SP-CLOSEDNESS IN L-FUZZY TOPOLOGICAL SPACES

BAI SHI-ZHONG

Received 20 February 2002

We introduce and study *SP*-closedness in *L*-fuzzy topological spaces, where *L* is a fuzzy lattice. *SP*-closedness is defined for arbitrary *L*-fuzzy subsets.

2000 Mathematics Subject Classification: 54Axx.

1. Introduction. Andrijević [1] introduced the definition of semi-preopen sets in general topological spaces. Thakur and Singh [8] extended this definition to fuzzy topological spaces. In [4], using semi-preopen sets, we have introduced and studied a good definitions of semi-precompactness in *L*-fuzzy topological spaces.

In this note, along the lines of this semi-precompactness, we introduce a definition of *SP*-closedness in *L*-fuzzy topological spaces. Also, we obtain some of its properties. *SP*-closedness is defined for arbitrary *L*-fuzzy subsets. It is a weaker form of semi-precompactness, but it is a stronger form of *P*-closedness [3] and *S**-closedness [7].

2. Preliminaries. Throughout this note, *X* and *Y* will be nonempty ordinary sets, and $L = L(\leq, \lor, \land, ')$ will denote a fuzzy lattice, that is, a completely distributive lattice with a smallest element 0 and largest element 1 and with an order reversing involution $a \rightarrow a' \ (a \in L)$. We will denote by L^X the lattice of all *L*-fuzzy subsets of *X*.

DEFINITION 2.1 (Gierz et al. [6]). An element p of L is called prime if and only if $p \neq 1$, and whenever $a, b \in L$ with $a \land b \leq p$, then $a \leq p$ or $b \leq p$. The set of all prime elements of L will be denoted by pr(L).

DEFINITION 2.2 (Gierz et al. [6]). An element α of L is called union irreducible if and only if whenever $a, b \in L$ with $\alpha \leq a \lor b$, then $\alpha \leq a$ or $\alpha \leq b$. The set of all nonzero union-irreducible elements of L will be denoted by M(L). It is obvious that $p \in pr(L)$ if and only if $p' \in M(L)$.

Warner [9] has determined the prime element of the fuzzy lattice L^X . We have $pr(L^X) = \{x_p : x \in X \text{ and } p \in pr(L)\}$, where, for each $x \in X$ and each $p \in pr(L)$, $x_p : X \to L$ is the *L*-fuzzy set defined by

$$x_{p}(y) = \begin{cases} p & \text{if } y = x, \\ 1 & \text{otherwise.} \end{cases}$$
(2.1)

These x_p are called the *L*-fuzzy points of *X*, and we say that x_p is a member of an *L*-fuzzy set *f* and write $x_p \in f$ if and only if $f(x) \leq p$.

Thus, the union-irreducible elements of L^X are the function $x_{\alpha}: X \to L$ defined by

$$x_{\alpha}(y) = \begin{cases} \alpha & \text{if } y = x, \\ 0 & \text{otherwise,} \end{cases}$$
(2.2)

where $x \in X$ and $\alpha \in M(L)$. Hence, we have $M(L^X) = \{x_\alpha : x \in X \text{ and } \alpha \in M(L)\}$. As these x_α are identified with the *L*-fuzzy points x_p of *X*, we will refer to them as fuzzy points. When $x_\alpha \in M(L^X)$, we will call *x* and α the support of x_α ($x = \text{Supp } x_\alpha$) and the height of x_α ($\alpha = h(x_\alpha)$), respectively. We will denote *L*-fuzzy topological space by *L*-fts.

DEFINITION 2.3 (Zhao [10]). Let (X, δ) be an *L*-fts. A net in (X, δ) is a mapping $S : D \to M(L^X)$, where *D* is a directed set. For $m \in D$, we will denote S(m) by S_m , and the net *S* by $(S_m)_{m \in D}$. If $A \in L^X$ and for each $m \in D$, $S_m \leq A$, then *S* is called a net in *A*. A net $(S_m)_{m \in D}$ is called an α -net $(\alpha \in M(L))$ if, for each $\lambda \in \beta^*(\alpha)$ (where $\beta^*(\alpha)$ denotes the union of all minimal sets relative to α), the net $h(S) = (h(S_m))_{m \in D}$ is eventually greater than λ , that is, for each $\lambda \in \beta^*(\alpha)$, there is $m_0 \in D$ such that $h(S_m) \geq \lambda$ whenever $m \geq m_0$, where $h(S_m)$ is the height of *L*-fuzzy point $S_m \in M(L^X)$. If $h(S_m) = \alpha$ for all $m \in D$, then we will say that $(S_m)_{m \in D}$ is a constant α -net.

