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RATE OF CONVERGENCE ON BASKAKOV-BETA-BEZIER
OPERATORS FOR BOUNDED VARIATION FUNCTIONS
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We introduce a new sequence of linear positive operators Bn,α(f ,x), which is the Bezier
variant of the well-known Baskakov Beta operators and estimate the rate of convergence
of Bn,α(f ,x) for functions of bounded variation. We also propose an open problem for
the readers.

2000 Mathematics Subject Classification: 41A17, 41A25.

1. Introduction. Let H[0,∞) = {f : f is locally bounded on (0,∞) and |f(t)| ≤
M(1+ t)β, M > 0, β ∈ N0}, then, for f ∈ H[0,∞), Baskakov-Durrmeyer operators

are defined as

Vn(f ,x)= (n−1)
∞∑
k=0

pn,k(x)
∫∞

0
pn,k(x)f(t)dt, n∈N, x ∈ [0,∞), (1.1)

where

pn,k(t)=
(
n+k−1

k

)
xk

(1+x)n+k . (1.2)

The operators result from the classical Baskakov operators

V̂n(f ,x)=
∞∑
k=0

pn,k(x)f
(
k
n

)
(1.3)

by replacing the discrete value f(k/n) by the integral (n−1)
∫∞
0 pn,k(t)f (t)dt in order

to approximate Lebesgue integrable functions on the interval [0,∞). Some approxi-

mation properties of the operators (1.1) were discussed in [6, 7, 8].

In [2, 3], the author defined another modification of the Baskakov operators with the

weight functions of Beta operators so as to approximate Lebesgue integrable functions

on [0,∞). For f ∈H[0,∞), Baskakov Beta operators are defined as

Bn(f ,x)=
∞∑
k=0

pn,k(x)
∫∞

0
bn,k(t)f (t)dt, n∈N, x ∈ [0,∞), (1.4)

where pn,k(x) is as defined in (1.1), bn,k(t) = tk/(B(k+1,n)(1+ t)n+k+1), and B(k+
1,n)= k!(n−1)!/(n+k)!.

It was observed in [2] that the integral modification of the Baskakov operators de-

fined by (1.4) gives better results than the operators (1.1), and some approximation

properties for the operators Bn become simpler in comparison to the operators Vn,
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for example, in the estimation of the rate of convergence of bounded variation func-

tions we need not to use result of the type [8, Lemma 5] for the operators (1.4). This

motivated further study of the operators Bn. For f ∈H[0,∞), α≥ 1, we introduce the

Bezier variant of the operators (1.4) as follows:

Bn,α(f ,x)=
∞∑
k=0

Q(α)
n,k(x)

∫∞
0
bn,k(t)f (t)dt, x ∈ [0,∞), (1.5)

where Q(α)
n,k(x)= Jαn,k(x)−Jαn,k+1(x) and

∑∞
j=kpn,j(x)= Jn,k(x) is the Baskakov basis

function. Obviously, Bn,α(1,x) = 1, and, particularly when α = 1, the operators (1.4)

reduce to the operators (1.4). It is observed that Bn,α(f ,x) is the sequence of linear

positive operators. Some basic properties of Jn,k(x) are as follows:

(i) Jn,k(x)−Jn,k+1(x)= pn,k(x), k= 0,1,2,3, . . .,
(ii) J′n,k(x)=npn+1,k−1(x), k= 1,2,3, . . .,

(iii) Jn,k(x)=n
∫ x
0 pn+1,k−1(t)dt, k= 0,1,2,3, . . .,

(iv)
∑∞
k=1 Jn,k(x)=n

∫ x
0

∑∞
k=1pn+1,k−1(t)dt = nx,

(v) Jn,0(x) > Jn,1(x) > Jn,2(x) > ···> Jn,k(x) > Jn,k+1(x) > ··· ,
for every natural number k,0 < Jn,k(x) < 1 and Jn,k(x) increases strictly on [0,∞).
These properties can be obtained easily by direct computation.

Bojanić and Vulleumier [1] estimated the rate of convergence of Fourier series of

functions of bounded variation. Recently, Zeng and Chen [11] estimated the rate of

convergence of the Durrmeyer-Bezier operators for functions of bounded variation.

