A NOTE ON A CLASS OF BANACH ALGEBRA-VALUED POLYNOMIALS

SIN-EI TAKAHASI, OSAMU HATORI, KEIICHI WATANABE, and TAKESHI MIURA

Received 10 March 2002

Let F be a Banach algebra. We give a necessary and sufficient condition for F to be finite dimensional, in terms of finite type n-homogeneous F-valued polynomials.

2000 Mathematics Subject Classification: 46H99.

1. Introduction and results. Let E and F be complex Banach spaces. We denote by $L\left({ }^{n} E, F\right)$ the Banach space of all continuous n-linear mappings A from E^{n} into F endowed with the norm $\|A\|=\sup \left\{\left\|A\left(x_{1}, \ldots, x_{n}\right)\right\|:\left\|x_{j}\right\| \leq 1, j=1, \ldots, n\right\}$. A mapping P from E into F is called a continuous n-homogeneous polynomial if $P(x)=A(x, \ldots, x)$ (for all $x \in E$) for some $A \in L\left({ }^{n} E, F\right)$. We denote by $P\left({ }^{n} E, F\right)$ the Banach space of all continuous n-homogeneous polynomials P from E into F endowed with the norm $\|P\|=\sup \{\|P(x)\|:\|x\| \leq 1\}$. Also a mapping P from E into F is called a finite type n-homogeneous polynomial if $P(x)=f_{1}(x)^{n} b_{1}+\cdots+f_{k}(x)^{n} b_{k}$ (for all $x \in E$), where $f_{1}, \ldots, f_{k} \in E^{*}$ and $b_{1}, \ldots, b_{k} \in F$. We denote by $P_{f}\left({ }^{n} E, F\right)$ the space of all finite type n-homogeneous polynomials P from E into F. Then we have $P_{f}\left({ }^{n} E, F\right) \subseteq P\left({ }^{n} E, F\right)$. Indeed, let $P \in P_{f}\left({ }^{n} E, F\right)$. Then we write $P(x)=f_{1}(x)^{n} b_{1}+\cdots+f_{k}(x)^{n} b_{k}(x \in E)$ for some $f_{1}, \ldots, f_{k} \in E^{*}$ and $b_{1}, \ldots, b_{k} \in F$. Set

$$
\begin{equation*}
A\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{k} f_{i}\left(x_{1}\right) \cdots f_{i}\left(x_{n}\right) b_{i}, \quad\left(x_{1}, \ldots, x_{n}\right) \in E^{n} . \tag{1.1}
\end{equation*}
$$

Then A is a continuous n-linear mapping from E^{n} into F and $P(x)=A(x, \ldots, x)$ $(x \in E)$. Hence $P \in P\left({ }^{n} E, F\right)$. We are now interested in the case that F is a Banach algebra. Let

$$
\begin{equation*}
\mathbf{P}_{f}\left({ }^{n} E, F\right)=\left\{\varphi_{1}^{n}+\cdots+\varphi_{k}^{n}: \varphi_{j} \in B(E, F)(j=1, \ldots, k), k \in \mathbb{N}\right\}, \tag{1.2}
\end{equation*}
$$

where $\varphi_{j}^{n}(x)=\left(\varphi_{j}(x)\right)^{n}(x \in E)$. Then we have $\mathbf{P}_{f}\left({ }^{n} E, \mathbf{C}\right)=P_{f}\left({ }^{n} E, \mathbf{C}\right)$ and $\mathbf{P}_{f}\left({ }^{n} \mathbf{C}, F\right) \subseteq$ $P_{f}\left({ }^{n} \mathbf{C}, F\right)$ (see [1, Section 1]). Also, we have $\mathbf{P}_{f}\left({ }^{n} E, F\right) \subseteq P\left({ }^{n} E, F\right)$. Indeed, let $P \in$ $\mathbf{P}_{f}\left({ }^{n} E, F\right)$. Then we can write $P=\varphi_{1}^{n}+\cdots+\varphi_{k}^{n}$ for some $\varphi_{1}, \ldots, \varphi_{k} \in B(E, F)$. Set $A\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{k} \varphi_{i}\left(x_{1}\right) \cdots \varphi_{i}\left(x_{n}\right),\left(x_{1}, \ldots, x_{n}\right) \in E^{n}$. Then A is a continuous n linear mapping from E^{n} into F and $P(x)=A(x, \ldots, x)(x \in E)$. Hence $P \in P\left({ }^{n} E, F\right)$.

Now, for each $n \in \mathbb{N}$, we say that an algebra F has the r_{n}-property if, given any $b \in F$, we can find elements $a_{1}, \ldots, a_{p} \in F$ such that $b=\sum_{i=1}^{p} a_{i}^{n}$. We also say that an algebra F has the r-property if F has the r_{n}-property for each $n \in \mathbb{N}$.