DEFINITION 2.4 (Thakur and Singh [8]). Let (X, δ) be an *L*-fts and $f \in L^X$. Then, *f* is called semi-preopen if and only if there is a preopen set *g* [3, 5] such that $g \le f \le g^-$ and semi-preclosed if and only if *f'* is semi-preopen. $f_{\Box} = \bigvee \{g : g \text{ is semi-preopen}, g \le f\}$ and $f_{\frown} = \bigwedge \{g : g \text{ is semi-preclosed}, g \ge f\}$ are called the semi-preinterior and semi-preclosure of *f*, respectively.

It is clear that every semi-open *L*-fuzzy set is semi-preopen and every preopen *L*-fuzzy set is semi-preopen. None of the converses needs to be true [9].

DEFINITION 2.5 (Aygün [2]). Let (X, δ) be an *L*-fts and $g \in L^X$, $r \in L$. A collection $\mu = \{f_i\}_{i \in J}$ of *L*-fuzzy sets is called an *r*-level cover of *g* if and only if $(\bigvee_{i \in J} f_i)(x) \not\leq r$ for all $x \in X$ with $g(x) \geq r'$. If each f_i is open, then μ is called an *r*-level open cover of *g*. If *g* is the whole space *X*, then μ is called an *r*-level cover of *X* if and only if $(\bigvee_{i \in J} f_i)(x) \not\leq r$ for all $x \in X$. An *r*-level cover $\mu = \{f_i\}_{i \in J}$ of *g* is said to have a finite *r*-level subcover if there exists a finite subset *F* of *J* such that $(\bigvee_{i \in F} f_i)(x) \not\leq r$ for all $x \in X$ with $g(x) \geq r'$.

DEFINITION 2.6 (Bai [4]). Let (X, δ) be an *L*-fts and $g \in L^X$. We call g semiprecompact if and only if every *p*-level semi-preopen cover of g has a finite *p*-level subcover, where $p \in pr(L)$. If g is the whole space, then we say that the *L*-fts (X, δ) is semi-precompact.

3. SP-closedness

DEFINITION 3.1. Let (X, δ) be an *L*-fts and let $g \in L^X$, $r \in L$. An *r*-level cover $\mu = \{f_i\}_{i \in J}$ of g is said to have a finite r_{\sim} -level subcover if there exists a finite subset F of J such that $(\bigvee_{i \in F} (f_i)_{\sim})(x) \not\leq r$ for all $x \in X$ with $g(x) \geq r'$.

314

DEFINITION 3.2. Let (X, δ) be an *L*-fts and let $g \in L^X$. We call g *SP*-closed if and only if every *p*-level semi-preopen cover of g has a finite p_{\neg} -level subcover, where $p \in pr(L)$. If g is the whole space, then we say that the *L*-fts (X, δ) is *SP*-closed.

THEOREM 3.3. Every semi-precompact set is SP-closed in an L-fts.

PROOF. This immediately follows from Definitions 2.6 and 3.2.

THEOREM 3.4. *Every SP-closed set is not only P-closed* [3] *but also S*-closed* [7] *in an L-fts.*

PROOF. Since every preopen *L*-fuzzy set is semi-preopen and every semiopen *L*-fuzzy set is semi-preopen, and since for every *L*-fuzzy set *f* we have $f_{-} \leq f^{-}$ and $f_{-} \leq f_{-}$, where $f^{-} = \bigwedge \{g : g \text{ is preclosed}, g \geq f\}$ and $f_{-} = \bigwedge \{g : g \text{ is semiclosed}, g \geq f\}$, this directly follows from the definitions of *SP*-closedness, *P*-closedness, and *S**-closedness.

