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SUFFICIENT CONDITIONS FOR STARLIKENESS ASSOCIATED
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An analytic function f(z)= z+an+1zn+1+··· , defined on the unit disk �= {z : |z|< 1},
is in the class Sp if zf ′(z)/f(z) is in the parabolic region Rew > |w −1|. This class is
closely related to the class of uniformly convex functions. Sufficient conditions for function
to be in Sp are obtained. In particular, we find condition on λ such that the function f(z),
satisfying (1−α)(f(z)/z)µ+αf ′(z)(f (z)/z)µ−1 ≺ 1+λz, is in Sp .
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1. Introduction. Let �n be the family of analytic functions f(z) = z+an+1zn+1+
··· in the unit disk � = {z : |z| < 1}, and let �1 = �. For 0 ≤ α < 1, let S∗(α) and

C(α) denote the subclasses of � of starlike functions and convex functions of order

α, respectively; forα= 0, S∗(0)= S∗, the class of starlike functions in�. The function

f ∈ � is uniformly convex (starlike) if, for every circular arc γ contained in � with

center ζ ∈�, the image arc f(γ) is convex (starlike with respect to f(ζ)). The class

of all uniformly convex functions denoted by UCV was introduced by Goodman [1] in

1991. Rønning [5] and Ma and Minda [2] independently proved that f ∈ UCV if and

only if

Re
{

1+ zf
′′(z)

f ′(z)

}
>
∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣, z ∈�. (1.1)

Further, Rønning [5] defined the class Sp of functions f ∈� for which

Re
{
zf ′(z)
f(z)

}
>
∣∣∣∣zf ′(z)f(z)

−1
∣∣∣∣ (1.2)

holds for all z ∈ �. It can be observed that f ∈ UCV if and only if zf ′ ∈ Sp . Let

Ω = {w : |w−1| < Rew}. It follows that f ∈ UCV or Sp are equivalent to saying that

1+ zf ′′(z)/f ′(z) or zf ′(z)/f(z) are in Ω, respectively. Note that Ω is a parabolic

region symmetric with respect to the real axis and (1/2,0) as its vertex. The function

k(z), with k(0)= k′(0)−1= 0 and

1+ zk
′′(z)

k′(z)
= 1+ 2

π2

[
log

(
1+√z
1−√z

)]2

, (1.3)

is an example of function in UCV.
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Ponnusamy and Singh [4] obtained bounds on λ such that the Alexander transform

of f ∈ �, satisfying f ′ ≺ 1+λz, is uniformly convex. We extend their result in two

directions. Specifically, we find condition on λ such that the function f(z), satisfying

(1−α)
(
f(z)
z

)µ
+αf ′(z)

(
f(z)
z

)µ−1

≺ 1+λz,
∣∣αzf ′′(z)+f ′(z)−1

∣∣< λ,
(1.4)

is in Sp .

Let a> 1/2 and let Ra =min{|w−a| : |w−1| = Rew}. A simple computation gives

Ra =



a− 1

2
if

1
2
<a≤ 3

2
,

√
2a−2 if a≥ 3

2
.

(1.5)

Now,D(a,Ra)= {w : |w−a|<Ra} is the largest disk centered at awhich lies inside

Ω. If we restrict the value of a by 3/4<a< 3, then the disk will contain the point 1.

Lemma 1.1 [6]. Let f ∈�. If, for any a, 3/4<a< 3,∣∣∣∣zf ′(z)f(z)
−a

∣∣∣∣<Ra, z ∈U, (1.6)

then f ∈ Sp .

Also, we need the following result.

Lemma 1.2 [3]. Let h(z) be convex and γ ≠ 0, Reγ ≥ 0. If p(z) = a+pnzn+··· ,
n≥ 2, is analytic in � and

p(z)+ zp
′(z)
γ

≺ h(z), h(0)= p(0), (1.7)

then

p(z)≺ γ
n
z−γ/n

∫ z
0
h(t)tγ/n−1dt. (1.8)

2. Main results. We begin with proving the following result.

Theorem 2.1. Let µ > 0, α≥ 0, and 0≤ β < 1. Let f ∈�n and

0< λ≤ α(µ+αn)(a−β−|1−a|)
µ
[
1+(a−β)α+∣∣(a−1)α+1

∣∣]+αn. (2.1)

