) = sup{d(x,y) | x ∈ A, y ∈ B}. Following Furi and Vignoli [2], f
is said to be densifying if for every bounded subset A of X with α(A) > 0, we have

α(f(A)) < α(A), where α(A) denotes the measure of noncompactness in the sense
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of Kuratowski. The mapping f is said to be compact if there exists a compact sub-

set Y of X such that f(X) ⊆ Y . It is well known that every continuous compact

mapping is a densifying mapping. Introduced by Liu [4], CISf = {h : X → X | for

every nonempty compact f -invariant subset A of h(A) ⊆ A}. Let O(x,f) = {fnx |
n ∈ N0} and O(x,y,f ) = O(x,f) ∪O(y,f), for x,y ∈ X, where f 0 is the iden-

tity mapping in X. The mapping f is said to have diminishing orbital diameters if

limn→∞δ(O(fnx,f )) < δ(O(x,f )) for all x ∈X with 0< δ(O(x,f )) <∞.

2. Main results

Theorem 2.1. Let (X,d) be a complete metric space and f :X →X be a continuous

densifying mapping satisfying (1.1). Suppose thatO(x0,f ) is bounded for some x0 ∈X.

Then f has a unique fixed point in X.

Proof. Since f is densifying and

α
(
O
(
x0,f

))=max
{
α
(
f
(
O
(
x0,f

)))
,α
(
x0
)}=α(f (O(x0,f

)))
, (2.1)

it follows thatα(O(x0,f ))=0. From the completeness of (X,d), we know thatO(x0,f )
is compact in X. We claim that x0 and fx0 are proximal under f . If fnx0 = fn+1x0 for

some n∈N, then x0 and fx0 are proximal under f . If fnx0 ≠ fn+1x0 for any n∈N,

from (1.1) we infer that there exists a sequence {ni}i∈N ⊂N such that

d
(
x0,fx0

)
>d

(
fn1x0,f n1+1x0

)
>d

(
fn2x0,f n2+1x0

)
> ···>d(fnix0,f ni+1x0

)
> ··· (2.2)

for all i∈N. Suppose that each ni is chosen as the smallest positive integer in order

to satisfy (2.2). Then for any k ∈ N there exists ni ∈ N such that ni−1 ≤ k < ni. It

follows from (2.2) that

d
(
fkx0,f k+1x0

)≥ d(fni−1x0,f ni−1+1x0
)
>d

(
fnix0,f ni+1x0

)
. (2.3)

Since O(x0,f ) is compact and f is continuous, we may (by selecting a subsequence, if

necessary) assume that fnix0 →u and fni+1x0 → fu for some u∈ X as i→∞. Thus

d(u,fu) = limi→∞d(fnix0,f ni+1x0). Now assume that x0 and fx0 are distal. Then

there exists ε0 > 0 satisfying d(fmx0,fm+1x0) ≥ ε0 for all m ∈ N. It is easy to see

that ni+k≤nk for every k. In view of (2.3) we get that

d
(
fku,f k+1u

)= lim
i→∞

d
(
fni+kx0,f ni+k+1x0

)

≥ lim
i→∞

d
(
fni+kx0,f ni+k+1x0

)

= d(u,fu),
(2.4)

which is a contradiction to (1.1). Hence x0 and fx0 are proximal under f .

Next, we assert that f has a fixed point in X. Without loss of generality, we assume

that fnx0 ≠ fn+1x0, for all n∈N0. Choose {nj}j∈N0 ⊂N such that nj < nj+1 and

d
(
fnjx0,f nj+1x0

)
<min

{
1
j
,d
(
fnj−1x0,f nj−1+1x0

)}
(2.5)
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for all j ∈ N, where n0 = 0. It follows from the compactness of O(x0,f ) and the

continuity of f that there exists w ∈ X and the subsequence {fnji x0}i∈N such that

fnji x0 →w and fnji+1x0 → fw as i→∞. Replacing j by ji in (2.5) and letting i→∞,

we deduce that d(w,fw)≤min{0,d(w,fw)} = 0. That is, w = fw.

To prove the uniqueness of the fixed point of f , we assume that f has another fixed

point b ∈X with b ≠w. From (1.1) we infer that

d(w,b)= d(fn(w,b)w,fn(w,b)b)<d(w,b), (2.6)

which is impossible. This completes the proof.

The next theorem follows from Theorem 2.1.

Theorem 2.2. Let (X,d) be a metric space and f : X → X be a continuous and

compact mapping satisfying (1.1). Then f has a unique fixed point in X.