THEOREM 3.5. Let (X, δ) be an L-fts. Then, $g \in L^X$ is SP-closed if and only if, for every $\alpha \in M(L)$ and every collection $(h_i)_{i \in J}$ of semi-preclosed L-fuzzy sets with $(\bigwedge_{i \in J} h_i)(x) \not\geq \alpha$ for all $x \in X$ with $g(x) \geq \alpha$, there is a finite subset F of J such that $(\bigwedge_{i \in F} (h_i)_{\Box})(x) \not\geq \alpha$ for all $x \in X$ with $g(x) \geq \alpha$.

PROOF. This follows immediately from Definition 3.2.

DEFINITION 3.6. Let (X, δ) be an *L*-fts, x_{α} be an *L*-fuzzy point in $M(L^X)$, and $S = (S_m)_{m \in D}$ be a net. We call x_{α} an *SP*-cluster point of *S* if and only if, for each semipreclosed *L*-fuzzy set *f* with $f(x) \not\geq \alpha$ and for all $n \in D$, there is $m \in D$ such that $m \geq n$ and $S_m \not\leq f_{\square}$, that is, $h(S_m) \not\leq f_{\square}(\text{Supp } S_m)$.

THEOREM 3.7. Let (X, δ) be an L-fts. Then, $g \in L^X$ is SP-closed if and only if every constant α -net in g, where $\alpha \in M(L)$, has an SP-cluster point in g with height α .

Proof

NECESSITY. Let $\alpha \in M(L)$ and $S = (S_m)_{m \in D}$ be a constant α -net in g without any *SP*-cluster point with height α in g. Then, for each $x \in X$ with $g(x) \ge \alpha$, x_{α} is not an *SP*-cluster point of S, that is, there are $n_x \in D$ and a semi-preclosed L-fuzzy set f_x with $f_x(x) \ge \alpha$ and $S_m \le (f_x)_{\square}$ for each $m \ge n_x$. Let x^1, \ldots, x^k be elements of X with $g(x^i) \ge \alpha$ for each $i \in \{1, \ldots, k\}$. Then, there are $n_{x_1}, \ldots, n_{x_k} \in D$, semi-preclosed L-fuzzy set f_{x_i} with $f_{x_i}(x^i) \ge \alpha$, and $S_m \le (f_{x_i})_{\square}$ for each $m \ge n_{x_i}$ and for each $i \in \{1, \ldots, k\}$. Since D is a directed set, there is $n_o \in D$ such that $n_o \ge n_{x_i}$ for each $i \in \{1, \ldots, k\}$ and $S_m \le (f_{x_i})_{\square}$ for $i \in \{1, \ldots, k\}$ and each $m \ge n_o$. Now, consider the family $\mu = \{f_x\}_{x \in X}$ with $g(x) \ge \alpha$. Then, $(\bigwedge_{f_x \in \mu} f_x)(y) \ge \alpha$ for all $y \in X$ with $g(y) \ge \alpha$ and $(\bigwedge_{i=1}^k (f_{x_i})_{\square})(y) \ge \alpha$ since $S_m \le \bigwedge_{i=1}^k (f_{x_i})_{\square}$ for each $i \in \{1, \ldots, k\}$ and for each $m \ge n_o$. Hence, by Theorem 3.5, g is not *SP*-closed.

SUFFICIENCY. Suppose that *g* is not *SP*-closed. Then by Theorem 3.5, there exist $\alpha \in M(L)$ and a collection $\mu = (f_i)_{i \in J}$ of semi-preclosed *L*-fuzzy sets with $(\bigwedge_{i \in J} f_i)(x) \neq \alpha$ for all $x \in X$ with $g(x) \geq \alpha$, but for any finite subfamily ν of μ , there is $x \in X$ with