Proposition 1.1 (see [1]). (1) Every unital complex algebra has the r-property.
(2) Let E be a Banach space and F be a Banach algebra. Then $P_{f}\left({ }^{n} E, F\right) \subseteq \mathbf{P}_{f}\left({ }^{n} E, F\right)$ if and only if F has the r_{n}-property.

In [1], it is remarked that, given an arbitrary Banach space $(F,+,\|\cdot\|)$, we can always define a product \circ and a norm $\|\cdot\|_{*}$ on F in order that $\left(F,+, \circ,\|\cdot\|_{*}\right)$ is a unital Banach algebra and $\|\cdot\|_{*}$ is equivalent to $\|\cdot\|$. By Proposition 1.1 and the above remark, Lourenço-Moraes proved the following proposition.

Proposition 1.2 (see [1]). Let E be a Banach space. The following are equivalent:
(a) E is a finite-dimensional space;
(b) $P_{f}\left({ }^{n} E, F\right)=\mathbf{P}_{f}\left({ }^{n} E, F\right)$ for every $n \in \mathbb{N}$ and for every Banach algebra F with the r_{n}-property;
(c) $P_{f}\left({ }^{n} E, F\right)=\mathbf{P}_{f}\left({ }^{n} E, F\right)$ for every $n \in \mathbb{N}$ and for every unital Banach algebra F.

Remark 1.3. By the proof of Proposition 1.2 (see [1]), we see that each of the following two statements are also equivalent to one of, hence all of, (a), (b), and (c) in Proposition 1.2:
(b') $P_{f}\left({ }^{1} E, F\right)=\mathbf{P}_{f}\left({ }^{1} E, F\right)$ for every unital Banach algebra F;
(d) $P_{f}\left({ }^{n} E, F\right)=\mathbf{P}_{f}\left({ }^{n} E, F\right)$ for every $n \in \mathbb{N}$ and for every Banach space F.

In this note we show the following result, which is opposite to Proposition 1.2.
Proposition 1.4. Let F be a Banach algebra. Then the following are equivalent:
(a) F is a finite-dimensional space;
(b) $\mathbf{P}_{f}\left({ }^{n} E, F\right) \subseteq P_{f}\left({ }^{n} E, F\right)$ for every $n \in \mathbb{N}$ and for every Banach space E;
(c) $\mathbf{P}_{f}\left({ }^{1} E, F\right) \subseteq P_{f}\left({ }^{1} E, F\right)$ for every Banach space E.

In particular, in the unital case, we have the following proposition.
Proposition 1.5. Let F be a unital Banach algebra. Then the following are equivalent:
(a) F is a finite-dimensional space;
(b) $\mathbf{P}_{f}\left({ }^{n} E, F\right)=P_{f}\left({ }^{n} E, F\right)$ for every $n \in \mathbb{N}$ and for every Banach space E;
(c) $\mathbf{P}_{f}\left({ }^{1} E, F\right)=P_{f}\left({ }^{1} E, F\right)$ for every Banach space E.

2. Proofs

Lemma 2.1. Let n be any positive integer and let x_{1}, \ldots, x_{n} be n-real variables. Then

$$
\begin{equation*}
\prod_{i=1}^{n} x_{i}=\frac{1}{2^{n} n!} \sum_{\varepsilon_{1}, \ldots, \varepsilon_{n}= \pm 1} \varepsilon_{1} \cdots \varepsilon_{n}\left(\sum_{k=1}^{n} \varepsilon_{k} x_{k}\right)^{n} \tag{2.1}
\end{equation*}
$$

holds.
Proof. For each m with $0 \leq m \leq n$, let

$$
\begin{equation*}
P_{m}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\varepsilon_{1}, \ldots, \varepsilon_{n}= \pm 1} \varepsilon_{1} \cdots \varepsilon_{n}\left(\sum_{k=1}^{n} \varepsilon_{k} x_{k}\right)^{m} \tag{2.2}
\end{equation*}
$$

Then we have $P_{m}\left(0, x_{2}, \ldots, x_{n}\right)=P_{m}\left(x_{1}, 0, \ldots, x_{n}\right)=\cdots=P_{m}\left(x_{1}, \ldots, x_{n-1}, 0\right)=0$. Indeed since

$$
\begin{align*}
P_{m}\left(x_{1}, \ldots, x_{n}\right)= & \sum_{\varepsilon_{2}, \ldots, \varepsilon_{n}= \pm 1} \varepsilon_{2} \cdots \varepsilon_{n}\left(x_{1}+\varepsilon_{2} x_{2}+\cdots+\varepsilon_{n} x_{n}\right)^{m} \\
& -\sum_{\varepsilon_{2}, \ldots, \varepsilon_{n}= \pm 1} \varepsilon_{2} \cdots \varepsilon_{n}\left(-x_{1}+\varepsilon_{2} x_{2}+\cdots+\varepsilon_{n} x_{n}\right)^{m}, \tag{2.3}
\end{align*}
$$

