A NOTE ON A CLASS OF BANACH ALGEBRA-VALUED POLYNOMIALS

SIN-EI TAKAHASI, OSAMU HATORI, KEIICHI WATANABE, and TAKESHI MIURA

Received 10 March 2002

Let F be a Banach algebra. We give a necessary and sufficient condition for F to be finite dimensional, in terms of finite type n-homogeneous F-valued polynomials.

2000 Mathematics Subject Classification: 46H99.

1. Introduction and results. Let *E* and *F* be complex Banach spaces. We denote by $L({}^{n}E, F)$ the Banach space of all continuous *n*-linear mappings *A* from E^{n} into *F* endowed with the norm $||A|| = \sup\{||A(x_{1},...,x_{n})|| : ||x_{j}|| \le 1, j = 1,...,n\}$. A mapping *P* from *E* into *F* is called a continuous *n*-homogeneous polynomial if P(x) = A(x,...,x) (for all $x \in E$) for some $A \in L({}^{n}E, F)$. We denote by $P({}^{n}E, F)$ the Banach space of all continuous *n*-homogeneous polynomials *P* from *E* into *F* is called a finite type n-homogeneous polynomial if P(x) = 1. Also a mapping *P* from *E* into *F* is called a finite type *n*-homogeneous polynomial if $P(x) = f_1(x){}^{n}b_1 + \cdots + f_k(x){}^{n}b_k$ (for all $x \in E$), where $f_1,...,f_k \in E^*$ and $b_1,...,b_k \in F$. We denote by $P_f({}^{n}E,F)$ the space of all finite type *n*-homogeneous polynomials *P* from *E* into *F*. Then we have $P_f({}^{n}E,F) \subseteq P({}^{n}E,F)$. Indeed, let $P \in P_f({}^{n}E,F)$. Then we write $P(x) = f_1(x){}^{n}b_1 + \cdots + f_k(x){}^{n}b_k$ ($x \in E$) for some $f_1,...,f_k \in E^*$ and $b_1,...,b_k \in F$. Set

$$A(x_1,...,x_n) = \sum_{i=1}^k f_i(x_1) \cdots f_i(x_n) b_i, \quad (x_1,...,x_n) \in E^n.$$
(1.1)

Then *A* is a continuous *n*-linear mapping from E^n into *F* and P(x) = A(x,...,x) $(x \in E)$. Hence $P \in P(^nE,F)$. We are now interested in the case that *F* is a Banach algebra. Let

$$\mathbf{P}_{f}(^{n}E,F) = \{\varphi_{1}^{n} + \dots + \varphi_{k}^{n} : \varphi_{j} \in B(E,F) \ (j = 1,\dots,k), \ k \in \mathbb{N}\},$$
(1.2)

where $\varphi_j^n(x) = (\varphi_j(x))^n (x \in E)$. Then we have $\mathbf{P}_f(^n E, \mathbf{C}) = P_f(^n E, \mathbf{C})$ and $\mathbf{P}_f(^n \mathbf{C}, F) \subseteq P_f(^n \mathbf{C}, F)$ (see [1, Section 1]). Also, we have $\mathbf{P}_f(^n E, F) \subseteq P(^n E, F)$. Indeed, let $P \in \mathbf{P}_f(^n E, F)$. Then we can write $P = \varphi_1^n + \cdots + \varphi_k^n$ for some $\varphi_1, \dots, \varphi_k \in B(E, F)$. Set $A(x_1, \dots, x_n) = \sum_{i=1}^k \varphi_i(x_1) \cdots \varphi_i(x_n), (x_1, \dots, x_n) \in E^n$. Then A is a continuous n-linear mapping from E^n into F and $P(x) = A(x_1, \dots, x)$ ($x \in E$). Hence $P \in P(^n E, F)$.

Now, for each $n \in \mathbb{N}$, we say that an algebra F has the r_n -property if, given any $b \in F$, we can find elements $a_1, \ldots, a_p \in F$ such that $b = \sum_{i=1}^p a_i^n$. We also say that an algebra F has the r-property if F has the r_n -property for each $n \in \mathbb{N}$.