Zeng and Gupta [12] and Zeng [10] estimated the rate of approximation for the Bezier

variant of classical Baskakov and Szász operators, respectively, at those points at

which one-sided limits f(x±) exist. In the present paper, we estimate the rate of

convergence of the operators Bn,α(f ,x) for functions of bounded variation. The ap-

proximation properties for the operators Bn,α(f ,x) are different.

Theorem 1.1. Let f ∈ H[0,∞), and let at a fixed point x ∈ (0,∞), the one-sided

limits f(x±), exist. Then, for α≥ 1, λ > 2, x ∈ (0,∞) and for n>max{1+β,N(λ,x)},
we have

∣∣∣∣Bn,α(f ,x)−
[

1
α+1

f(x+)+ α
α+1

f(x−)
]∣∣∣∣

≤ ∣∣f(x+)−f(x−)∣∣· α
√

1+x√
2enx

+ α
[
3λ+(1+3λ)x

]
nx

×
n∑
k=1

Vx+x/
√
k

x−x/√k
(
gx
)+Mα(2β−1

) (1+x)β
x2β O

(
n−β

)+ 2Mαλ(1+x)β+1

nx
,

(1.6)

where

gx(t)=



f(t)−f(x−), 0≤ t < x,
0, t = x,
f(t)−f(x+), x < t <∞

(1.7)

and Vba (gx) is the total variation of gx on [a,b].
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2. Auxiliary results. In this section, we give certain results, which are necessary to

prove the main result.

Yuankwei and Shunsheng [8] gave the following inequality for Baskakov basis func-

tions. For x ∈ (0,∞) and k∈N, there holds

pn,k(t)≤ 33√
n

(
1+x
x

)3/2
. (2.1)

The above bound discussed in [8] was not sharp bound. Recently, Zeng [9] estimated

the exact bounds for Bernstein basis functions and Meyer-Konig-Zeller basis functions.

Using the inequality estimate of Zeng [9], the exact bound for Baskakov basis functions

can be obtained as in the following lemma.

Lemma 2.1. For all x ∈ (0,∞) and k∈N,

Q(α)
n,k(x)≤αpn,k(x) <

α
√

1+x√
2e
√
nx

, (2.2)

where the constant 1/
√

2e is the best possible.

Proof. From [9, Theorem 2], it is known that

(
n+k−1

k

)
tk(1−t)n < 1√

2e
1√
nt
, t ∈ (0,1]. (2.3)

Replacing the variable t with x/(1+x) in the above inequality, we get

pn,k(x) <
√

1+x√
2e
√
nx

, x ∈ (0,∞). (2.4)

Also, from the fact that |aα−bα| ≤α|a−b| with 0≤ a, b ≤ 1, α≥ 1, it follows that

Q(α)
n,k(x)≤αpn,k(x) <

α
√

1+x√
2e
√
nx

. (2.5)

Lemma 2.2. For x ∈ (0,∞),

∫∞
x
bn,k(t)dt =

k∑
j=0

pn,j(x). (2.6)

Lemma 2.3 [2]. The function µn,m(x), m∈N0, can be defined as

µn,m(x)=
∞∑
k=0

pn,k(x)
∫∞

0
bn,k(t)(t−x)mdt. (2.7)
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Then,

µn,0(x)= 1, µn,1(x)= 1+x
n−1

, n > 1,

µn,2(x)= 2(n+1)x2+2(n+2)x+2
(n−1)(n−2)

, n > 2.
(2.8)

Consequently, for each x ∈ [0,∞), µn,m(x)=O(n−[(m+1)/2]). Given any number λ > 2

and x > 0 from Lemma 2.3, in particular, for n≥N(λ,x),

µn,2(x)≤ λx(1+x)n
. (2.9)

Lemma 2.4. Let x ∈ (0,∞) and Kn,α(x,t) =
∑∞
k=0Q

(α)
n,k(x)bn,k(t). Then, for λ > 2

and n>N(λ,x), we have the following:

(i) βn,α(x,y)=
∫y
0 Kn,α(x,t)dt ≤ λαx(1+x)/(n(x−y)2), 0≤y <x;

(ii) 1−βn,α(x,z)=
∫∞
z Kn,α(x,t)dt ≤ λαx(1+x)/n(z−y)2, x ≤ z <∞.

