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WAVE SPLITTING FOR FIRST-ORDER SYSTEMS OF EQUATIONS
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Systems of first-order partial differential equations are considered and the possible de-
composition of the solutions in forward and backward propagating is investigated. After
a review of a customary procedure in the space-time domain (wave splitting), attention
is addressed to systems in the Fourier-transform domain, thus considering frequency-
dependent functions of the space variable. The characterization is given for the direction
of propagation and applications are developed to some cases of physical interest.
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1. Introduction. Wave propagation in inhomogeneous media and reflection and

transmission processes are associated with various problems of mathematical inter-

est. The governing equations are generally partial differential equations of various

orders with variable coefficients. A basic question is whether and how the solution to

the governing equations can be decomposed into forward- and backward-propagating

waves. This question is of great interest in that the result of a scattering, or reflection-

transmission, process is required to consist of outgoing waves. According to the lit-

erature, the decomposition is often performed in the space-time domain through a

wave-splitting technique [5]. This technique works in homogeneous materials. Other-

wise, the technique generates basis functions which though are not solutions to the

governing equations. Also, even for homogeneous materials, the wave splitting is per-

formed by carrying over to dispersive media (e.g., via convolutions) the propagation

property of the principal, nondispersive part (see Section 2).

The governing equations are, for example, in the form (cf. [1])

∂2
zu−c−2(z)∂2

t u−a(z)∂tu−b(z)∂zu−d(z)u= 0, (1.1)

in the unknown functionu(z,t), z ∈R, t ∈R+, where c > 0 and a≥ 0. The dependence

of the coefficients a, b, c, d on the space variable z means that we allow the material

system to be inhomogeneous. Otherwise, the model equations can be given the form

of a first-order system

∂zw = C∂tw, (1.2)

wherew is an n-tuple of unknown functions of z and t. The matrix C may have values

in Cn×n, with numerical entries possibly dependent on z, or may contain operators

such that n-tuples of functions ∂tw are mapped into n-tuples of functions ∂zw.
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To our mind, a more satisfactory approach is possible only within the Fourier-

transform domain. In such a case, the solution to the Cauchy problem for monochro-

matic components is determined explicitly. Because of the inhomogeneity of the ma-

terial, the solution is shown to result from a mixture of the components (mode con-

version) thus making the wavesplitting in the space-time scarcely significant. For each

monochromatic component, we characterize the forward or backward propagation

through the phase function. Next, we apply the characterization to some cases of

physical interest. They show that the direction of propagation may change with the

frequency, which proves that a claimed direction of a solution in the space-time do-

main may cease to be true even in homogeneous materials.

2. Wave splitting in time domain. Let n be an even integer,w :R→Rn, A0 ∈Rn×n,

A′ :R+ →Rn×n. We assume that the pertinent equations can be written in the form

∂zw = (A0+A′ ∗
)
∂tw =: �w. (2.1)

This means that we are considering problems in the space-time variables z, t.
The wave splitting is accomplished by determining a new n-tuple of unknown func-

tions such that the corresponding system involves a diagonal matrix. Let B0 ∈ Rn×n,

B′ :R+ →Rn×n and consider wf ,wb ∈Rn/2 such that

[
wf

wb

]
= (B0+B′ ∗

)
w =: �w. (2.2)

If ∂twf and ∂twb are continuous, then

∂t

(
�

[
wf

wb

])
=�∂t

[
wf

wb

]
, (2.3)

that is, the convolution � and the derivative ∂t commute. Now, observe that

∂z

[
wf

wb

]
=�∂zw =���−1

[
wf

wb

]
. (2.4)

It is asserted that wf and wb are regarded as forward- and backward-propagating if

���−1 is diagonal and the corresponding entry is appropriate. Upon solving suitable

Volterra integral equations, the diagonal terms are determined, and, for example, the

equation for wf takes the form (see [5, page 120])

[
∂z+c−1(1+ξ∗)∂t

]
wf = 0. (2.5)

While it is obvious that such wf is a forward-propagating wave if c is constant

and ξ � 0, we show later that an appropriate restriction on ξ is required so that the

forward-propagating character is maintained. To gain this end, we find it convenient,

if not imperative, to argue in the Fourier-transform domain.
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3. First-order system in the Fourier-transform domain. Also, for specific appli-

cations, it is worth considering the equations of a dissipative material such as a vis-

coelastic body. We consider a one-dimensional viscoelastic solid along the z-axis. Let

u be a transverse component of the displacement. The equation of motion takes the

form

ρ∂2
t u= ∂zτ, (3.1)

where ρ is the mass density and τ is the traction component, namely,

τ = µ0∂zu+
∫∞

0
µ′(ξ)∂zu(t−ξ)dξ. (3.2)

