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We present a Lie algebraic technique for the valuation of multi-asset financial derivatives
with time-dependent parameters. Exploiting the dynamical symmetry of the pricing partial
differential equations of the financial derivatives, the new method enables us to derive
analytical closed-form pricing formulae very straightforwardly. We believe that this new
approach will provide an efficient and easy-to-use method for the valuation of financial
derivatives.
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1. Introduction. The Lie algebraic method is introduced by Lo and Hui [8] to the

field of finance for the pricing of single-asset financial derivatives with time-dependent

model parameters. This new method is based upon the Wei-Norman theorem (Wei and

Norman [12]) and has never been used in the field of finance. It is very simple and

has been successfully applied to tackle time-dependent Schrödinger equation associ-

ated with generalized quantum time-dependent oscillators (Lo [2, 3], Ng and Lo [10],

and Lo and Wong [9]) as well as the Fokker-Planck equation (Lo [4, 5, 6, 7]). Exploit-

ing the well-defined algebraic structures of the pricing partial differential equations,

analytical closed-form pricing formulae can be derived for financial derivatives with

time-dependent parameters. For demonstration, we have applied the Lie algebraic ap-

proach to value European options for the constant elasticity of variance (CEV) process

and corporate discount bonds with default risk. In this paper, we will extend the Lie

algebraic approach to the valuation of financial derivatives involving multi-assets and

stochastic interest rate, for example, multi-asset options with and without stochas-

tic short-term interest rate. In the valuation of these financial derivatives, the value

of each of the underlying assets is assumed to follow the usual lognormal diffusion

process

dSi
Si

= µi(t)dt+σi(t)dZi, 1≤ i≤N, (1.1)

where µi(t) and σi(t) are the drift and volatility of the value of asset i, respectively.

The dynamics of the short-term interest rate r is drawn from the term structure model

(Vasicek [11])

dr = κ(t)[θ(t)−r]dt+σr (t)dZr , (1.2)
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where the short-term interest rate is mean-reverting to long-term mean θ(t) at speed

κ(t) and σr (t) is the volatility of r . The Wiener processes dZr and dZi are correlated

with

dZidZr = ρir (t)dt, dZidZj = ρij(t)dt, (1.3)

where ρir (t) and ρij(t) are the correlation coefficients, and we must necessarily have

ρrr (t) = ρii(t) = 1, −1 < ρir (t) = ρri(t) < 1, and −1 < ρij(t) = ρji(t) < 1 for 1 ≤
i,j ≤N. It has been pointed out that such a pricing problem is rather formidable and

defies the conventional approach for the single-asset Black-Scholes model with time-

dependent parameters (Bos and Ware [1]). Nevertheless, within the framework of the

Lie algebraic approach, the generalization is very simple and straightforward.

This paper is organized as follows. Section 2 outlines the Wei-Norman theorem

and its applications. Section 3 applies the Lie algebraic technique to the valuation

problem of multi-asset options in which the short-term interest rate is not treated as a

stochastic variable. Section 4 studies the pricing of multi-asset options with stochastic

short-term interest rate using the new valuation approach. Finally, Section 5 briefly

summaries and concludes the paper.

2. Wei-Norman theorem. Consider the linear operator differential equation of the

first order

dU(t)
dt

=H(t)U(t); U(0)= 1, (2.1)

whereH and U are both time-dependent linear operators in a Banach space or a finite-

dimensional space. According to the Wei-Norman theorem (Wei and Norman [12]), if

the operator H can be expressed as

H(t)=
N∑
n=1

an(t)Ln, (2.2)

where an’s are scalar functions of time and Ln are the generators of anN-dimensional

solvable Lie algebra or the real split 3-dimensional simple Lie algebra, then the oper-

ator U can be expressed as

U(t)=
N∏
n=1

exp
[
gn(t)Ln

]
. (2.3)

Here the gn’s are time-dependent scalar functions to be determined. To find the gn’s,

we simply substitute (2.2) and (2.3) into (2.1) and compare the two sides term by term

to obtain a set of coupled nonlinear differential equations

dgn(t)
dt

=
N∑

m=1

ηnmam(t), gn(0)= 0, (2.4)

where ηnm are nonlinear functions of gn’s. Thus, we have reduced the linear operator

differential equation (2.1) to a set of coupled nonlinear differential equations of scalar

functions (2.4).
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For illustration, we consider the special case that the generators Ln’s form the

Heisenberg-Weyl Lie algebra defined by the commutation relations

[
L1,L2

]= L3,
[
L1,L3

]= [L2,L3
]= 0. (2.5)

