GENERALIZED DERIVATION MODULO THE IDEAL OF ALL COMPACT OPERATORS

SALAH MECHERI and AHMED BACHIR

Received 3 December 1999

We give some results concerning the orthogonality of the range and the kernel of a generalized derivation modulo the ideal of all compact operators.

2000 Mathematics Subject Classification: 47B47, 47A30, 47B20, 47B10.

1. Introduction. Let $\mathcal{L}(\mathcal{H})$ be the algebra of all bounded operators acting on a complex Hilbert space \mathcal{H} . For A and B in $\mathcal{L}(\mathcal{H})$, let $\delta_{A,B}$ denote the operator on $\mathcal{L}(\mathcal{H})$ defined by $\delta_{A,B}(X) = AX - XB$. If A = B, then δ_A is called the inner derivation induced by A. In [1, Theorem 1.7], Anderson showed that if A is normal and commutes with T then, for all $X \in \mathcal{L}(\mathcal{H})$,

$$||T - (AX - XA)|| \ge ||T||.$$
 (1.1)

In [4], we generalized this inequality, we showed that if the pair (A,B) has the Putnam-Fuglede's property (in particular if A and B are normal operators) and AT = TB, then for all $X \in \mathcal{L}(\mathcal{H})$,

$$||T - (AX - XB)|| \ge ||T||.$$
 (1.2)

The related inequality (1.1) was obtained by Maher [3, Theorem 3.2] who showed that, if A is normal and AT = TA, where $T \in C_p$, then $\|T - (AX - XA)\|_p \ge \|T\|_p$ for all $X \in \mathcal{L}(\mathcal{H})$, where C_p is the von Neumann-Schatten class, $1 \le p < \infty$, and $\|\cdot\|_p$ its norm. Here we show that Maher's result is also true in the case where C_p is replaced by $\mathcal{H}(\mathcal{H})$, the ideal of all compact operators with $\|\cdot\|_\infty$ its norm. Which allows to generalize these results, we prove that if the pair (A,B) has $(PF)_{\mathcal{H}(\mathcal{H})}$, the Putnam-Fuglede's property in $\mathcal{H}(\mathcal{H})$, and AT = TB, where $T \in \mathcal{H}(\mathcal{H})$, then $\|T - (AX - XB)\|_\infty \ge \|T\|_\infty$ for all $X \in \mathcal{L}(\mathcal{H})$.

- **2. Normal derivations.** In this section, we investigate on the orthogonality of the range and the kernel of a normal derivation modulo the ideal of all compact operators. We recall that the pair (A,B) has the property $(PF)_{\mathcal{K}(\mathcal{H})}$ if AT=TB, where $T\in\mathcal{K}(\mathcal{H})$ implies $A^*T=TB^*$. Before proving this result we need the following lemmas.
- **LEMMA 2.1.** Let $N, X \in \mathcal{L}(\mathcal{H})$, where N is a diagonal operator. If $\delta_N(X) + S \in \mathcal{K}(\mathcal{H})$, then $S \in \mathcal{K}(\mathcal{H})$ and $\|\delta_N(X) + S\|_{\infty} \ge \|S\|_{\infty}$.

PROOF. Let $\lambda_1, \lambda_2, ..., \lambda_n$ be eigenvalues of the diagonal operator N. Then, the operator N can be written under the following matrix form:

$$\begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{bmatrix}$$
 (2.1)

According to the following decomposition of \mathcal{H} :

$$\mathcal{H} = \bigoplus_{j=1}^{n} \ker\left(N - \lambda_{j}\right). \tag{2.2}$$

Let $|\delta_{ij}|$ and $|X_{ij}|$ be the matrix representations of S and X according to the above decomposition of \mathcal{H} . Then

$$NX - XN = |(\lambda_i - \lambda_i)X_{ij}|. \tag{2.3}$$

Since $S \in \{N\}'$ (the commutant of N), we get $S_{ij} = 0$ for $i \neq j$. Consequently

$$NX - XN + S = \begin{bmatrix} S_{11} & * & * & * \\ * & S_{22} & * & * \\ * & * & * & * \\ * & * & * & S_{nn} \end{bmatrix}.$$
(2.4)

Here * stands for some entry.

As $\delta_N(X) + S \in \mathcal{H}(\mathcal{H})$, so $S \in \mathcal{H}(\mathcal{H})$ and the result of Gohberg and Kreı́n [2] guarantee that $\|\delta_N(X) + S\|_{\infty} \ge \|S\|_{\infty}$.