Proof. First, we prove (i). In view of (2.9), we have

∫ y
0
Kn,α(x,t)dt ≤

∫ y
0
Kn,α(x,t)

(x−t)2
(x−y)2 dt

≤α(x−y)−2µn,2(x)

≤ λαx(1+x)
n(x−y)2 , 0≤y <x.

(2.10)

The proof of (ii) is similar.

3. Proof of Theorem 1.1. It is easily verified [11] that

∣∣∣∣Bn,α(f ,x)−
[

1
α+1

f(x+)+ α
α+1

f(x−)
]∣∣∣∣

≤ ∣∣Bn,α(gx,x)∣∣+ 1
2

∣∣f(x+)−f(x−)∣∣
·
∣∣∣∣Bn,α(sign(t−x),x)+ α−1

α+1

∣∣∣∣.
(3.1)

In order to prove the theorem, we need the estimates for Bn,α(gx,x) and Bn,α(sign(t
−x),x). We first estimate Bn,α(sign(t−x),x) as follows:

Bn,α
(
sign(t−x),x)=

∫∞
x
Kn,α(x,t)dt−

∫ x
0
Kn,α(x,t)dt

= 2
∫∞
x
Kn,α(x,t)dt−1, because

∫∞
0
Kn,α(x,t)dt = 1.

(3.2)
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Using Lemma 2.2, we have

Bn,α
(
sign(t−x),x)=−1+2

∞∑
k=0

Q(α)
n,k(x)

∫∞
x
bn,k(t)dt

=−1+2
∞∑
k=0

Q(α)
n,k(x)

k∑
j=0

pn,j(x)

=−1+2
∞∑
j=0

pn,j(x)
∞∑
k=j
Q(α)
n,k(x)

=−1+2
∞∑
j=0

pn,j(x)Jαn,j(x).

(3.3)

Thus,

Bn,α
(
sign(t−x),x)+ α−1

α+1
= 2

∞∑
j=0

pn,j(x)Jαn,j(x)−
2

α+1

∞∑
j=0

Q(α+1)
n,j (x) (3.4)

since
∑∞
k=0Q

(α)
n,k(x)= 1. By mean value theorem, we have

Q(α+1)
n,j (x)= Jα+1

n,j (x)−Jα+1
n,j+1(x)= (α+1)pn,j(x)γαn,j(x), (3.5)

where Jαn,j(x) < γ
α
n,j(x) < J

α
n,j(x). Therefore,

∣∣∣∣Bn,α(sign(t−x),x)+ α−1
α+1

∣∣∣∣= 2
∞∑
j=0

pn,j(x)
(
Jαn,j(x)−γαn,j(x)

)

= 2
∞∑
j=0

pn,j(x)
(
Jαn,j(x)−Jαn,j+1(x)

)

= 2α
∞∑
j=0

pn,j(x)
(
Jn,j(x)−Jn,j+1(x)

)

= 2α
∞∑
j=0

p2
n,j(x).

(3.6)

Using Lemma 2.1, we have

∣∣∣∣Bn,α(sign(t−x),x)+ α−1
α+1

∣∣∣∣< 2α
√

1+x√
2enx

∞∑
j=0

pn,j(x)= α
√

2(1+x)√
e
√
nx

. (3.7)

Next, we estimate Bn,α(gx,x) as follows:

Bn,α
(
gx,x

)=
∫ x

0
gx(t)Kn,α(x,t)dt

=
(∫ x−x/√n

0
+
∫ x+x/√n
x−x/√n

+
∫∞
x+x/√n

)
Kn,α(x,t)gx(t)dt

= E1+E2+E3.