Then, H is given by

H(t)= a1(t)L1+a2(t)L2+a3(t)L3. (2.6)

According to the Wei-Norman theorem, U(t) can be expressed as

U(t)= exp
[
g1(t)L1

]·exp
[
g2(t)L2

]·exp
[
g3(t)L3

]
. (2.7)

By differentiation, we obtain

dU(t)
dt

U(t)−1 = dg1(t)
dt

L1+ dg2(t)
dt

exp
[
g1(t)L1

]
L2 exp

[−g1(t)L1
]

+dg3(t)
dt

exp
[
g1(t)L1

]
exp

[
g2(t)L2

]
L3 exp

[−g2(t)L2
]
exp

[−g1(t)L1
]

= dg1(t)
dt

L1+ dg2(t)
dt

L2+
[
dg3(t)
dt

+g1(t)
dg2(t)
dt

]
L3.

(2.8)

Comparing (2.6) and (2.8) yields a set of three coupled nonlinear differential equations

dg1(t)
dt

= a1(t),
dg2(t)
dt

= a2(t),

dg3(t)
dt

+g1(t)
dg2(t)
dt

= a3(t).
(2.9)

It is not difficult to show that the set of differential equations can be easily solved by

quadrature

g1(t)=
∫ t

0
dτa1(τ),

g2(t)=
∫ t

0
dτa2(τ),

g3(t)=
∫ t

0
dτ
[
a3(τ)−a2(τ)g1(τ)

]
.

(2.10)

As a result, the operator U(t) is thus determined.

3. Multi-asset European options. The fair price P(S1,S2, . . . ,Sn,t) of a multi-asset

European option with time-dependent parameters can be determined by solving the

multi-asset generalization of the Black-Scholes equation

∂P
∂t
= 1

2

n∑
i,j=1

σi(t)σj(t)ρij(t)SiSj
∂2P
∂Si∂Sj

+
n∑
i=1

[
r(t)−di(t)

]
Si
∂P
∂Si

−r(t)P, (3.1)
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where t is the time to maturity. Introducing the new variables xi = ln(Si), the pricing

equation is simplified to

∂P
∂t
= 1

2

n∑
i,j=1

σi(t)σj(t)ρij(t)
∂2P

∂xi∂xj

+
n∑
i=1

[
r(t)−di(t)− σi(t)

2

2

]
∂P
∂xi

−r(t)P

≡ [H(t)−r(t)]P.

(3.2)

It is obvious that the operator H(t) can be rewritten as follows:

H(t)=
n∑

i,j=1

Aij(t)L̂ij+
n∑
i=1

Bi(t)D̂i, (3.3)

where

L̂ij = ∂2

∂xi∂xj
, D̂i = ∂

∂xi
,

Aij(t)= 1
2
σi(t)σj(t)ρij(t), Bi(t)= r(t)−di(t)− σ

2
i

2
.

(3.4)

The operators Lij and Di form a solvable algebra; in fact, they all commute. We may

now define the evolution operator U(t,0) such that

P
(
x1,x2, . . . ,xn,t

)= exp

[
−
∫ t

0
r(t′)dt′

]
·U(t,0)P(x1,x2, . . . ,xn,0

)
. (3.5)

Inserting (3.5) into (3.2) yields the evolution equation

∂
∂t
U(t,0)=H(t)U(t,0), U(0,0)= 1. (3.6)

Since the operators Lij and Di all commute with each other, the Wei-Norman theo-

rem states that the evolution operator U(t,0) can be expressed in the form (Wei and

Norman [12])

U(t,0)=
n∏
i=1

exp
[
bi(t)D̂i

]· n∏
i,j=1

exp
[
aij(t)L̂ij

]
, (3.7)

where the coefficients aij(t) and bi(t) are simply given by

aij(t)= 1
2

∫ t
0
σi(t′)σj(t′)ρij(t′)dt′,

bi(t)=
∫ t

0

[
r(t′)−di(t′)− σi(t

′)2

2

]
dt′.

(3.8)

Hence, we have found an exact form of the time evolution operator U(t,0).
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We define a(t) as the n×n matrix whose elements are given by aij(t), and a−1(t)
as its inverse. Then, it is not difficult to show that

P
(
x1,x2, . . . ,xn,t

)=
∫∞
−∞
dy1

∫∞
−∞
dy2 ···

∫∞
−∞
dynP

(
y1,y2, . . . ,yn,0

)
×K(x1,x2, . . . ,xn,t;y1,y2, . . . ,yn,0

)
,

(3.9)

where

K
(
x1,x2, . . . ,xn,t;y1,y2, . . . ,yn,0

)

= 1√
(4π)ndet(a)

exp

[
−
∫ t

0
r(t′)dt′

]

×exp

{
− 1

4

n∑
i,j=1

(
xi−yi+bi

)(
a−1)

ij
(
xj−yj+bj

)}
(3.10)

is the propagator of the pricing equation in (3.2). With n = 1, we will recover the

well-known result of single-asset option pricing.