it follows that $P_{m}\left(0, x_{2}, \ldots, x_{n}\right)=0$. Similarly,

$$
\begin{equation*}
P_{m}\left(x_{1}, 0, \ldots, x_{n}\right)=\cdots=P_{m}\left(x_{1}, \ldots, x_{n-1}, 0\right)=0 . \tag{2.4}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
P_{m}\left(x_{1}, \ldots, x_{n}\right)=0, \tag{2.5}
\end{equation*}
$$

for each $m=0,1,2, \ldots, n-1$ and

$$
\begin{equation*}
P_{n}\left(x_{1}, \ldots, x_{n}\right)=K_{n} \prod_{i=1}^{n} x_{i}, \tag{2.6}
\end{equation*}
$$

for some constant K_{n}, because $P_{m}\left(x_{1}, \ldots, x_{n}\right)$ is m-homogeneous for x_{1}, \ldots, x_{n}. Hence we only show that $K_{n}=2^{n} n!$. Note that

$$
\begin{equation*}
K_{n}=P_{n}(1, \ldots, 1)=\sum_{\varepsilon_{1}, \ldots, \varepsilon_{n}= \pm 1} \varepsilon_{1} \cdots \varepsilon_{n}\left(\sum_{k=1}^{n} \varepsilon_{k}\right)^{n} . \tag{2.7}
\end{equation*}
$$

Then $K_{1}=2$. Now, for each m with $0 \leq m \leq n$, let $\alpha_{m}=\sum_{\varepsilon_{1}, \ldots, \varepsilon_{n}= \pm 1} \varepsilon_{1} \cdots \varepsilon_{n}\left(\sum_{k=1}^{n} \varepsilon_{k}\right)^{m}$. Then by (2.5) and (2.6), we have $\alpha_{0}=\alpha_{1}=\cdots=\alpha_{n-1}=0$ and $\alpha_{n}=K_{n}$. Hence,

$$
\begin{align*}
K_{n+1} & =\sum_{\varepsilon_{1}, \ldots, \varepsilon_{n+1}= \pm 1} \varepsilon_{1} \cdots \varepsilon_{n+1}\left(\sum_{k=1}^{n+1} \varepsilon_{k}\right)^{n+1} \\
& =\sum_{\varepsilon_{1}, \ldots, \varepsilon_{n}= \pm 1} \varepsilon_{1} \cdots \varepsilon_{n}\left(\sum_{k=1}^{n} \varepsilon_{k}+1\right)^{n+1}-\sum_{\varepsilon_{1}, \ldots, \varepsilon_{n}= \pm 1} \varepsilon_{1} \cdots \varepsilon_{n}\left(\sum_{k=1}^{n} \varepsilon_{k}-1\right)^{n+1} \\
= & \sum_{m=0}^{n+1}\binom{n+1}{m} \sum_{\varepsilon_{1}, \ldots, \varepsilon_{n}= \pm 1} \varepsilon_{1} \cdots \varepsilon_{n}\left(\sum_{k=1}^{n} \varepsilon_{k}\right)^{m} \\
& -\sum_{m=0}^{n+1}\binom{n+1}{m} \sum_{\varepsilon_{1}, \ldots, \varepsilon_{n}= \pm 1} \varepsilon_{1} \cdots \varepsilon_{n}(-1)^{n+1-m}\left(\sum_{k=1}^{n} \varepsilon_{k}\right)^{m} \tag{2.8}\\
& =\sum_{m=0}^{n+1}\binom{n+1}{m}\left(1-(-1)^{n+1-m}\right) \sum_{\varepsilon_{1}, \ldots, \varepsilon_{n}= \pm 1} \varepsilon_{1} \cdots \varepsilon_{n}\left(\sum_{k=1}^{n} \varepsilon_{k}\right)^{m} \\
= & \sum_{m=0}^{n}\binom{n+1}{m}\left(1-(-1)^{n+1-m}\right) \alpha_{m} \\
& =\binom{n+1}{n}\left(1-(-1)^{n+1-n}\right) K_{n} \\
& =2(n+1) K_{n},
\end{align*}
$$

so that we have $K_{n}=2^{n} n!(n=1,2, \ldots)$ inductively.