(3.8)
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First, we estimate E2. For t ∈ [x−x/√n,x+x/√n], we have

∣∣gx(t)∣∣≤ Vx+x/√nx−x/√n
(
gx
)≤ 1

n

n∑
k=1

Vx+x/
√
k

x−x/√k
(
gx
)

(3.9)

and thus

∣∣E2

∣∣≤ Vx+x/√nx−x/√n
(
gx
)≤ 1

n

n∑
k=1

Vx+x/
√
k

x−x/√k
(
gx
)
. (3.10)

Next, we estimate E1. Setting y = x−x/√n and integrating by parts, we have

E1 =
∫ y

0
gx(t)dt

(
βn,α(x,t)

)= gx(y)βn,α(x,y)−
∫ y

0
βn,α(x,t)dt

(
gx(t)

)
. (3.11)

Since |gx(y)| ≤ Vxy (gx), we conclude

∣∣E1

∣∣≤ Vxy (gx)βn,α(x,y)+
∫ y

0
βn,α(x,t)dt

(−Vxt (gx)). (3.12)

Also, y = x−x/√n≤ x, by Lemma 2.4, we get

∣∣E1

∣∣≤ αλx(1+x)
n(x−y)2 V

x
y
(
gx
)+ αλx(1+x)

n

∫ y
0

1
(x−t)2dt

(−Vxt (gx)). (3.13)

Integrating the last integral by parts, we obtain

∣∣E1

∣∣≤ αλx(1+x)
n

(
x−2Vx0

(
gx
)+2

∫ y
0

Vxt
(
gx
)
dt

(x−t)3
)
. (3.14)

Replacing the variable y in the last integral by x−x/√n, we get

∫ x−x/√n
0

Vxt
(
gx
)
(x−t)−3dt =

n−1∑
k=1

∫ x+x/√k
x−x/√k

Vxx−1

(
gx
)
t−3dt ≤ 1

2x2

n∑
k=1

Vxx−x/√k
(
gx
)
.

(3.15)

Hence,

∣∣E1

∣∣≤ 2αλ(1+x)
nx

n∑
k=1

Vxx−x/√k
(
gx
)
. (3.16)

Finally, we estimate E3, and setting z = x+x/√n, we have

E3 =
∫∞
z
gx(t)Kn,α(x,t)dt =

∫∞
z
gx(t)dt

(
βn,α(x,t)

)
. (3.17)
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We define ∆n,α(x,t) on [0,2x] as

∆n,α(x,t)=

1−βn,α(x,t), 0≤ t < 2x,

0, t = 2x.
(3.18)

Thus,

E3 =−
∫ 2x

z
gx(t)dt

(
∆n,α(x,t)

)−gx(2x)
∫∞

2x
Kn,α(x,t)dt+

∫∞
2x
gx(t)dt

(
βn,α(x,t)

)
= E31+E32+E33.

(3.19)

Integrating by parts, we get

E31 = gx(z−)∆n,α(x,z−)+
∫ 2x

z
∆̂n,α(x,t)dt

(
gx(t)

)
, (3.20)

where ∆̂n,α(x,t) is the normalized form of ∆n,α(x,t). Since ∆n,α(x,z−) = ∆n,α(x,z)
and |gx(z−)| ≤ Vz−x (gx), we obtain

∣∣E31

∣∣≤ Vz−x (
gx
)
∆n,α(x,z)+

∫ 2x

z
∆̂n,α(x,t)dt

(
Vtx
(
gx
))
. (3.21)

Now, using Lemma 2.4 and the fact that ∆̂n,α(x,t)≤∆n,α(x,t) on [0,2x], we have

∣∣E31

∣∣≤ Vz−x
(
gx
)
λx(1+x)

n(z−x)2 + λαx(1+x)
n

∫ 2x−

z

1
(x−t)2dt

(
Vtx
(
gx
))

+ 1
2

[
V 2x−
x

(
gx
)∫∞

2x
Kn,α(x,u)du

]

≤ V
z−
x
(
gx
)
λx(1+x)

n(z−x)2 + λαx(1+x)
n

∫ 2x−

z

1
(x−t)2dt

(
Vtx
(
gx
))

+ 1
2
V 2x

2x−
(
gx
)λαx(1+x)

nx2

≤ V
z−
x
(
gx
)
λx(1+x)

n(z−x)2 + λαx(1+x)
n

[
V 2x
x
(
gx
)

x2
− V

z−
x
(
gx
)

(z−x)2 +2
∫ 2x

z

Vtx
(
gx
)

(x−t)3 dt
]
.