4. Multi-asset European options with stochastic interest rate. In the presence of

stochastic short-term interest rate, the price P(S1,S2, . . . ,Sn,r ,t) of a multi-asset Eu-

ropean option obeys the partial differential equation

∂P
∂t
= 1

2

n∑
i,j=1

σi(t)σj(t)ρij(t)SiSj
∂2P
∂Si∂Sj

+ 1
2
σr (t)2

∂2P
∂r 2

+
n∑
i=1

σi(t)σr (t)ρir (t)Si
∂2P
∂Si∂r

+
n∑
i=1

[
r −di(t)

]
Si
∂P
∂Si

+κ(t)[θ(t)−r]∂P
∂r
−rP

= 1
2

n∑
i,j=1

σi(t)σj(t)ρij(t)
∂2P

∂xi∂xj

+ 1
2
σr (t)2

∂2P
∂r 2

+
n∑
i=1

σi(t)σr (t)ρir (t)
∂2P
∂xi∂r

+
n∑
i=1

[
r −di(t)− 1

2
σi(t)2

]
∂P
∂xi

+κ(t)[θ(t)−r]∂P
∂r
−rP,

(4.1)

where xi = ln(Si) and t is the time to maturity. To solve this partial differential equa-

tion, we first define the evolution operator U(t,0)≡U0(t,0)UI(t,0) such that

P
(
x1,x2, . . . ,xn,r ,t

)=U(t,0)P(x1,x2, . . . ,xn,r ,0
)

=U0(t,0)UI(t,0)P
(
x1,x2, . . . ,xn,r ,0

)
.

(4.2)

Inserting (4.2) into (4.1) yields the evolution equations

H0(t)U0(t,0)= ∂
∂t
U0(t,0), U0(0,0)= 1, (4.3)

HI(t)UI(t,0)= ∂
∂t
UI(t,0), UI(0,0)= 1, (4.4)
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where

H0(t)= 1
2

n∑
i,j=1

σi(t)σj(t)ρij(t)
∂2

∂xi∂xj
+ 1

2
σr (t)2

∂2

∂r 2

+
n∑
i=1

σi(t)σr (t)ρir (t)
∂2

∂xi∂r
+

n∑
i=1

r
∂
∂xi

−κ(t)r ∂
∂r

(4.5)

and HI ≡ U0(t,0)−1[H(t)−H0(t)]U0(t,0). It is not difficult to show that the operator

H0(t) can be rewritten in the following form:

H0(t)=
n∑

i,j=1

Aij(t)L̂ij+
n∑
i=1

Ei(t)D̂i+
n∑
i=1

Fi(t)M̂i+B1Ĵ1+B2Ĵ2, (4.6)

where

L̂ij = ∂2

∂xi∂xj
, D̂i = r ∂

∂xi
, M̂i = ∂2

∂xi∂r
,

Ĵ2 = ∂2

∂r 2
, Ĵ1 = r ∂∂r ,

Aij(t)= 1
2
σi(t)σj(t)ρij(t), B1(t)=−κ(t), B2(t)= 1

2
σr (t)2,

Ei(t)= 1, Fi(t)= σi(t)σr (t)ρir (t).

(4.7)

The operators L̂ij , D̂i, M̂i, and Ĵi form a solvable Lie algebra

[
L̂ij , L̂kl

]= [L̂ij , D̂k]= [L̂ij ,M̂k
]= [L̂ij , Ĵ1

]= [L̂ij , Ĵ2
]= [M̂i, Ĵ2

]= 0,[
D̂i,M̂j

]=−L̂ij , [
D̂i, Ĵ1

]=−D̂i, [
D̂i, Ĵ2

]=−2M̂i,[
M̂i, Ĵ1

]= M̂i,
[
Ĵ1, Ĵ2

]=−2Ĵ2,

(4.8)

where i,j,k,l= 1,2,3, . . . ,n. According to the Wei-Norman theorem (Wei and Norman

[12]), the evolution operator U0(t,0) can be expressed in the form

U0(t,0)= exp

[ n∑
i=1

bi(t)D̂i

]
exp

[ n∑
i,j=1

aij(t)L̂ij

]
exp

[
c2(t)Ĵ2

]

