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ABSTRACT. We consider the usual wave equation utt(x,t) = c2 uxx(x,t) on the real
line with some typical initial and boundary conditions. In each case, we establish a
natural isometrical identity and inverse formula between the sourse function and the

response function.
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1. INTRODUCTION.

We consider the solutions of the wave equation

22 u(x,t) 92 u(x,t)
= ¢° —————  ( c: constant, >0), (1.1)

8t2 sz

satisfying the conditions

>
on the space x = 0, u(0,t) = F(t) and u(x,0) = 0, (1.2)
on the space -» < x < o , ut(x,t)|t=o = F(x) and u(x,0) = 0, (1.3)

and

on the space -» < x < » , u(x,0) = F(x) and ut(x,t)l 0, (1.4)

t=0
respectively. Then, with some smoothness conditions for F, we have the integral
expression for the solutions u(x,t)

u(x,t) =

3 t
” IO F(g) Ulx,t - ) ag, (1.5)
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1
u(x,t) = [ Fe) elet - |x-¢l) ag, (1.6)
2c
and
1 3
u(x,t) = f_: F(g) e(ct - |x - £]) ag, (1.7)
2c ot

respectively. See for example Inui [2], Mizohata [3] and Szmydt [6]. Here,

1 for |x] < ct
U(x,t) =

[l
-~

(1.8)
0 for |x| > ct

and

1 for x > O

8(x) = { (1.9)
0 for x < O.

For (1.5) and (1.7), we have formally, for any fixed T > O

T T
f(x) = fo u(x,t) dt = Io F(g) U(x,T - £) dg (1.10)
and
T 1 ©
[ ulx,t) dt = —— f F(g) o(eT - |x - ¢g|) ag . (1.11)
0 2¢c —

In these integral transforms (1.6), (1.10) and (1.11), we apply the general theory
Saitoh [4,5] of integral transforms, and determine the Hilbert spaces formed by the
images and establish natural isometrical identities and inverse formulas between F and
u(x,t). As integral transforms, we can identify (1.6) and (1.11). We deal with F for

F ¢ L2(—w, ) or L2(O, »), following the point of view of the general theory.

2. THE CASE WITH VARIABLE BOUNDARY VALUES WITH THE TIME.
In the case (1.10), following the general theory Saitoh [L4,5], we form the
reproducing kernel Kl(xl’x2) on [c,eT] x [0,eT]

T
K (xhx,) = fo U(x»T - &) Ulx,,T - £) dg
Xl x2
=min (T - , T - ) (2.1)
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Note that Kl(xl’XZ) is the reproducing kernel for the Hilbert space Hl composed of all
the functions f(x) on [0,cT] satisfying that f(x) are absolutely continuous on [0,cT],

£'(x) € L2(O,CT), f(cT) = 0, and with the inner product

cT
= 4 ’
(fl,f2)Hl =c Io £,(x) £(x) ax for £, £, ¢ H. (2.2)
Note that the family
{U(x, T- g); x ¢ [0,eT] } (2.3)

is complete in L2(0,T). Hence, from the general theory we obtain
THEOREM 2.1. For any fixed T > 0O, the images fT(x) by the integral transform
(1.10) for F ¢ L

0,T) form the Hilbert space H. admitting the reproducing kernel

2( 1
Kl(xl’XQ)’ and we obtain the isometrical identity

T > cT 5
fo F(g) dag =c fo f£(x)° ax. (2.4)

Of course, for the classical solutions u(x,t) of (1.1) satisfying (1.2), we

obtain an interesting isometrical identity

T 5 eT ) T B
[ Fle)a =c | (—— [ ulxt) ) ax.
0 0 X 0

Next, we consider the inverse transform for (1.10). Note that for any £ ¢ (0,T),
U(x, T - £) is not absolutely continuous on [0,cT]. Hence, we cannot deduce the inverse
formula by the general theory Saitoh [L4], directly. Hence, for a reasonable family of
H and further

Hl’ we establish the inverse formula. We assume that fT € 1
'
fT(x) is absolutely continuous on [0,cT], f;(x) € Ll(O,cT) (2.5)
and
/ -—
£2(0) = o. (2.6)