LEMMA 2.2. Let $N \in \mathcal{L}(\mathcal{H})$ be a normal operator and let $\mathcal{H}_1 = \operatorname{Vect}_{\lambda \in \mathbb{C}} \ker(N - \lambda)$. If $S \in \{N\}'$ and there exists $X \in \mathcal{L}(\mathcal{H})$ such that $\delta_N(X) + S \in \mathcal{H}(\mathcal{H})$, then \mathcal{H}_1 reduces S and the restriction $S|_{\mathcal{H}_1^+} = 0$.

PROOF. Since N is a normal operator, \mathcal{H}_1 reduces N and the restriction $N|_{\mathcal{H}_1}$ is a diagonal operator, then the Putnam-Fuglede's theorem guarantees that $S^* \in \{N\}'$. Hence, \mathcal{H}_1 reduces S. Let

$$N = \begin{bmatrix} N_1 & 0 \\ 0 & N_2 \end{bmatrix}, \qquad S = \begin{bmatrix} S_1 & 0 \\ 0 & S_2 \end{bmatrix}, \qquad X = \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix}$$
 (2.5)

on $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, where $\mathcal{H}_2 = \mathcal{H}_1^\perp$. The hypothesis $\delta_N(X) + S \in \mathcal{H}(\mathcal{H})$ would imply that $\delta_{N_2}(X_{22}) + S_2 \in \mathcal{H}(\mathcal{H})$. The result of Anderson [1] (applied to the Calkin algebra $\mathcal{H}(\mathcal{H}_2) \setminus \mathcal{H}(\mathcal{H}_2)$) guarantees that $S_2 \in \mathcal{H}(\mathcal{H})$. Since the normal operator N_2 is without eigenvalues and the selfadjoint operator $S_2^*S_2$ is compact and belongs to the commutant of N_2 , it results that $S_2^*S_2 = 0$ and thus $S_2 = 0$.

THEOREM 2.3. Let $N \in \mathcal{L}(\mathcal{H})$ be a normal operator, $S \in \{N\}'$, and $X \in \mathcal{L}(\mathcal{H})$. If $\delta_N(X) + S \in \mathcal{H}(\mathcal{H})$, then $S \in \mathcal{H}(\mathcal{H})$ and

$$\left\| \delta_N(X) + S \right\|_{\infty} \ge \|S\|_{\infty}. \tag{2.6}$$

PROOF. Since $\delta_N(X) + S \in \mathcal{K}(\mathcal{H})$, it follows from Lemma 2.2 that

$$N = \begin{bmatrix} N_1 & 0 \\ 0 & N_2 \end{bmatrix}, \qquad S = \begin{bmatrix} S_1 & 0 \\ 0 & S_2 \end{bmatrix}$$
 (2.7)

on $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_1^{\perp}$, where $\mathcal{H}_1 = \operatorname{Vect}_{\lambda \in \mathbb{C}} \ker(N - \lambda)$. If

$$X = \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} \tag{2.8}$$

on $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_1^{\perp}$, then

$$\delta_N(X) + S = \begin{bmatrix} \delta_{N_1}(X_{11}) + S_1 & * \\ * & * \end{bmatrix}. \tag{2.9}$$

Since $\delta_N(X) + S \in \mathcal{K}(\mathcal{H})$, it results that $\delta_{N_1}(X_{11}) + S_1 \in \mathcal{K}(\mathcal{H})$. As N is a diagonal operator and $S_1 \in \{N_1\}'$, it follows from Lemma 2.1 that S_1 is compact and

$$\|\delta_{N_1}(X_{11}) + S_1\|_{\infty} \ge \|S_1\|_{\infty}.$$
 (2.10)

Consequently, S is compact and

$$||\delta_N(X) + S||_{\infty} \ge ||\delta_{N_1}(X_{11}) + S_1||_{\infty} \ge ||S_1||_{\infty} = ||S||_{\infty}.$$
 (2.11)

COROLLARY 2.4. Let $N,M,S \in \mathcal{L}(\mathcal{H})$ such that N and M are normal operators and NS = SM. If $X \in \mathcal{L}(\mathcal{H})$ such that $\delta_{N,M}(X) + S \in \mathcal{K}(\mathcal{H})$, then $S \in \mathcal{K}(\mathcal{H})$ and

$$||\delta_{N,M}(X) + S||_{\infty} \ge ||S||_{\infty}.$$
 (2.12)

PROOF. Consider the operators *L*, *T*, and *Y* defined on $\mathcal{H} = \mathcal{H} \oplus \mathcal{H}$ by

$$L = \begin{bmatrix} N & 0 \\ 0 & M \end{bmatrix}, \qquad S = \begin{bmatrix} 0 & S \\ 0 & 0 \end{bmatrix}, \qquad Y = \begin{bmatrix} 0 & X \\ 0 & 0 \end{bmatrix}, \tag{2.13}$$

then *L* is normal, $T \in \{L\}'$ and

$$\delta_L(Y) + T = \begin{bmatrix} 0 & \delta_{N,M}(X) + S \\ 0 & 0 \end{bmatrix}. \tag{2.14}$$