×exp

[ n∑
i=1

fi(t)M̂i

]
exp

[
c1(t)Ĵ1

]
,

(4.9)

where the coefficients aij(t), ci(t), bi(t), and fi(t) are to be determined. Then, by

direct differentiation with respect to t, we obtain

∂U0(t,0)
∂t

U0(t,0)−1 =
n∑

i,j=1

gij(t)L̂ij+
n∑
i=1

hi(t)D̂i

+
n∑
i=1

pi(t)M̂i+q1(t)Ĵ1+q2(t)Ĵ2

(4.10)
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with

gij(t)= ∂aij∂t −bj ∂fi∂t +bibj
∂c2

∂t
+bj

(
2c2bi−fi

)∂c1

∂t
,

hi(t)= ∂bi∂t −bi
∂c1

∂t
, (4.11)

pi(t)= ∂fi∂t −2bi
∂c2

∂t
−(4c2bi−fi

)∂c1

∂t
,

q1(t)= ∂c1

∂t
, q2(t)= ∂c2

∂t
+2c2

∂c1

∂t
. (4.12)

Substituting (4.7), (4.10), and (4.11) into (4.3), and comparing the two sides, we, after

simplification, find

c1(t)=
∫ t

0
dt′B1

(
t′
)
,

c2(t)= exp
[−2c1(t)

]∫ t
0
dt′B2(t′)exp

[
2c1(t′)

]
,

bi(t)= exp
[
c1(t)

]∫ t
0
dt′Ei(t′)exp

[−c1(t′)
]
,

fi(t)= exp
[−c1(t)

]∫ t
0
dt′
{
Fi(t′)+2B2(t′)bi(t′)

}
exp

[
c1(t′)

]
,

aij(t)=
∫ t

0
dt′
{
Aij(t′)+

[
Fi(t′)+B2(t′)bi(t′)

]
bj(t′)

}
.

(4.13)

Once the coefficients aij(t), ci(t), bi(t), and fi(t) are known, the operator U0(t,0) is

uniquely determined.

Next, using the above explicit form of the operator U0(t,0), we can obtain the exact

form of the operator HI(t)

HI(t)=
n∑
i=1

{
fi(t)+κ(t)θ(t)bi(t)−

[
di(t)+ 1

2
σi(t)2

]}
∂
∂xi

+{κ(t)θ(t)+2c2(t)
}

exp
[
c1(t)

] ∂
∂r
−r exp

[−c1(t)
]
.

(4.14)

It is easy to see that the operator UI(t,0) can be expressed in the form

UI(t,0)= exp

[ n∑
i=1

ξi(t)
∂
∂xi

]
�(t,0), (4.15)

where

ξi(t)=
∫ t

0
dt′
{
fi(t′)+κ(t′)θ(t′)bi(t′)−

[
di(t′)+ 1

2
σi(t′)2

]}
(4.16)

and �(t,0) satisfies the evolution equation

�(t)�(t,0)≡
3∑
i=1

ηi(t)êi�(t,0)= ∂
∂t

�(t,0), �(0,0)= 1 (4.17)
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with

η1(t)=
[
κ(t)θ(t)+2c2(t)

]
exp

[
c1(t)

]
,

η2(t)=−exp
[−c1(t)

]
, η3(t)= 0,

ê1 = ∂
∂r
, ê2 = r , ê3 = 1.

(4.18)

The operators êi form the Heisenberg-Weyl Lie algebra

[
ê1, ê2

]= ê3,
[
ê1, ê3

]= [ê2, ê3
]= 0. (4.19)

Following a similar procedure as shown above, the operator �(t,0) is found to be

�(t,0)= exp
[
µ2(t)ê2

]
exp

[
µ1(t)ê1

]
exp

[
µ3(t)ê3

]
(4.20)

with

µ1(t)=
∫ t

0
dt′η1(t′), µ2(t)=

∫ t
0
dt′η2(t′), µ3(t)=

∫ t
0
dt′µ2(t′)η1(t′). (4.21)

As a result, we have obtained the exact form of the desired time evolution opera-

tor U(t,0) of the pricing equation in (4.1). It is then straightforward to show that

P(x1,x2, . . . ,xn,r ,t) is given by

P
(
x1,x2, . . . ,xn,r ,t

)=
∫∞
−∞
dy1

∫∞
−∞
dy2 ···

∫∞
−∞
dynP

(
y1,y2, . . . ,yn,r ,0

)
×K(x1,x2, . . . ,xn,t;y1,y2, . . . ,yn,0;r

)
,

(4.22)

where

K
(
x1,x2, . . . ,xn,t;y1,y2, . . . ,yn,0;r

)
= 1√

(4π)ndet(a)
exp

{
µ3(t)+c2(t)µ2(t)2 exp

[
2c1(t)