(3.22)

Thus, arguing similarly as in the estimate of E1, we get

∣∣E31

∣∣≤ 2αλ(1+x)
nx

n∑
k=1

Vx+x/
√
k

x
(
gx
)
. (3.23)

Again, by Lemma 2.4, we have

∣∣E32

∣∣≤ gx(2x)αλ(1+x)nx
≤ αλ(1+x)

nx

n∑
k=1

Vx+x/
√
k

x
(
gx
)
. (3.24)
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Finally, for n> β, we have

∣∣E33

∣∣≤M ∞∑
k=1

Q(α)
n,k(x)

∫∞
2x

[
(1+t)β+(1+x)β]bn,k(t)dt. (3.25)

Using the identity

(1+t)β−(1+x)β ≤ (2β−1
) (1+x)β

xβ
(t−x)β, for 2x ≤ t, (3.26)

we get

∣∣E33

∣∣≤M ∞∑
k=0

Q(α)
n,k(x)

∫∞
2x

(
2β−1

) (1+x)β
xβ

[
(t−x)β+2(1+x)β]bn,k(t)dt

≤M(2β−1
) (1+x)β

xβ

∞∑
k=0

Q(α)
n,k(x)

∫∞
2x
bn,k(t)(t−x)βdt

+2M(1+x)β
∞∑
k=0

Q(α)
n,k(x)

∫∞
2x
bn,k(t)dt

≤M(2β−1
) (1+x)β

xβ

∞∑
k=0

Q(α)
n,k(x)

∫∞
2x
bn,k(t)

(t−x)2β
xβ

dt

+2M
(1+x)β
x2

Bn,α
(
(t−x)2,x)

≤M(2β−1
) (1+x)βα

x2β O
(
n−β

)+ 2Mαλ(1+x)β+1

nx
.

(3.27)

Collecting the estimates of (3.1), (3.7), (3.8), (3.10), (3.16), (3.19), (3.23), (3.24), and

(3.27), we get the required result.

This completes the proof of the theorem.

Remark 3.1. It is easier to define the Bezier variants of the well-known summation-

integral type operators. For example, Szász-Mirakyan-Baskakov operators Sn and

Baskakov-Szász type operatorsMn were introduced and studied in [4, 5], respectively.

We may introduce their Bezier variants as follows.

(i) Szász-Mirakyan-Baskakov Bezier operators

Sn,α(f ,x)=
∞∑
k=0

R(α)n,k(x)
∫∞

0
pn,k(t)f (t)dt, x ∈ [0,∞), (3.28)

where R(α)n,k(x)= Lαn,k(x)−Lαn,k+1(x), Ln,k(x)=
∑∞
j=k e−nx((nx)k/k!), and pn,k(t) is as

defined by (1.1). For further properties of R(α)n,k(x), we refer the readers to [10].

(ii) Baskakov-Szász-Bezier operators

Mn,α(f ,x)=n
∞∑
k=0

Q(α)
n,k(x)

∫∞
0
sn,k(t)f (t)dt, x ∈ [0,∞), (3.29)

where Q(α)
n,k(x) is defined in (1.5), and sn,k(t)= e−nt((nt)k/k!).
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But the analogous results for these operators are not possible. The main problem

is in the estimation of Sn,α(sign(t−x),x) andMn,α(sign(t−x),x) because we cannot

relate summation of Szász (Baskakov) basis with integral of Baskakov (Szász) basis

functions. That is, we cannot find result of the type [8, Lemma 5]. There may be some

other techniques to solve this problem. This problem is still unresolved, and it is an

open problem for the readers.

Remark 3.2. It was observed in [2] that the operators with weight functions of Beta

operators give better results in simultaneous approximation than the usual Baskakov

Durrmeyer operators studied in [7, 8]. Here, we have considered the weight functions

of Beta operators, and, for α= 1, we obtain the better estimate on the rate of conver-

gence for bounded variation functions over the main results of [8].
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