Here, µ0 is the instantaneous shear modulus and µ′, onR+, is the kernel characterizing

the fading memory of the material. It is understood that ρ, µ0, and µ′(·) may depend

on z, which means that the body is allowed to be inhomogeneous. It is convenient to

extend µ′(z,·) to R by letting µ′(z,ξ)= 0 as ξ < 0.

In terms of u and τ , we write the equations as

∂zτ = ρ∂2
t u, τ = (µ0+µ′ ∗

)
∂zu. (3.3)

Denote by the subscript F the Fourier transform

uF(z,ω)=
∫∞
−∞
u(z,t)exp(−iωt)dt. (3.4)

Application of the Fourier transform yields

∂zτF =−ρω2uF, τF =
(
µ0+µ′F

)
∂zuF . (3.5)

Consequently, the pair w = [u,τ] satisfies the first-order system of ordinary equa-

tions

∂zwF =AwF, (3.6)

where

A=

 0

1
µ0+µ′F

−ρω2 0


 . (3.7)

As a second case, we consider (1.1). Apply the Fourier transformation to obtain

∂2
zuF +c−2ω2uF −iωauF −b∂zuF −duF = 0. (3.8)

The pair w = [u,∂zu] then satisfies system (3.6) where

A=
[

0 1

d+iωa−ω2c−2 b

]
. (3.9)

Incidentally, upon Fourier transformation system, (1.2) takes the form (3.6) with

A= iωC if C ∈ Cn×n. Otherwise, if convolutions or time derivatives are involved in C ,

then A is determined by the Fourier transform properties. Anyway, we allow A in (3.6)

to depend on z and be parametrized by the angular frequency ω.
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4. Wave propagation in the Fourier-transform domain. Assume that the problem

under consideration takes the form (3.6) and that the matrixA is simple; namely, it has

n linearly independent eigenvectors. Let λ1, . . . ,λn be the eigenvalues, and p1, . . . ,pn ∈
Cn the associated eigenvectors. For brevity, we omit specifying that each quantity is

parameterized byω. Moreover, let P be the matrix whose columns are the eigenvectors

of A, that is,

P = [p1, . . . ,pn
]
. (4.1)

Also, let

s = P−1wF. (4.2)

Substitution of wF = Ps in (3.6) provides

∂zs =Λs+Qs, (4.3)

where

Λ= P−1AP = diag
[
λ1, . . . ,λn

]
, Q=−P−1∂zP. (4.4)

If the material is homogeneous, then ∂zP = 0, and hence system (4.3) takes the diag-

onal form

∂zs =Λs, (4.5)

whereΛ is independent of z. If, instead, the material is inhomogeneous (∂zP ≠ 0), then

in general, Q is a nondiagonal matrix and equations in (4.3) are not decoupled.

Assume that A is independent of z, ∂zP = 0, and hence (4.5) holds. If s is known at

a value of z, say z = 0, we have

s(z)= exp[Λz]s(0). (4.6)

If, instead, (4.3) holds with a nonzero Q, then the application of exp[−∫ z0 Λ(ζ)dζ] to

(4.3) and the use of

v = exp

[
−
∫ z

0
Λ(ζ)dζ

]
s (4.7)

give

∂zv = Fv, v(0)= s(0)= P−1(0)w(0), (4.8)

where

F(z)= exp

[
−
∫ z

0
Λ(ζ)dζ

]
Q(z)exp

[∫ z
0
Λ(ζ)dζ

]
. (4.9)

To solve (4.8), we consider the propagator matrix Ω(z) such that

v(z)=Ω(z)v(0). (4.10)
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It follows that

∂zΩ = FΩ, Ω(0)= I, (4.11)

where I is the n×n identity matrix. Hence, we have

Ω(z)−I =
∫ z

0
F(ζ)Ω(ζ)dζ. (4.12)

Upon the assumption that F is bounded, the solution Ω exists, is unique in L2(R), and

is given by the Neumann series (cf. [2, 6])