]+µ2(t)exp
[
c1(t)

]
r
}

×exp

{
− 1

4

n∑
i,j=1

(
xi−yi+υi

)(
a−1

)
ij
(
xj−yj+νj

)}

(4.23)

is the propagator of the pricing equation in (4.1) and

νi(t)= bi(t)r +ξi(t)+µ2(t)fi(t)exp
[
c1(t)

]
. (4.24)

The matrix a(t) is the n×n matrix whose elements are given by aij(t), and a−1(t) is

its inverse. Furthermore, in terms of the riskless bond function Q(r ,t) of the Vasicek

model with explicitly time-dependent parameters, we can easily rewrite the propagator

K(x1,x2, . . . ,xn,t;y1,y2, . . . ,yn,0;r) and νi(t) as follows:

K
(
x1,x2, . . . ,xn,t;y1,y2, . . . ,yn,0;r

)

= Q(r ,t)√
(4π)ndet(a)

exp

{
− 1

4

n∑
i,j=1

(
xi−yi+υi

)(
a−1

)
ij
(
xj−yj+νj

)} (4.25)

and νi(t)=− ln[Q(r ,t)]−aii(t)−
∫ t
0 dt′di(t′).
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For illustration, we consider the evaluation of a European call option on the maxi-

mum of two assets S1 and S2 with a strike price of K. The payoff at expiry for such an

option is max(max(S1,S2)−K,0). Then the option price P(S1,S2,r ,t) is given by

P
(
S1,S2,r ,t

)= I1+I2+I3−KQ(r ,t), (4.26)

where

I1 = S1N2
(
θ1,φ1,ρ1

)exp
(−∫ t0 dt′d1(t′)

)
√

1+χ2
1

,

I2 = S2N2
(
θ2,φ2,ρ2

)exp
(−∫ t0 dt′d2(t′)

)
√

1+χ2
2

,

I3 =KQ(r ,t)N2
(
θ3,φ3,ρ3

)
,

χ1 = a11−a12√
det(a)

, χ2 = a22−a12√
det(a)

,

ρ1 = χ1√
1+χ2

1

, ρ2 = χ2√
1+χ2

2

, ρ3 = a12√
a11a22

,

θ1 =−
√(

1−ρ2
1

)(
a11−2a12+a22

)
2·det(a)

·
{

ln
(
KQ
S1

)
−a11+

∫ t
0
dt′d1(t′)

}
,

φ1 =
√(

1−ρ2
1

)
a11

2·det(a)
·
{

ln
(
S1

S2

)
+a11−2a12+a22−

∫ t
0
dt′d1(t′)+

∫ t
0
dt′d2(t′)

}
,

θ2 =−
√(

1−ρ2
2

)(
a11−2a12+a22

)
2·det(a)

·
{

ln
(
KQ
S2

)
−a22+

∫ t
0
dt′d2(t′)

}
,

φ2 =
√(

1−ρ2
2

)
a22

2·det(a)
·
{

ln
(
S2

S1

)
+a11−2a12+a22−

∫ t
0
dt′d2(t′)+

∫ t
0
dt′d1(t′)

}
,

θ3 = ln
(
KQ/S1

)+a11+
∫ t
0 dt′d1(t′)√

2a11
,

φ3 = ln
(
KQ/S2

)+a22+
∫ t
0 dt′d2(t′)√

2a22
.

(4.27)

Here,N2(θ,φ,ρ) stands for the bivariate cumulative normal density function. It should

be noted that, by setting σr (t) = ρ1r (t) = ρ2r (t) = κ(t) = 0 in the above price func-

tion, we will obtain the option price P(S1,S2, t) for the special case with nonstochastic

short-term interest rate. Furthermore, as far as we know, the results in (4.26) and

(4.27) are completely new.
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5. Conclusion. In this paper, we apply the Lie algebraic approach to valuation of

multi-asset financial derivatives with time-dependent parameters. Based upon the dy-

namical symmetry of the pricing partial differential equations of the financial deriva-

tives, the method is able to derive analytical closed-form pricing formulae very straight-

forwardly. We believe that the new approach will provide an efficient and easy-to-use

method for the valuation of financial derivatives. Furthermore, this simple Lie alge-

braic approach can be easily extended to other financial derivatives with well-defined

algebraic structures.
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