PROPOSITION 1.1 (see [1]). (1) *Every unital complex algebra has the* r*-property.* (2) Let E be a Banach space and F be a Banach algebra. Then $P_f({}^nE,F) \subseteq \mathbf{P}_f({}^nE,F)$

if and only if F has the r_n *-property.* In [1], it is remarked that, given an arbitrary Banach space $(F, +, \|\cdot\|)$, we can always define a product \circ and a norm $\|\cdot\|_*$ on *F* in order that $(F, +, \circ, \|\cdot\|_*)$ is a unital Banach

define a product \circ and a norm $\|\cdot\|_*$ on F in order that $(F, +, \circ, \|\cdot\|_*)$ is a unital Banach algebra and $\|\cdot\|_*$ is equivalent to $\|\cdot\|$. By Proposition 1.1 and the above remark, Lourenço-Moraes proved the following proposition.

PROPOSITION 1.2 (see [1]). Let *E* be a Banach space. The following are equivalent: (a) *E* is a finite-dimensional space;

(b) $P_f({}^{n}E,F) = \mathbf{P}_f({}^{n}E,F)$ for every $n \in \mathbb{N}$ and for every Banach algebra F with the r_n -property;

(c) $P_f({}^{n}E,F) = \mathbf{P}_f({}^{n}E,F)$ for every $n \in \mathbb{N}$ and for every unital Banach algebra F.

REMARK 1.3. By the proof of Proposition 1.2 (see [1]), we see that each of the following two statements are also equivalent to one of, hence all of, (a), (b), and (c) in Proposition 1.2:

(b') $P_f({}^1E,F) = \mathbf{P}_f({}^1E,F)$ for every unital Banach algebra *F*;

(d) $P_f({}^{n}E,F) = \mathbf{P}_f({}^{n}E,F)$ for every $n \in \mathbb{N}$ and for every Banach space *F*.

In this note we show the following result, which is opposite to Proposition 1.2.

PROPOSITION 1.4. Let *F* be a Banach algebra. Then the following are equivalent: (a) *F* is a finite-dimensional space;

(b) $\mathbf{P}_f({}^nE,F) \subseteq P_f({}^nE,F)$ for every $n \in \mathbb{N}$ and for every Banach space E; (c) $\mathbf{P}_f({}^1E,F) \subseteq P_f({}^1E,F)$ for every Banach space E.

In particular, in the unital case, we have the following proposition.

PROPOSITION 1.5. *Let F be a unital Banach algebra. Then the following are equivalent:*

(a) *F* is a finite-dimensional space; (b) $\mathbf{P}_f({}^nE,F) = P_f({}^nE,F)$ for every $n \in \mathbb{N}$ and for every Banach space *E*; (c) $\mathbf{P}_f({}^1E,F) = P_f({}^1E,F)$ for every Banach space *E*.

2. Proofs

LEMMA 2.1. Let *n* be any positive integer and let x_1, \ldots, x_n be *n*-real variables. Then

$$\prod_{i=1}^{n} x_{i} = \frac{1}{2^{n} n!} \sum_{\varepsilon_{1}, \dots, \varepsilon_{n} = \pm 1} \varepsilon_{1} \cdots \varepsilon_{n} \left(\sum_{k=1}^{n} \varepsilon_{k} x_{k} \right)^{n}$$
(2.1)

holds.

PROOF. For each *m* with $0 \le m \le n$, let

$$P_m(x_1,\ldots,x_n) = \sum_{\varepsilon_1,\ldots,\varepsilon_n=\pm 1} \varepsilon_1 \cdots \varepsilon_n \left(\sum_{k=1}^n \varepsilon_k x_k\right)^m.$$
(2.2)

Then we have $P_m(0, x_2, ..., x_n) = P_m(x_1, 0, ..., x_n) = \cdots = P_m(x_1, ..., x_{n-1}, 0) = 0$. Indeed since

$$P_m(x_1,...,x_n) = \sum_{\substack{\varepsilon_2,...,\varepsilon_n = \pm 1 \\ \varepsilon_2,...,\varepsilon_n = \pm 1}} \varepsilon_2 \cdots \varepsilon_n (x_1 + \varepsilon_2 x_2 + \dots + \varepsilon_n x_n)^m - \sum_{\substack{\varepsilon_2,...,\varepsilon_n = \pm 1 \\ \varepsilon_2,...,\varepsilon_n = \pm 1}} \varepsilon_2 \cdots \varepsilon_n (-x_1 + \varepsilon_2 x_2 + \dots + \varepsilon_n x_n)^m,$$
(2.3)

it follows that $P_m(0, x_2, ..., x_n) = 0$. Similarly,

$$P_m(x_1, 0, \dots, x_n) = \dots = P_m(x_1, \dots, x_{n-1}, 0) = 0.$$
 (2.4)