Then, we obtain, by using the reproducing property of Kl(x,x2) for H1

f'T(xz) = (fT(X)’Kl(X’xz))Hl

cT T
=c [ { fé(x) —( fo U(x,T - g ) U(xg, T-¢g)dg )} dx
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T
cT
=c | f&,(x) jo Ulx, T - £) Ulx,, T~ g)dg ] g

eT T
. jo ( f;<x) jo U(x,T - €) Ulxy, T - €) dg ) ax
T cT
= [ (-c J f,;(x) Ulx, T- ) ax ) Ulx,T - £ ) de . (2.7)
0 0

Hence, from (1.10) and the completeness of (2.3) in L2(0,T), we obtain
THEOREM 2.2. For any fT e H

inverse transform for (1.10)

1 satisfying (2.5) and (2.6), we obtain the
cT

F(g) =-c | £o(x) UGk, T - £ ) ax. (2.8)
0

3. THE CASE WITH INITIAL BOUNDARY VALUES.
We consider the integral transform (1.6) for functions F ¢ L2(-m ,o). We form

the reproducing kernel Kg(xl,xe;tl,tg) , for xl # x2

1
K2(xl,x2;tl,t2) = f e(ctl - [xl -£])
2c -
o( Ctg - ‘xg - El) dg
1
- = +
(c(tl + t2) - ‘xl - x2| ) for le x2| c(tl t2)
2c (3.1)
= {
_ > +
0 for le x2l c(t1 t2).
On the other hand, for any fixed X T Xy T X we have
Kg(xl,x2;tl,t2) = K2,1(tl,t2 ')
l 0
= f olety - | x - g]) plct, = |x - g]) de
2c -0
= min (t),t,) for t,, ¢t 0. (3.2)

2 1’ 2
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Note that K2,l(tl’ 2,1 composed
of all the functions f(t) such that f(t) are absolutely continuous on [0,,), £(0) = 0,

£/(t) e L2(O,m), and with the inner product

t2;x) is the reproducing kernel for the Hilbert space H

o

(fl,fe) = , fl(t) f2(t) dt for £, f, ¢ Hy o (3.3)
The family
{ 6(ct - |x - gl); t ¢ [0, ), for fixed x } (3.4)
is not complete in L2(— ©, o). Indeed,
[ Flg) elct - |x-¢g|) & =0forall t , O; (3.5)
that is,
x + ct
i Flg) dg =0 forallt > 0 (3.6)
x - ct
implies that
F(x + ct) = - F(x - ct) for all t > O. (3.7)
In general, F L2(- », ») is decomposed uniquely in the form
F(E) = Fe(x)(g) + FO(X)(E); Fe(x)’ FO(X) £ L2(- s oo) (3-8)
where
1 1
Fo(x)(E) = —2 ( F(g) + F(2x - ¢)) and Fox)(8) = - ( F(g) - F(2x -£)).
The odd part of F satisfies (3.7) and so
[ F(g) elct - |x-¢g|) ag = j.m Fox)(g) alet =[x - ¢]) dg. (3.9)
In addition,
f Fe(x)(g) FO(X)(g) d{ = 0. (3.10)

We thus obtain



122 S. SAITOH

THEOREM 3.1. For any fixed x, the images f(t,x) by the integral transform (1.6)
for functions F ¢ L2(—w , ») form the Hilbert space Hy admitting the reproducing
3

kernel K2 l(tl,t2;x). Further, we obtain the isometrical identity
]

1 )
)2 at = min / F(e)? ag, (3.11)

at 2c -

©

af(t,x)

where the minimum is taken over all functions F satisfying

£(t,x) = / F(g) glet - |x =g |) dgs Fe Ly(-w, o). (3.12)

2c -0

* *
Moreover, the minimum is attained by F if and only if F is the even part Fe(x) of

any F satisfying (3.12).

It seems that Theorem 3.1 itself has an interesting physical sense for the wave.
Note that in the classical solutions u(x,t) of (1.1) satisfying (1.3), the integral
1 ™
— | Fe)® a
2 -
can be considered as the energy of the wave u(x,t), when the dentity p = 1.
For f(t,x) € H2,l’ we take F* such that

Y 1 Y

[ o602 at = ] OFe)? a (3.13)
0 2c —o

*
in (3.11). Then, we regard F as the inverse of f(t,x). Then, we obtain the inverse

formula, as in Theorem 2.2

THEOREM 3.2. For any f(t,x) e H2 1 satisfying that
b

ft(t,x) is absolutely continuous, and ftt(t,x) € Ll(O,w), (3.1k)

we obtain the inverse formula for (1.6)

2

* 3 f(tyx)