BAI SHI-ZHONG

 $g(x) \ge \alpha$ and $(\bigwedge_{f \in \nu} (f_i)_{\Box})(x) \ge \alpha$. Consider the family of all finite subsets of μ , $2^{(\mu)}$, with the order $\nu_1 \le \nu_2$ if and only if $\nu_1 \subset \nu_2$. Then $2^{(\mu)}$ is a directed set. So, writing x_{α} as S_{ν} for every $\nu \in 2^{(\mu)}$, $(S_{\nu})_{\nu \in 2^{(\mu)}}$ is a constant α -net in g because the height of S_{ν} for all $\nu \in 2^{(\mu)}$ is α and $S_{\nu} \le g$ for all $\nu \in 2^{(\mu)}$, that is, $g(x) \ge \alpha$. Also, $(S_{\nu})_{\nu \in 2^{(\mu)}}$ satisfies the condition that for each semi-preclosed L-fuzzy set $f_i \in \nu$ we have $x_{\alpha} = S_{\nu} \le (f_i)_{\Box}$. Let $\gamma \in X$ with $g(\gamma) \ge \alpha$. Then $(\bigwedge_{i \in J} f_i)(\gamma) \ge \alpha$, that is, there exists $j \in J$ with $f_j(\gamma) \ge \alpha$. Let $\nu_o = \{f_j\}$. So, for any $\nu \ge \nu_o$,

$$S_{\nu} \leq \bigwedge_{f_i \in \nu} (f_i)_{\square} \leq \bigwedge_{f_i \in \nu_o} (f_i)_{\square} = (f_j)_{\square}.$$
(3.1)

Thus, we get a semi-preclosed *L*-fuzzy set f_j with $f_j(\gamma) \ge \alpha$ and $\nu_o \in 2^{(\mu)}$ such that for any $\nu \ge \nu_o$, $S_{\nu} \le (f_j)_{\Box}$. That means that $\gamma_{\alpha} \in M(L^X)$ is not an *SP*-cluster point $(S_{\nu})_{\nu \in 2^{(\mu)}}$ for all $\gamma \in X$ with $g(\gamma) \ge \alpha$. Hence, the constant α -net $(S_{\nu})_{\nu \in 2^{(\mu)}}$ has no *SP*-cluster point in g with height α .

COROLLARY 3.8. An *L*-fts (X, δ) is SP-closed if and only if every constant α -net in (X, δ) has an SP-cluster point with height α , where $\alpha \in M(L)$.

THEOREM 3.9. Let (X, δ) be an L-fts and $g, h \in L^X$. If g and h are SP-closed, then $g \lor h$ is SP-closed as well.

PROOF. Let $\{f_i\}_{i\in J}$ be a *p*-level semi-preopen cover of $g \lor h$, where $p \in pr(L)$. Then, $(\bigvee_{i\in J} f_i)(x) \not\leq p$ for all $x \in X$ with $(g \lor h)(x) \ge p'$. Since *p* is prime, we have $(g \lor h)(x) \ge p'$ if and only if $g(x) \ge p'$ or $h(x) \ge p'$. So, by the *SP*-closedness of *g* and *h*, there are finite subsets *E*, *F* of *J* such that $(\bigvee_{i\in E}(f_i)_{\frown})(x) \not\leq P$ for all $x \in X$ with $g(x) \ge p'$ and $(\bigvee_{i\in F}(f_i)_{\frown})(x) \not\leq P$ for all $x \in X$ with $h(x) \ge p'$. Then, $(\bigvee_{i\in E\cup F}(f_i)_{\frown})(x) \not\leq P$ for all $x \in X$ with $g(x) \ge p'$ or $h(x) \ge p'$, that is, $(\bigvee_{i\in E\cup F}(f_i)_{\frown})(x) \not\leq P$ for all $x \in X$ with $(g \lor h)(x) \ge p'$. Thus, $g \lor h$ is *SP*-closed.

THEOREM 3.10. Let (X,δ) be an L-fts and $g,h \in L^X$. If g is SP-closed and h is semi-preclopen, then $g \wedge h$ is SP-closed.