Ω(z)= I+
∞∑
m=1

∫ z
0
Fm(z,ζ)dζ, (4.13)

where the sequence of functions {Fm} is defined by

F1(z,ζ)= F(ζ), Fn+1(z,η)=
∫ z
η
Fn(z,ν)dνF(η). (4.14)

Consequently, we find that s(z)= exp[
∫ z
0 Λ(ζ)dζ]v(z) is given by

s(z)= exp

[∫ z
0
Λ(ζ)dζ

]
s(0)+exp

[∫ z
0
Λ(ζ)dζ

]
�(z,ω)s(0), (4.15)

where

�(z)=
∞∑
m=1

∫ z
0
Fm(z,ζ)dζ. (4.16)

This in turn allows the original n-tuple wF to be written as

wF(z)= P(z)exp

[∫ z
0
Λ(ζ)dζ

]
P−1(0)wF(0)

+P(z)exp

[∫ z
0
Λ(ζ)dζ

]
�(z)P−1(0)wF(0).

(4.17)

We now go back to the space-time domain through the inverse Fourier transform

in the form

w(z,t)= 1
2π

∫∞
−∞
P(z,ω)exp

[∫ z
0
Λ(ζ,ω)dζ+iωtI

]
P−1(0,ω)wF(0,ω)dω

+ 1
2π

∫∞
−∞
P(z,ω)exp

[∫ z
0
Λ(ζ,ω)dζ+iωt

]
�(z,ω)P−1(0,ω)wF(0,ω)dω,

(4.18)

where the dependences on ω are denoted explicitly.

Result (4.18) provides the solutionw(z,t) to system (3.6) with initial data onw(0, t).
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5. Wave splitting in the Fourier-transform domain. Both integrals in (4.18) involve

a superposition through the matrices P(z,ω), P−1(0,ω), and �(z,ω) of functions of

the form

fω(z,t) := exp
[
αω(z)

]
exp

{
i
[
φω(z)+ωt

]}
. (5.1)

Now, if g represents a forward-propagating wave in the form g(z−vt), where v > 0,

then

∂tg∂zg < 0. (5.2)

For a backward-propagating wave h(z+vt), we have ∂th∂zh > 0. Hence, we consider

the real and imaginary parts of fω, namely,

ξω(z,t) := exp
[
αω(z)

]
cos

[
φω(z)+ωt

]
,

ηω := exp
[
αω(z)

]
sin

[
φω(z)+ωt

]
,

(5.3)

and evaluate the products ∂tξω∂zξω and ∂tηω∂zηω. We have

∂tξω∂zξω =ω∂zφω(z)exp
[
2αω(z)

]
sin2 [φω(z)+ωt]

+ω∂zαω(z)exp
[
2αω(z)

]
sin

[
φω(z)+ωt

]
cos

[
φω(z)+ωt

]
,

∂tηω∂zηω =ω∂zφω(z)exp
[
2αω(z)

]
cos2 [φω(z)+ωt]

−ω∂zαω(z)exp
[
2αω(z)

]
sin

[
φω(z)+ωt

]
cos

[
φω(z)+ωt

]
.

(5.4)

In both cases, the term involving ∂zαω sin[φω(z)+ωt]cos[φω(z)+ωt] is not defi-

nite. However, it is periodic in time with period T =π/|ω| and, for any time t0 ∈R,

∫ t0+T
t0

ω∂zαω(z)exp
[
2αω(z)

]
sin

[
φω(z)+ωt

]
cos

[
φω(z)+ωt

]
dt

= 1
2
ω∂zαω(z)exp

[
2αω(z)

]∫ t0+T
t0

sin
[
2φω(z)+2ωt

]
dt = 0.

(5.5)

Now,

∫ t0+T
t0

sin2 [φω(z)+ωt]dt = π
2|ω| , (5.6)

and the same result holds for cos2[φω(z)+ωt]. Hence, we have

∫ t0+T
t0

∂tξω∂zξωdt = π
2
(sgnω)∂zφω(z)exp

[
2αω(z)

]
, (5.7)

and the same result holds for ∂tηω∂zηω. Accordingly, propagation in one direction is

characterized as follows.
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Definition 5.1. The function fω = ξω+iηω of (5.1) represents a forward- (back-

ward-) propagating wave if

ω∂zφω(z) < 0 (> 0). (5.8)

It is natural to apply Definition 5.1 to plane (monochromatic) waves where

αω = 0, φω(z)=±ωzc , c > 0. (5.9)

We have

ω∂zφω(z)=±ω
2

c
, (5.10)

and hence φω(z)=ωz/c corresponds to a backward-propagating wave and φω(z)=
−ωz/c corresponds to a forward-propagating wave.