Remark 2.3. The following example shows that Theorems 2.1 and 2.2 are the

proper generalizations of [1, Corollary 2].

Example 2.4. Let X = [0,∞) with the usual metric and define f : X → X by fx =
|sinx| for all x ∈ X. Choose n(x,y) = 1 for all x,y ∈ X with 0 < |x−y| ≤ 2 and

n(x,y) = 2 for all x,y ∈ X with |x−y| > 2. It is easy to verify that the conditions

of Theorems 2.1 and 2.2 are satisfied and f has a unique fixed point 0 ∈ X. But [1,

Corollary 2] is not applicable since X is not compact.

Theorem 2.5. Let (X,d) be a bounded complete metric space and let f : X → X be

a continuous mapping. Suppose that there exist p,q,r ∈ N such that f r is densifying

and

d
(
fpx,f qy

)
< δ

({∪h∈CISf O(z,h) : z ∈O(x,y,f )}) (2.7)

for all x,y ∈X with fpx ≠ fqy . Then, we have the following:

(i) f has a unique fixed point v ∈X such that fnx→ v for every x ∈X;

(ii) f has diminishing orbital diameters;

(iii) for every nonempty compact f -invariant subset Y of X, ∩n∈N0fn(Y)= {v};
(iv) there exists a bounded complete metric d∗ on X which is equivalent to d such

that f is contractive with respect to d∗, that is, d∗(fx,fy) < d∗(x,y) for all

x,y ∈X with x ≠y ;

(v) CISf has a unique fixed point v ∈X.

Proof. Let x be an arbitrary element in X and A=O(x,f). Then,

α(A)=max
{
α
({
x,fx,. . . ,f r−1x

})
,α
(
f r
(
O(x,f)

))}=α(f rA). (2.8)

Since f r is densifying, A is precompact. It follows from the completeness of (X,d)
that Ā is compact. By the continuity of f , we conclude that f(Ā) ⊆ f(A) ⊆ Ā. Thus

Ā is f -invariant. Set D =∩n∈Nfn(Ā). It is well known that D is a nonempty compact

subset of Ā and f(D) = D. Hence fp(D) = D, fq(D) = D. We now assert that D is a

singleton. Otherwise there exist two distinct pointsu,v ∈D such that δ(D)= d(u,v).



186 ZEQING LIU ET AL.

Since fp(D) = D, fq(D) = D, there exist x,y ∈ D such that fpx = u, fqy = v and

fpx ≠ fqy . Obviously, δ({∪h∈CISf O(z,h) : z ∈O(x,y,f )})⊆D. By (2.7) we have

0< δ(D)= d(fpx,f qy)< δ({∪h∈CISf O(z,h) : z ∈O(x,y,f )})≤ δ(D), (2.9)

which is a contradiction. So D is a singleton, say, D = {v}. Therefore v is a fixed point

of f .

Next we prove that v is the unique fixed point of f . Otherwise b (≠ v) is another

fixed point of f . From (2.7) we get that

0= d(b,v) < d(fpb,f qv)< δ({∪h∈CISf O(z,h) : z ∈O(b,v,f )})≤ d(b,v), (2.10)

which is impossible. Hence v is a unique fixed point of f . Since fnx,v ∈ fn(Ā),
d(fnx,v) ≤ d(fn(Ā)) → 0 as n → ∞. That is, fnx → v as n → ∞. Since (X,d) is

bounded, for each x ∈ X −{v}, we have 0 < δ(O(x,f )) < ∞. In the light of (i), we

get that for arbitrary ε > 0 there exists k ∈ N such that d(fnx,v) < ε/3 for n > k.

Consequently,

d
(
f ix,f jx

)≤ d(f ix,v)+d(f jx,v)< 2ε
3

(2.11)

for all i,j > k. It follows that

δ
(
O
(
fnx,f

))= sup
{
d
(
f ix,f jx

)
: i,j ≥n}≤ 2ε

3
< ε (2.12)

for n > k. This means that limn→∞δ(O(fnx,f )) = 0, so f has diminishing orbital

diameters.

Similarly we can show that for every nonempty compact f -invariant subset Y of X,

∩n∈N0fn(Y)= {v}.
Now, we prove that (iv) holds. Let C be any nonempty compact subset of X. Then

α
(∪n∈N0 f

n(C)
)=max

{
α
(∪r−1

n=0f
n(C)

)
,α
(
f r
(∪n∈N0 f

n(C)
))}

=α(f r (∪n∈N0 f
n(C)

))
.