PROOF. Let $\{f_i\}_{i\in J}$ be a *p*-level semi-preopen cover of $g \wedge h$, where $p \in pr(L)$. Then, $(\bigvee_{i\in J} f_i)(x) \not\leq p$ for all $x \in X$ with $(g \wedge h)(x) \geq p'$. Thus, $\mu = \{f_i\}_{i\in J} \cup \{h'\}$ is a *p*-level semi-preopen cover of *g*. In fact, for each $x \in X$ with $g(x) \geq p'$, if $h(x) \geq p'$, then $(g \wedge h)(x) \geq p'$, which implies that $(\bigvee_{i\in J} f_i)(x) \not\leq p$, thus $(\bigvee_{k\in \mu} k)(x) \not\leq p$. If $h(x) \not\geq p'$ then $h'(x) \not\leq p$ which implies $(\bigvee_{k\in \mu} k)(x) \not\leq p$. From the *SP*-closedness of *g*, there is a finite subfamily ν of μ , say $\nu = \{f_1, \ldots, f_n, h'\}$ with $(\bigvee_{k\in \nu} k_{-})(x) \not\leq p$ for all $x \in X$ with $g(x) \geq p'$. Then, $(\bigvee_{i=1}^n (f_i)_{-})(x) \not\leq p$ for all $x \in X$ with $(g \wedge h)(x) \geq p'$. In fact, if $(g \wedge h)(x) \geq p'$, then $g(x) \geq p'$, hence $(\bigvee_{k\in \nu} k_{-})(x) \not\leq p$. So, there is $k \in \nu$ such that $k_{-}(x) \not\leq p$. Moreover, $h(x) \geq p'$ as well, that is, $h'(x) \leq p$. Since *h* is semipreopen, then *h'* is semi-preclosed, that is, $h' = (h')_{-}$. So, $h'(x) \leq p$ implies that $(h')_{-}(x) \leq p'$. Consequently, $(\bigvee_{i=1}^n (f_i)_{-})(x) \not\leq p$ for all $x \in X$ with $(g \wedge h)(x) \geq p'$. Hence, $g \wedge h$ is *SP*-closed.

COROLLARY 3.11. Let (X, δ) be an SP-closed space and g be a semi-preclopen L-fuzzy set. Then g is SP-closed.

DEFINITION 3.12. Let (X, δ) and (Y, τ) be *L*-fts's. A function $f : (X, \delta) \to (Y, \tau)$ is called

- (1) semi-preirresolute if and only if $f^{-1}(g)$ is semi-preopen in (X, δ) for each semi-preopen *L*-fuzzy set *g* in (Y, τ) ;
- (2) weakly semi-preirresolute if and only if f⁻¹(g) ≤ (f⁻¹(g_¬))_□ for each semi-preopen *L*-fuzzy set g in (Y,τ).

THEOREM 3.13. Let $f : (X, \delta) \to (Y, \tau)$ be a semi-preirresolute mapping with $f^{-1}(y)$ is finite for every $y \in Y$. If $g \in L^X$ is SP-closed in (X, δ) , then f(g) is SP-closed in (Y, τ) as well.

PROOF. Let $\{f_i\}_{i\in J}$ be a p-level semi-preopen cover of f(g), where $p \in pr(L)$. Because f is semi-preirresolute, $\{f^{-1}(f_i)\}_{i\in J}$ is a p-level semi-preopen cover of g. By the *SP*-closedness of g, $\{f^{-1}(f_i)\}_{i\in J}$ has a finite p_{\wedge} -level subcover, that is, there is a finite subset F of J such that $(\bigvee_{i\in F}(f^{-1}(f_i))_{\wedge})(x) \leq p$ for all $x \in X$ with $g(x) \geq p'$. We are going to show that $\{f_i\}_{i\in J}$ has a finite p_{\wedge} -level subcover of f(g), that is, $(\bigvee_{i\in F}(f_i)_{\wedge})(y) \leq p$ for all $y \in Y$ with $f(g)(y) \geq p'$. Since $f^{-1}(y)$ is finite for every $y \in Y$, $f(g)(y) \geq p'$ implies that there is $x \in X$ with $g(x) \geq p'$ and f(x) = y. Again, f is semi-preirresolute. Thus, we have

$$\begin{pmatrix} \bigvee_{i \in F} (f_i)_{\uparrow} \end{pmatrix} (\mathcal{Y}) = \begin{pmatrix} \bigvee_{i \in F} (f_i)_{\uparrow} \end{pmatrix} (f(x)) = \begin{pmatrix} \bigvee_{i \in F} f^{-1}((f_i)_{\uparrow}) \end{pmatrix} (x)$$

$$= \begin{pmatrix} \bigvee_{i \in F} (f^{-1}((f_i)_{\uparrow}))_{\uparrow} \end{pmatrix} (x) \ge \begin{pmatrix} \bigvee_{i \in F} (f^{-1}(f_i))_{\uparrow} \end{pmatrix} (x) \not\le p.$$

$$(3.2)$$

This has proved that $\{f_i\}_{i \in J}$ has a finite p_{\neg} -level subcover of f(g). Hence, f(g) is *SP*-closed.