Now that the definition of wave propagating in one direction is available, we can

investigate whether a pertinent field may be represented in terms of forward- and

backward-propagating waves.

6. Applications. We now look for the wave splitting in the Fourier-transform do-

main relative to particular systems of equations.

6.1. Dispersive media. Apply the Fourier transform to (2.5) to have

∂zw
f
F =−c−1(1+ξF)iωwfF . (6.1)

Hence, the eigenvalue

λ=−c−1(1+ξF)iω (6.2)

implies that

φω(z)=−ω
∫ z

0
c−1(ζ)

(
1+�ξF

)
(ζ)dζ, αω(z)=ω

∫ z
0
c−1(ζ)	ξF(ζ)dζ. (6.3)

Hence, we have

ω∂zφω =−ω2c−1(z)
(
1+�ξF

)
(z). (6.4)

The wave is forward propagating if

�ξF >−1. (6.5)

If, instead, �ξF <−1, then the wave is backward propagating. Incidentally,

∂zαω = c−1(z)	ξF(z). (6.6)

Consequently, we can have a forward-propagating (�ξF >−1) wave while the sign of

∂zαω is unrestricted. This shows that the forward-propagating character is related

to the condition �ξF > −1 of the kernel ξ and is not automatically induced by the

principal part ∂z+c−1∂t of the operator in (2.5).
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6.2. Dissipative wave equation. For the sake of simplicity, we consider (1.1) with

d,b = 0, and hence (3.6) holds with

w =
[
u
∂zu

]
, A=

[
0 1

iωa−ω2c−2 0

]
. (6.7)

The eigenvalues λ of A satisfy

λ2 =−ω2c−2+iωa. (6.8)

Since a > 0, the number iωa−ω2c−2 is in the second quadrant. The eigenvalues λ1

and λ2 are then given by

λ1 = |ω|
c
√

2

(√√
1+(ac2/ω

)2−1+isgnω

√√
1+(ac2/ω

)2+1

)
, λ2 =−λ1. (6.9)

Hence, we have

αω(z)= |ω|√
2

∫ z
0
c−1(ζ)

√√
1+(ac2/ω

)2(ζ)−1dζ,

φω(ζ)= |ω|√
2

∫ z
0
c−1(ζ)

√√
1+(ac2/ω

)2(ζ)+1dζ,

(6.10)

as λ= λ1 (and the opposite as λ= λ2). Since

ω∂zφω = ω
2

√
2
c−1(z)

√√
1+(ac2/ω

)2(z)−1> 0, (6.11)

it follows that

exp

(∫ z
0
λ1(ζ)dζ+iωt

)
(6.12)

is a backward-propagating wave. This is consistent with the fact that

∂zαω(z)= |ω|√
2
c−1(z)

√√
1+(ac2/ω

)2(z)−1> 0, (6.13)

and hence the amplitude decreases as z decreases as is natural of a backward-propa-

gating wave. Of course, if a= 0, then

ω∂zφω < 0, ∂zαω = 0, (6.14)

and hence exp(
∫ z
0 λ1(ζ)dζ+ iωt) propagates with a constant amplitude. In fact, the

occurrence of

P =
[

1 1

λ1 −λ1

]
(6.15)
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and the dependence of c on z makew a z-dependent combination of the two elemen-

tary waves

exp

(∫ z
0
λ1(ζ)dζ+iωt

)
, exp

(
−
∫ z

0
λ1(ζ)dζ+iωt

)
. (6.16)

6.3. Shear waves in viscoelastic solids. System (3.6) holds withA as given by (3.7).

Since µ′ = 0 on R−, we have

µ′F (ω)=
∫∞

0
µ′(ξ)exp(−iωξ)dξ = µ′c(ω)−iµ′s(ω), (6.17)

where µ′c and µ′s are the half-range cosine and sine Fourier transforms of µ′. Of course

µ′s(ω) is an odd function of ω. Also, by thermodynamics, we know that (cf. [3])

ωµ′s(ω)≤ 0, ∀ω∈R. (6.18)

In addition, it is reasonable to assume that µ0+µ′c(ω) > 0 for every ω∈R.