Proof of Proposition 1.4. (a) \Rightarrow (b). Let $\left\{u_{1}, \ldots, u_{N}\right\}$ be a basis of F and g_{1}, \ldots, g_{N} the corresponding coordinate functionals, that is, $g_{i}\left(u_{j}\right)=\delta_{i j}(i, j=1, \ldots, N)$. Let $P \in \mathbf{P}_{f}\left({ }^{n} E, F\right)$. Then we can write $P(x)=\sum_{i=1}^{\ell}\left(T_{i}(x)\right)^{n}(x \in E)$ for some $T_{1}, \ldots, T_{\ell} \in$ $B(E, F)$. Let

$$
\begin{equation*}
f_{i j}(x)=g_{j}\left(T_{i}(x)\right) \quad(x \in E) \tag{2.9}
\end{equation*}
$$

for each $i=1, \ldots, \ell, j=1, \ldots, N$. Then we have $T_{i}(x)=\sum_{j=1}^{N} f_{i j}(x) u_{j}(x \in E, i=$ $1, \ldots, \ell)$, and hence by Lemma 2.1,

$$
\begin{align*}
P(x) & =\sum_{i=1}^{\ell}\left(\sum_{j=1}^{N} f_{i j}(x) u_{j}\right)^{n} \\
& =\sum_{i=1}^{\ell} \sum_{j_{1}=1}^{N} \cdots \sum_{j_{n}=1}^{N} f_{i j_{1}}(x) \cdots f_{i j_{n}}(x) u_{j_{1}} \cdots u_{j_{n}} \\
& =\sum_{i=1}^{\ell} \sum_{j_{1}=1}^{N} \cdots \sum_{j_{n}=1}^{N} \frac{1}{K_{n}} \sum_{\varepsilon_{1}, \ldots, \varepsilon_{n}= \pm 1} \varepsilon_{1} \cdots \varepsilon_{n}\left(\sum_{k=1}^{n} \varepsilon_{k} f_{i j_{k}}(x)\right)^{n} u_{j_{1}} \cdots u_{j_{n}} \tag{2.10}\\
& =\sum_{i=1}^{\ell} \sum_{j_{1}=1}^{N} \cdots \sum_{j_{n}=1}^{N} \sum_{\varepsilon_{1}, \ldots, \varepsilon_{n}= \pm 1}\left(f_{i, j_{1}, \ldots, j_{n}, \varepsilon_{1}, \ldots, \varepsilon_{n}}(x)\right)^{n} b_{j_{1}, \ldots, j_{n}, \varepsilon_{1}, \ldots, \varepsilon_{n}},
\end{align*}
$$

for each $x \in E$, where $f_{i, j_{1}, \ldots, j_{n}, \varepsilon_{1}, \ldots, \varepsilon_{n}}=\varepsilon_{1} f_{i j_{1}}+\cdots+\varepsilon_{n} f_{i j_{n}} \in E^{*}$ and $b_{j_{1}, \ldots, j_{n}, \varepsilon_{1}, \ldots, \varepsilon_{n}}=$ $\left(1 / K_{n}\right) \varepsilon_{1} \cdots \varepsilon_{n} u_{j_{1}} \cdots u_{j_{n}} \in F$. Therefore we have $P \in P_{f}\left({ }^{n} E, F\right)$.
(b) \Rightarrow (c). This is trivial.
(c) \Rightarrow (a). Suppose that $\mathbf{P}_{f}\left({ }^{1} E, F\right) \subseteq P_{f}\left({ }^{1} E, F\right)$ for every Banach space E. Note that $P_{f}\left({ }^{1} F, F\right)=\{T \in B(F, F): \operatorname{dim} T(F)<\infty\}$ and $\mathbf{P}_{f}\left({ }^{1} F, F\right)=B(F, F)$. Then by hypothesis, the identity map of F onto itself is finite dimensional and so is F.

Proof of Proposition 1.5. This follows immediately from Propositions 1.1 and 1.4.

References

[1] M. L. Lourenço and L. A. Moraes, A class of polynomials from Banach spaces into Banach algebras, Publ. Res. Inst. Math. Sci. 37 (2001), no. 4, 521-529.

Sin-Ei Takahasi: Department of Basic Technology, applied Mathematics and Physics, Yamagata University, Yonezawa 992-8510, Japan

E-mail address: sin-ei@emperor.yz.yamagata-u.ac.jp
Osamu Hatori: Department of Mathematical Sciences, Graduate School of Science and Technology, Nigata University, Niigata 950-2181, Japan

E-mail address: hatori@m.sc.ni igata-u.ac.jp
Keilchi Watanabe: Department of Mathematics, Faculty of Science, Nigata UniverSity, Niggata 950-2181, Japan

E-mail address: wtnbk@m.sc.niigata-u.ac.jp
Takeshi Miura: Department of Basic Technology, Applied Mathematics and Physics, Yamagata University, Yonezawa 992-8510, Japan

E-mail address: miura@yz.yamagata-u.ac.jp