THEOREM 3.14. Let $f : (X, \delta) \to (Y, \tau)$ be a weakly semi-preirresolute mapping with $f^{-1}(y)$ is finite for every $y \in Y$. If $g \in L^X$ is semi-precompact in (X, δ) , then f(g) is SP-closed in (Y, τ) .

PROOF. Let $\{f_i\}_{i\in J}$ be a *p*-level semi-preopen cover of f(g), where $p \in pr(L)$. Because *f* is weakly semi-preirresolute, for every $i \in J$, $f^{-1}(f_i) \leq (f^{-1}((f_i)_{\sim}))_{\square}$. Then, $\{(f^{-1}((f_i)_{\sim}))_{\square}\}_{i\in J}$ is a *p*-level semi-preopen cover of *g*. By the semi-precompactness of *g*, $\{(f^{-1}((f_i)_{\sim}))_{\square}\}_{i\in J}$ has a finite *p*-level subcover, that is, there is a finite subset *F* of *J* such that $(\bigvee_{i\in F}(f^{-1}((f_i)_{\sim}))_{\square})(x) \neq p$ for all $x \in X$ with $g(x) \geq p'$.

We are going to show that $\{f_i\}_{i\in J}$ has a finite p_{\frown} -level subcover of f(g), that is, $(\bigvee_{i\in F}(f_i)_{\frown})(y) \not\leq p$ for all $y \in Y$ with $f(g)(y) \geq p'$. In fact, if $f(g)(y) \geq p'$ and since $f^{-1}(y)$ is finite for every $y \in Y$, there is $x \in X$ with $g(x) \geq p'$ and f(x) = y. So,

$$\begin{pmatrix} \bigvee_{i \in F} (f_i)_{\neg} \end{pmatrix} (y) = \begin{pmatrix} \bigvee_{i \in F} (f_i)_{\neg} \end{pmatrix} (f(x)) = \begin{pmatrix} \bigvee_{i \in F} f^{-1}((f_i)_{\neg}) \end{pmatrix} (x)$$

$$\geq \begin{pmatrix} \bigvee_{i \in F} (f^{-1}((f_i)_{\neg}))_{\Box} \end{pmatrix} (x) \neq p.$$

$$(3.3)$$

Hence, f(g) is *SP*-closed.

BAI SHI-ZHONG

ACKNOWLEDGMENT. This work is supported by the National Natural Science Foundation of China and the Provincial Natural Science Foundation of Guangdong.

REFERENCES

- [1] D. Andrijević, *Semipreopen sets*, Mat. Vesnik **38** (1986), no. 1, 24–32.
- [2] H. Aygün, α-compactness in L-fuzzy topological spaces, Fuzzy Sets and Systems 116 (2000), no. 3, 317-324.
- [3] H. Aygün and S. R. T. Kudri, *P-closedness in L-fuzzy topological spaces*, Fuzzy Sets and Systems 109 (2000), no. 2, 277-283.
- [4] S.-Z. Bai, Semi-precompactness in L-fuzzy topological spaces, in press.
- [5] _____, The SR-compactness in L-fuzzy topological spaces, Fuzzy Sets and Systems 87 (1997), no. 2, 219–225.
- [6] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove, and D. S. Scott, A Compendium of Continuous Lattices, Springer-Verlag, Berlin, 1980.
- S. R. T. Kudri, Semicompactness and S*-closedness in L-fuzzy topological spaces, Fuzzy Sets and Systems 109 (2000), no. 2, 223–231.
- [8] S. S. Thakur and S. Singh, On fuzzy semi-preopen sets and fuzzy semi-precontinuity, Fuzzy Sets and Systems 98 (1998), no. 3, 383–391.
- M. W. Warner, *Frame-fuzzy points and membership*, Fuzzy Sets and Systems 42 (1991), no. 3, 335-344.
- [10] D. S. Zhao, The N-compactness in L-fuzzy topological spaces, J. Math. Anal. Appl. 128 (1987), no. 1, 64–79.

BAI SHI-ZHONG: DEPARTMENT OF MATHEMATICS, WUYI UNIVERSITY, JIANGMEN GUANGDONG 529020, CHINA