Then, for a> (1+β)/2,

(1−α)
(
f(z)
z

)µ
+αf ′(z)

(
f(z)
z

)µ−1

≺ 1+λz (2.2)

implies
∣∣∣∣zf ′(z)f(z)

−a
∣∣∣∣≤ λ

[
µ+αn+µ∣∣(a−1)α+1

∣∣]+α|1−a|(µ+αn)
α(µ+αn−λµ) ≤ a−β, (2.3)

and f ∈ S∗(β).
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Proof. Define the functions Q(z) and w(z) by

Q(z)=
(
f(z)
z

)µ
, w(z)= zf

′(z)
f(z)

−a, z ∈�. (2.4)

Then, Q(z) and w(z) are analytic in �, and w(0)= 1−a. Clearly,

(1−α)Q(z)+α[w(z)+a]Q(z)= (1−α)(f(z)
z

)µ
+αzf

′(z)
f(z)

(
f(z)
z

)µ
≺ 1+λz,

1
µ
zQ′(z)
Q(z)

+1=w(z)+a.
(2.5)

This shows that

Q(z)+ α
µ
zQ′(z)≺ 1+λz, (2.6)

and hence, by Lemma 1.2, we have

Q(z)≺ 1+ λµ
µ+αnz, z ∈�. (2.7)

Since

λ≤ α(µ+αn)(a−β−|1−a|)
µ
[
1+(a−β)α+∣∣(a−1)α+1

∣∣]+αn ≤
µ+αn
µ

(2.8)

and a≥ (1+β)/2, we see that µ+αn−λµ > 0.

Since

zf ′(z)
f(z)

−a=w(z)

=
[
(1−α)Q(z)+αQ(z)(w(z)+a)−1

]−(Q(z)−1
)[
(a−1)α+1

]+α(1−a)
αQ(z)

,

(2.9)

we have

∣∣∣∣zf ′(z)f(z)
−a

∣∣∣∣≤ λ+
(
λµ/(µ+αn))∣∣(a−1)α+1

∣∣+α|1−a|
α
(
1−λµ/(µ+αn))

≤ λ
[
µ+αn+µ∣∣(a−1)α+1

∣∣]+α|1−a|(µ+αn)
α(µ+αn−λµ)

≤ a−β

(2.10)

provided condition (2.1) is satisfied. This shows that Rezf ′(z)/f(z) > β and f(z) is

starlike of order β.

Note that to prove (2.10) it is enough to assume that 0< λ≤ (µ+αn)/µ.
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Corollary 2.2. If f(z)= z+an+1zn+1+··· is analytic in � and if∣∣∣∣∣f ′(z)
(
f(z)
z

)µ−1

−1

∣∣∣∣∣< λ, z ∈�, (2.11)

then, for a> 1/2, we have

∣∣∣∣zf ′(z)f(z)
−a

∣∣∣∣≤ λ
[
µ(a+1)+n]+(µ+n)|1−a|

µ+n−λµ ≤ a (2.12)

provided µ > 0 and

0< λ≤ (µ+n)
(
a−|1−a|)

µ(1+2a)+n . (2.13)

When µ = 1, Corollary 2.2 reduces to the result by Ponnusamy and Singh [4].

Theorem 2.3. Let λ be defined by

λ=




α(µ+αn)(4a−3)
µ
[
2+(2a−1)α+2

∣∣(a−1)α+1
∣∣]+2αn

(
3
4
<a≤ 1

)
,

α(µ+αn)
µ
[
α(4a−1)+2

]+2αn

(
1≤ a≤ 3

2

)
,

α(µ+αn)(1−a+√2a−2
)

αn+µ[2+α(a−1)+α√2a−2
] (

3
2
≤ a< 3

)
.

(2.14)

If f ∈�n satisfies

(1−α)
(
f(z)
z

)µ
+αf ′(z)

(
f(z)
z

)µ−1

≺ 1+λz, (2.15)

then f ∈ Sp .

It should be noted that if 3/4<a≤ 3/2, then the condition on λ in Theorem 2.3 re-

duces to the condition in Theorem 2.1. Hence, with the same condition as in Theorem

2.1 (with β= 1/2), we get a stronger conclusion that f ∈ Sp .