Then Theorem 2.3 would imply that *T* is compact and

$$\left\| \delta_L(Y) + T \right\|_{\infty} \ge \|T\|_{\infty}, \tag{2.15}$$

consequently, S is compact and

$$||\delta_{N,M}(X) + S||_{\infty} \ge ||S||_{\infty}.$$
 (2.16)

3. Generalized derivations. In this section, we generalize the above results to a large class of operators. We show that if the pair (A,B) has the property $(PF)_{\mathcal{H}(\mathcal{H})}$, and AS = SB such that $\delta_{N,M}(X) + S \in \mathcal{H}(\mathcal{H})$, then $S \in \mathcal{H}(\mathcal{H})$ and

$$\|\delta_{A,B}(X) + S\|_{\infty} \ge \|S\|_{\infty}, \quad \forall x \in \mathcal{L}(\mathcal{H}).$$
 (3.1)

Before proving this result, we need the following lemma.

LEMMA 3.1. Let $A, B \in \mathcal{L}(\mathcal{H})$. The following statements are equivalent:

- (1) the pair (A,B) has the property $(PF)_{\mathcal{H}(\mathcal{H})}$;
- (2) if AT = TB, where $T \in \mathcal{K}(\mathcal{H})$, then $\overline{R(T)}$ reduces A, $\ker(T)^{\perp}$ reduces B, and $A|_{\overline{R(T)}}$ and $B|_{\ker(T)^{\perp}}$ are normal operators.

PROOF. (1) \Rightarrow (2). Since $\mathcal{H}(\mathcal{H})$ is a bilateral ideal and $T \in \mathcal{H}(\mathcal{H})$, then $AT \in \mathcal{H}(\mathcal{H})$. Hence, as AT = TB and (A,B) satisfies $(\operatorname{PF})_{\mathcal{H}(\mathcal{H})}$, $A^*T = TB^*$ and $\overline{R(T)}$, and $\ker(T)^{\perp}$ are reducing subspaces for A and B, respectively. Since A(AT) = (AT)B implies $A^*(AT) = (AT)B^*$ by $(\operatorname{PF})_{\mathcal{H}(\mathcal{H})}$, and the identity $A^*T = TB^*$ implies that $A^*AT = AA^*T$, thus we see that $A|_{\overline{R(T)}}$ is normal. Clearly, (B^*,A^*) satisfies $(\operatorname{PF})_{\mathcal{H}(\mathcal{H})}$ and $B^*T^* = T^*A^*$. Therefore, it follows from the above argument that $B^*|_{\overline{R(T^*)}} = B|_{\ker(T)^{\perp}}$ is normal.

 $(2)\Rightarrow (1)$. Let $T\in \mathcal{H}(\mathcal{H})$ such that AT=TB. Taking the two decompositions of \mathcal{H} , $\mathcal{H}_1=\mathcal{H}=\overline{R(T)}\oplus \overline{R(T)}^\perp$ and $\mathcal{H}_2=\mathcal{H}=\ker(T)^\perp\oplus\ker T$. Then we can write A and B on \mathcal{H}_1 into \mathcal{H}_2 , respectively,

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}, \qquad B = \begin{bmatrix} B_1 & 0 \\ 0 & B_2 \end{bmatrix}, \tag{3.2}$$

where A_1 and B_1 are normal operators. Also we can write T and X on \mathcal{H}_2 into \mathcal{H}_1

$$T = \begin{bmatrix} T_1 & 0 \\ 0 & 0 \end{bmatrix}, \qquad X = \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix}. \tag{3.3}$$

It follows from AT = TB that $A_1T_1 = T_1B_1$. Since A_1 and B_1 are normal operators, then, by applying the Fuglede-Putnam's theorem, we obtain $A_1^*T_1 = T_1B_1^*$, that is, $A^*T = TB^*$.