The eigenvalues λ satisfy

λ2 =− ρω2

µ0+µ′c−iµ′s (6.19)

or

λ2 = ρω2[(
µ0+µ′c

)2+(µ′s)2
]1/2 exp(iθ), (6.20)

where

θ =π−ψsgnω, tanψ=
∣∣µ′s∣∣
µ0+µ′c . (6.21)

Hence, we have

λ1 =
√√√√√ ρω2[(

µ0+µ′c
)2+(µ′s)2

]1/2 exp(iθ/2), λ2 =−λ1, (6.22)

where

exp(iθ/2)= sgnω

√√√√√
√

1+tan2ψ−1

2
√

1+tan2ψ
+i

√√√√√
√

1+tan2ψ−1

2
√

1+tan2ψ
. (6.23)

Consequently,

exp

(∫ z
0
λ1(ζ)dζ+iωt

)
= exp

(
αω(z)

)
exp

[
i
(
φω(z)+ωt

)]
, (6.24)
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where

αω(z)=ω
∫ z

0

√√√√ ρ
µ0+µ′c

√
1+tan2ψ−1

2
(
1+tan2ψ

) (ζ)dζ,

φω(z)= |ω|
∫ z

0

√√√√ ρ
µ0+µ′c

√
1+tan2ψ+1

2
(
1+tan2ψ

) (ζ)dζ.
(6.25)

Now,

ω∂zφω =ω|ω|

√√√√√
√

1+tan2ψ−1

2
√

1+tan2ψ
, (6.26)

and then

ω∂zφω > 0 as ω> 0, ω∂zφω < 0 as ω< 0. (6.27)

Accordingly, as ω> 0, the wave associated with λ1 is backward propagating and, as

we expect it to be, expαω(z) increases as z increases. If, instead, ω < 0, then the

wave is forward propagating and expαω(z) decreases as z increases. The opposite

behaviour occurs with the wave associated with λ2.

7. Comments. The dissipative wave equation associated with (6.7) allows us to es-

tablish a connection with the wave splitting technique (cf. [4]). Consider [4, (7)] with

κ = 0 which coincides with (1.1) if b,d= 0, in the time domain, or (6.7) in the frequency

domain. Via the operator K such that

K−1 = (−c−2∂2
t +a∂t

)
K, (7.1)

the functions

u± = 1
2

(
u∓K∂zu

)
(7.2)

are considered. It is not claimed that u+ or u− are forward- or backward-propagating

waves, but it is taken to be so if the medium is homogeneous as z < 0 or z > L. In

such a case, the first-order system for u+,u− decouples and takes the form

∂zu+ =αu+, ∂zu− = −αu−, (7.3)

where α is an operator involving a convolution and time derivatives. As shown for

dispersive media modelled by (2.5), the decoupling of the first-order system does not

guarantee that the pertinent function is forward or backward propagating.

In our approach, in the frequency domain, the homogeneity of the material implies

that �= 0 and that (4.18) reduces to

w(z,t)= 1
2π

∫∞
−∞
P(ω)exp

[∫ z
0
Λ(ζ,ω)dζ+iωtI

]
P−1(ω)wF(0,ω)dω. (7.4)
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Express wF(0,ω) as a linear combination of the two eigenvectors of A, wF(0,ω) =
β1p1+β2p2. Hence,

P−1wF =
[
β1

β2

]
,

w(z,t)= 1
2π

∫∞
−∞

{
β1(ω)exp

[
λ1(ω)z+iωt

]
p1(ω)

+β2(ω)exp
[
λ2(ω)z+iωt

]
p2(ω)

}
dω.

(7.5)

Since λ1 (λ2) is associated with a backward- (forward-) propagating wave, it follows

that w(z,t) is the result of two waves in the time domain, namely

w(z,t)=wf(z,t)+wb(z,t),

wf (z,t)= 1
2π

∫∞
−∞

{
β2(ω)exp

[
λ2(ω)z+iωt

]
p2(ω)

}
dω,

wb(z,t)= 1
2π

∫∞
−∞

{
β1(ω)exp

[
λ1(ω)z+iωt

]
p1(ω)

}
dω,

(7.6)

wf being forward propagating and wb backward propagating.
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