Therefore, we have

$$P_m(x_1,...,x_n) = 0, (2.5)$$

for each m = 0, 1, 2, ..., n - 1 and

$$P_n(x_1,...,x_n) = K_n \prod_{i=1}^n x_i,$$
 (2.6)

for some constant K_n , because $P_m(x_1,...,x_n)$ is *m*-homogeneous for $x_1,...,x_n$. Hence we only show that $K_n = 2^n n!$. Note that

$$K_n = P_n(1, \dots, 1) = \sum_{\varepsilon_1, \dots, \varepsilon_n = \pm 1} \varepsilon_1 \cdots \varepsilon_n \left(\sum_{k=1}^n \varepsilon_k\right)^n.$$
(2.7)

Then $K_1 = 2$. Now, for each m with $0 \le m \le n$, let $\alpha_m = \sum_{\varepsilon_1,...,\varepsilon_n = \pm 1} \varepsilon_1 \cdots \varepsilon_n (\sum_{k=1}^n \varepsilon_k)^m$. Then by (2.5) and (2.6), we have $\alpha_0 = \alpha_1 = \cdots = \alpha_{n-1} = 0$ and $\alpha_n = K_n$. Hence,

$$K_{n+1} = \sum_{\epsilon_{1},...,\epsilon_{n+1}=\pm 1} \varepsilon_{1} \cdots \varepsilon_{n+1} \left(\sum_{k=1}^{n+1} \varepsilon_{k}\right)^{n+1}$$

$$= \sum_{\epsilon_{1},...,\epsilon_{n}=\pm 1} \varepsilon_{1} \cdots \varepsilon_{n} \left(\sum_{k=1}^{n} \varepsilon_{k}+1\right)^{n+1} - \sum_{\epsilon_{1},...,\epsilon_{n}=\pm 1} \varepsilon_{1} \cdots \varepsilon_{n} \left(\sum_{k=1}^{n} \varepsilon_{k}-1\right)^{n+1}$$

$$= \sum_{m=0}^{n+1} \binom{n+1}{m} \sum_{\epsilon_{1},...,\epsilon_{n}=\pm 1} \varepsilon_{1} \cdots \varepsilon_{n} \left(\sum_{k=1}^{n} \varepsilon_{k}\right)^{m}$$

$$- \sum_{m=0}^{n+1} \binom{n+1}{m} \sum_{\epsilon_{1},...,\epsilon_{n}=\pm 1} \varepsilon_{1} \cdots \varepsilon_{n} (-1)^{n+1-m} \left(\sum_{k=1}^{n} \varepsilon_{k}\right)^{m}$$

$$= \sum_{m=0}^{n+1} \binom{n+1}{m} (1-(-1)^{n+1-m}) \sum_{\epsilon_{1},...,\epsilon_{n}=\pm 1} \varepsilon_{1} \cdots \varepsilon_{n} \left(\sum_{k=1}^{n} \varepsilon_{k}\right)^{m}$$

$$= \sum_{m=0}^{n} \binom{n+1}{m} (1-(-1)^{n+1-m}) \alpha_{m}$$

$$= \binom{n+1}{n} (1-(-1)^{n+1-n}) K_{n}$$

$$= 2(n+1)K_{n},$$
(2.8)

so that we have $K_n = 2^n n!$ (n = 1, 2, ...) inductively.