(2.13)

Let Y = ∪n∈N0fn(C). Since f r is densifying and (X,d) is complete, Y is compact

and f(Y) ⊆ f(∪n∈N0fn(C)) ⊆ Y . It follows from (iii) that ∩n∈N0fn(Y) = {v}. This

implies that δ(fn(Y)) → 0 as n → ∞. For every open neighborhood U of v , there

exists an open ball B(v,ε) = {x | x ∈ X and d(x,v) < ε} such that B(v,ε) ⊆ U . Since

limn→∞δ(fn(Y)) = 0, there exists k ∈N such that δ(fn(Y)) < ε for n ≥ k. It follows

that d(x,v)≤ δ(fn(Y)) < ε for all x ∈ fnY . That is, fn(Y)⊆ B(v,ε). Hence fn(C)⊆
fn(Y) ⊆ B(v,ε) ⊆ U for n ≥ k. This shows that {v} is an attractor for compact sets

under f . Thus (iv) follows from [3, Theorem and Remark 1].

Finally we conclude that (v) holds. For any h∈ CISf , it follows from (i) and the def-

inition of CISf that h({v}) ⊆ {v}. That is, hv = v . Hence v is a fixed point of CISf .

Note that f ∈ CISf . By (i), v is the only fixed point of CISf . This completes the proof.
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Remark 2.6. By taking p = q in Theorem 2.5, we get the result which improves [4,

Theorem 2.1].

Theorem 2.7. Let (X,d) be a bounded complete metric space and let f ,g : X → X
be continuous and commuting mappings. Suppose that there exist r ,s,p,q ∈ N such

that f r and gs are densifying and

d
(
fpx,gqy

)
< δ

({∪h∈CISf O(a,h) : a∈O(x,f)}∪{∪t∈CISg O(b,t) : b ∈O(y,g)})
(2.14)

for all x,y ∈X with fpx ≠ gqy . Then, we have the following:

(i) f and g have a unique common fixed point v ∈X such that fnx→ v , gnx→ v ,

for every x ∈X;

(ii) both f and g have diminishing orbital diameters;

(iii) for every nonempty compact f -invariant and g-invariant subset Y of X,

∩n∈N0fn(Y)= {v} and ∩n∈N0gn(Y)= {v};
(iv) there exist bounded complete metrics d∗ and d∗∗ on X which are equivalent to

d such that f and g are contractive with respect to d∗ and d∗∗, respectively,

that is d∗(fx,fy) < d∗(x,y) and d∗∗(gx,gy) < d∗∗(x,y) for all x,y ∈ X
with x ≠y ;

(v) CISf and CISg have a unique common fixed point v ∈X.

Proof. Forx,y ∈X, setA=O(x,f), B=O(y,g),C=∩n∈Nfn(Ā),D =∩n∈Nfn(B̄).
As is the proof of Theorem 2.5 we get that Ā, B̄ are nonempty compact and f -invariant,

g-invariant subsets of X with f(C) = C , g(D) = D, respectively. Hence fp(C) = C ,

gq(D) = D. Suppose that δ(C,D) > 0. There exist u ∈ C , w ∈ D such that δ(C,D) =
d(u,w) > 0. From fp(C)= C , gq(D)=D, there exist x ∈ C , y ∈D such that fp(x)=
u, gq(y)=w. Obviously, {∪h∈CISf O(a,h) : a∈O(x,f)} ⊆ C and {∪t∈CISgO(b,t) : b ∈
O(y,g)} ⊆D. According to (2.14) we get

0< δ(C,D)= d(fpx,gqy)
< δ

({∪h∈CISf O(a,h) : a∈O(x,f)}∪{∪t∈CISg O(b,t) : B ∈O(y,g)})
≤ δ(C,D),

(2.15)

which is a contradiction. Hence δ(C,D)= 0, that is C =D = {v} for some v ∈X. Then

v is a common fixed point of f and g.

Now, we prove that f and g have the only common fixed point v ∈X. Otherwise u
is a second common fixed point of f and g. Using (2.14), we have

0<d(u,v)= d(fpu,gqv)
< δ

({∪h∈CISf O(u,h) : a∈O(u,f)}∪{∪t∈CISg O(v,t) : b ∈O(v,g)})
≤ δ(u,v),

(2.16)

which is impossible. The rest of the proof goes in a similar fashion as that of Theorem

2.5, so we omit it. This completes the proof.

Remark 2.8. By taking f = g and p = q in Theorem 2.7, we obtain the result which

generalizes Theorem 2.1 of Liu [4].
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