Proof. We first verify that λ defined in Theorem 2.3 satisfies the condition 0 <
λ≤ (µ+αn)/µ. This condition is equivalent to

0≤




µ
[
α(2a−1)+1

] (
1≤ a≤ 3

2

)
,

2µ+αn
(

3
4
≤ a≤ 1, (a−1)α+1≥ 0

)
,

2µα(1−a)+αn
(

3
4
≤ a≤ 1, (a−1)α+1≤ 0

)
,

αn+2µ
[
α(a−1)+1

] (
3
2
≤ a< 3

)
.

(2.16)

The above inequality is obviously correct. Let

Ra = λ
[
µ+αn+µ∣∣(a−1)α+1

∣∣]+α|1−a|(µ+αn)
α(µ+αn−λµ) . (2.17)
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Then, a computation shows that

Ra =



a− 1

2

(
3
4
<a≤ 3

2

)
,

√
2a−2

(
3
2
≤ a< 3

)
.

(2.18)

Then, from the proof of Theorem 2.1, we have∣∣∣∣zf ′(z)f(z)
−a

∣∣∣∣≤ Ra. (2.19)

Using Lemma 1.1, we have the desired result.

This result for µ = 1 and α= 1 is obtained in Ponnusamy and Singh [4].

Theorem 2.4. Suppose α∈ C, a> 1/2, and λ∈R satisfy

0< λ≤ |1+nα|(µ+n)
(
a−|1−a|)

µ(1+2a)+n . (2.20)

If

(
f(z)
z

)µ−1
{
α(µ−1)

z
[
f ′(z)

]2
f(z)

+αzf ′′(z)+(1+(1−µ)α)f ′(z)
}
≺ 1+λz, z ∈�,

(2.21)

then ∣∣∣∣zf ′(z)f(z)
−a

∣∣∣∣≤ λ1
[
n+µ(a+1)

]+(µ+n)|1−a|
µ
(
1−λ1

)+n , (2.22)

where λ1 = λ/|1+nα|.
Proof. Let p(z)= f ′(z)(f (z)/z)µ−1, z ∈�. Then, p(z) is analytic in � and

zp′(z)=
(
f(z)
z

)µ−1{
zf ′′(z)+(µ−1)

(
zf ′(z)
f(z)

−1
)
f ′(z)

}
. (2.23)

This shows that

p(z)+αzp′(z)≺ 1+λz, (2.24)

and hence, by Lemma 1.2,

p(z)≺ 1+ λ
1+nαz ≺ 1+ λ

|1+nα|z. (2.25)

The result now follows from Theorem 2.1 where λ1 = λ/|1+nα|.
Corollary 2.5. Suppose that α∈ C, a> 1/2, and λ∈R satisfy

0< λ≤ |1+nα|(1+n)
(
a−|1−a|)

1+2a+n . (2.26)

If f ∈� satisfies ∣∣αzf ′′(z)+f ′(z)−1
∣∣< λ, z ∈�, (2.27)

then ∣∣∣∣zf ′(z)f(z)
−a

∣∣∣∣≤ λ1[n+a+1]+(1+n)|1−a|
1−λ1+n , (2.28)

where λ1 = λ/|1+nα|.
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The result follows from Theorem 2.4 when a=n= 1 and is obtained in [4].

Theorem 2.6. Let λ be defined by

λ=




|1+nα|(1+n)(4a−3)
4a+2n+1

(
3
4
<a≤ 1

)
,

|1+nα|(1+n)
4a+2n+1

(
1<a≤ 3

2

)
,

|1+nα|(1+n)(√2a−2+1−a)
n+1+a+√2a−2

(
3
2
≤ a≤ 3

)
.

(2.29)

If |αzf ′′(z)+f ′(z)−1|< λ, then f ∈ Sp .

Proof. From the definition of λ, it is clear that

λ1[n+a+1]+(1+n)|1−a|
1−λ1+n =



a− 1

2

(
3
4
<a≤ 3

2

)
,

√
2a−2

(
3
2
≤ a< 3

)
,

(2.30)

where λ1 = λ/|1+nα|. Since

0< λ≤ |1+nα|(1+n)
(
a−|1−a|)

2a+n+1
, (2.31)

the result follows from Corollary 2.5.
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