191

PROOF OF PROPOSITION 1.4. (a) \Rightarrow (b). Let $\{u_1, ..., u_N\}$ be a basis of F and $g_1, ..., g_N$ the corresponding coordinate functionals, that is, $g_i(u_j) = \delta_{ij}$ (i, j = 1, ..., N). Let $P \in \mathbf{P}_f({}^nE, F)$. Then we can write $P(x) = \sum_{i=1}^{\ell} (T_i(x))^n$ $(x \in E)$ for some $T_1, ..., T_{\ell} \in B(E, F)$. Let

$$f_{ij}(x) = g_j(T_i(x)) \quad (x \in E),$$
 (2.9)

for each $i = 1, ..., \ell$, j = 1, ..., N. Then we have $T_i(x) = \sum_{j=1}^N f_{ij}(x) u_j$ ($x \in E$, $i = 1, ..., \ell$), and hence by Lemma 2.1,

$$P(x) = \sum_{i=1}^{\ell} \left(\sum_{j=1}^{N} f_{ij}(x) u_j \right)^n$$

= $\sum_{i=1}^{\ell} \sum_{j_1=1}^{N} \cdots \sum_{j_n=1}^{N} f_{ij_1}(x) \cdots f_{ij_n}(x) u_{j_1} \cdots u_{j_n}$
= $\sum_{i=1}^{\ell} \sum_{j_1=1}^{N} \cdots \sum_{j_n=1}^{N} \frac{1}{K_n} \sum_{\epsilon_1, \dots, \epsilon_n=\pm 1} \epsilon_1 \cdots \epsilon_n \left(\sum_{k=1}^{n} \epsilon_k f_{ij_k}(x) \right)^n u_{j_1} \cdots u_{j_n}$
= $\sum_{i=1}^{\ell} \sum_{j_1=1}^{N} \cdots \sum_{j_n=1}^{N} \sum_{\epsilon_1, \dots, \epsilon_n=\pm 1} (f_{i,j_1, \dots, j_n, \epsilon_1, \dots, \epsilon_n}(x))^n b_{j_1, \dots, j_n, \epsilon_1, \dots, \epsilon_n},$ (2.10)

for each $x \in E$, where $f_{i,j_1,...,j_n,\varepsilon_1,...,\varepsilon_n} = \varepsilon_1 f_{ij_1} + \cdots + \varepsilon_n f_{ij_n} \in E^*$ and $b_{j_1,...,j_n,\varepsilon_1,...,\varepsilon_n} = (1/K_n)\varepsilon_1 \cdots \varepsilon_n u_{j_1} \cdots u_{j_n} \in F$. Therefore we have $P \in P_f({}^nE,F)$.

(b) \Rightarrow (c). This is trivial.

(c)⇒(a). Suppose that $\mathbf{P}_f({}^1E,F) \subseteq P_f({}^1E,F)$ for every Banach space *E*. Note that $P_f({}^1F,F) = \{T \in B(F,F) : \dim T(F) < \infty\}$ and $\mathbf{P}_f({}^1F,F) = B(F,F)$. Then by hypothesis, the identity map of *F* onto itself is finite dimensional and so is *F*. \Box

PROOF OF PROPOSITION 1.5. This follows immediately from Propositions 1.1 and 1.4.

REFERENCES

 M. L. Lourenço and L. A. Moraes, A class of polynomials from Banach spaces into Banach algebras, Publ. Res. Inst. Math. Sci. 37 (2001), no. 4, 521–529.

SIN-EI TAKAHASI: DEPARTMENT OF BASIC TECHNOLOGY, APPLIED MATHEMATICS AND PHYSICS, YAMAGATA UNIVERSITY, YONEZAWA 992-8510, JAPAN *E-mail address*: sin-ei@emperor.yz.yamagata-u.ac.jp

OSAMU HATORI: DEPARTMENT OF MATHEMATICAL SCIENCES, GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY, NIIGATA UNIVERSITY, NIIGATA 950-2181, JAPAN *E-mail address*: hatori@m.sc.niigata-u.ac.jp

KEIICHI WATANABE: DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, NIIGATA UNIVER-SITY, NIIGATA 950-2181, JAPAN

E-mail address: wtnbk@m.sc.niigata-u.ac.jp

TAKESHI MIURA: DEPARTMENT OF BASIC TECHNOLOGY, APPLIED MATHEMATICS AND PHYSICS, YAMAGATA UNIVERSITY, YONEZAWA 992-8510, JAPAN *E-mail address*: miura@yz.yamagata-u.ac.jp