THEOREM 3.2. Let $A, B \in \mathcal{L}(\mathcal{H})$ satisfying $(PF)_{\mathcal{H}(\mathcal{H})}$ and AS = SB. If $X \in \mathcal{L}(\mathcal{H})$ such that $\delta_{A,B}(X) + S \in \mathcal{H}(\mathcal{H})$, then $S \in \mathcal{H}(\mathcal{H})$ and

$$||\delta_{A,B}(X) + S||_{\infty} \ge ||S||_{\infty}.$$
 (3.4)

PROOF. Since the pair (A,B) satisfies the property $(PF)_{\mathcal{H}(\mathcal{H})}$, it follows by Lemma 3.1 that $\overline{R(S)}$ reduces A, $\ker(S)^{\perp}$ reduces B, and $A|_{\overline{R(S)}}$ and $B|_{\ker(S)^{\perp}}$ are normal operators. Let $\mathcal{H}_1 = \overline{R(S)} \oplus \overline{R(S)}^{\perp}$ and $\mathcal{H}_2 = \ker(S)^{\perp} \oplus \ker S$. Then

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}, \qquad B = \begin{bmatrix} B_1 & 0 \\ 0 & B_2 \end{bmatrix},$$

$$S = \begin{bmatrix} S_1 & 0 \\ 0 & 0 \end{bmatrix}, \qquad X = \begin{bmatrix} X_1 & X_2 \\ X_3 & X_4 \end{bmatrix}.$$
(3.5)

It follows from

$$AS - SB = \begin{bmatrix} A_1 S_1 - S_1 B_1 & 0\\ 0 & 0 \end{bmatrix} = 0 \tag{3.6}$$

that $A_1S_1 = S_1B_1$ and we have

$$||S - (AX - XB)||_{\infty} = \left\| \begin{bmatrix} S_1 - (A_1X_1 - X_1B_1) & * \\ * & * \end{bmatrix} \right\|_{\infty}.$$
 (3.7)

Since A_1 and B_1 are two normal operators, then it results from Corollary 2.4 that S_1 is compact and

$$||S_1 - (A_1X_1 - X_1B_1)||_{\infty} \ge ||S_1||_{\infty},$$
 (3.8)

so

$$||S - (AX - XB)||_{\infty} \ge ||S_1 - (A_1X_1 - X_1B_1)||_{\infty} \ge ||S_1||_{\infty} = ||S||_{\infty}.$$
 (3.9)

COROLLARY 3.3. Let $A, B \in \mathcal{L}(\mathcal{H})$ satisfying $(PF)_{\mathcal{H}(\mathcal{H})}$ and AS = SB. If $X \in \mathcal{L}(\mathcal{H})$ such that $\delta_{A,B}(X) + S \in \mathcal{H}(\mathcal{H})$, then $S \in \mathcal{H}(\mathcal{H})$ and

$$||S + AX - XB||_{\infty} \ge ||S||_{\infty}$$
 (3.10)

in each of the following cases:

- (1) if $A, B \in \mathcal{L}(\mathcal{H})$ such that $||Ax|| \ge ||x|| \ge ||Bx||$ for all $x \in \mathcal{H}$;
- (2) if A is invertible and B such that $||A^{-1}|| ||B|| \le 1$.

PROOF. (1) The result of Tong [5, Lemma 1] guarantees that the above condition implies that for all $T \in \ker(\delta_{A,B} \mid \mathcal{K}(\mathcal{H}))$, $\overline{R(T)}$ reduces A, $\ker(T)^{\perp}$ reduces B, and $A|_{\overline{R(T)}}$ and $B|_{\ker(T)^{\perp}}$ are unitary operators. Hence, it results from Lemma 3.1 that the pair (A,B) has the property $(\operatorname{PF})_{\mathcal{K}(\mathcal{H})}$ and the result holds by Theorem 3.2.

Inequality (3.10) holds in particular if A = B is isometric; in other words, ||Ax|| = ||x|| for all $x \in \mathcal{H}$.

(2) In this case, it suffices to take $A_1 = \|B\|^{-1}A$ and $B_1 = \|B\|^{-1}B$, then $\|A_1x\| \ge \|x\| \ge \|B_1x\|$ and the result holds by (1) for all $x \in \mathcal{H}$.

REFERENCES

- [1] J. H. Anderson, On normal derivations, Proc. Amer. Math. Soc. 38 (1973), 135–140.
- [2] I. C. Gohberg and M. G. Kreĭn, *Introduction to the Theory of Linear Nonselfadjoint Operators*, Translations of Mathematical Monographs, vol. 18, American Mathematical Society, Rhode Island, 1969.
- [3] P. J. Maher, Commutator approximants, Proc. Amer. Math. Soc. 115 (1992), no. 4, 995– 1000
- [4] S. Mecheri, On minimizing $||S (AX XB)||_p^p$, Serdica Math. J. 26 (2000), no. 2, 119–126.
- [5] Y. S. Tong, Kernels of generalized derivations, Acta Sci. Math. (Szeged) **54** (1990), no. 1-2, 159–169.

Salah Mecheri: Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

E-mail address: mecherisalah@hotmail.com

AHMED BACHIR: UNIVERSITY OF MOSTAGANEM, EXACTE SCIENCES INSTITUTE, BP 227, 27000 MOSTAGANEM, ALGERIA

E-mail address: bachir_ahmed@hotmail.com