F()=- | ——————— olet - |x-g]) dt. (3.15)
0 5 42

Next, for any fixed T > 0, we consider the integral transform (1.6). Then, we

set K2(xl,x2;T,T) = K2,2(xl’x2;T)' Itseems that the Hilbert space H

o

2,2 admitting the

reproducing kernel K2’2 (xl,x2;T) has a much more complicated structure than Hl and

H2,l > in essence. In order to realize the norm in H2 5 > recall the identity
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1 © sin (g£/2)
j (—o— )2 e ixg dE
2w - g/2
1- |x| for |x| s
= 0 for |x| z (3.16)
See for example Butzer and Nessel [1]. We thus have the expression
K2’2(xl,x2;T)
T ® Xli XZE
= [ exp(-i——)exp(-i—) Wl(g) de, (3.17)
> 2cT 2cT
™ -0
where
sin (£/2)
W (g) = (———)° (3.18)
g/2
Note that the family
x§
{exp(-i——);x & (-, =)} (3.19)
2c T

is complete in the space L2(Wl(g)d5 ) composed of all the functions f satisfying

o

[0 ? wle) @ <= . (3.20)

-0

Hence, from the general theory, we see that any member f of H2 5 is expressible in
k]

the form
T © XE
£(x) = [ fg) e (- i ——) W (g) dg (3.21)
2T - 2c¢c T
for a uniquely determined f ¢ LZ(WI(E)dg ) and we have
T ©
2 -~
2] - £(g)] 2
H, , o f_m 1) = w(e) a . (3.22)

Note that since f(g)wl(g) € Ll(- @, @) A L2(— ®w, @), by using the inverse transform

of Fourier in the framework of L2 space, the norm ||f||H can be realized directly
2,2
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in terms of f as follows:

2
[1£]]
H2,2
2w o L ixg 2 dg
= / lim. | f(x) exp ( ——— ) & _—. (3.23)
T -l T -L 2c¢c T wl<£)
Of course, the inner product (f.,f.) is given by
1’72 H2 >
2m ® L ixg
(fl’f2)H2 , =— B ( i;i.m. f B fl(x) exp (—— ) ax )
’ T 2cT
L ixg dg
(1.i.m. f f2(x) exp (—m——— ) a&x ) — . (3.24)
Lo -L 2cT W (5)
1
Since the family
{e(cT-|x-2]); xe (-, =)} (3.25)

is complete in L_(- =, »), we obtain

2

THEOREM 3.3. For any fixed T > 0, the images fT(x) by the integral transform

(1.6) for functions F e L2(- o  ») form the Hilbert space H admitting the

2,2

reproducing kernel K2 2(xl,xz;T), and we obtain the isometrical identity
b
1 ©
2
[ F&)F «

2c -

2w ® L ixg 2 dg
= / l.im. f fT(x) exp ( — )dx R (3.26)

T ol I -L 2cT wl(g)

For the classical solutions u(x,t) for (1.1) satisfying (1.3), from the law of
conservation of energy, we obtain the identity
1 © 1 ©
2 2
— f Fg)"a =—/ (ut(x,t)2 + ¢ u (x,t)
5 X

-0 2 -0

%) ax. (3.27)
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Compare this with (3.26). This identity (3.26) implies that this energy is expressible

in terms of u(x,t) only for any fixed T > 0. Hence, it seems that (3.26) is an

interesting expression of the energy and is valuable when we evaluate the energy.
Next, we consider the inverse formula for (1.6). From the reproducing property of

H

K2’2(x,x2;T) for H2,2, we have, for any fT € 2.2

fT(x2) = (fT(X),K2,2(x,x2;T))H2 .

3

27 ) L ix El
= J (1dim f £.(g.) exp ( — ) dg }
T - I S 2T 1
L 1 o
{1.im. | ( [ eleT - |g, - g5 ) 6(cT - [x, - &5l )d% )
Lo - L 2 c -
ix g2 dx
exp (——— ) dg,— - (3.27)
2¢T Wl(x)
Since
L ix €5
l.i.m f 9(cT - |£2 g3| ) exp ( ) d €,
Lo -L 2¢T
ix 53
= 2¢T Wl(x) exp (- — ), (3.28)
2cT
we have
@ L ix Z—:l
f(x,) =2r [ {1l.di.m | (g ) exp (— ) d g}
T2 I—oo Lo a T 2eT 1
® ix 53
(] eleT - Ix, - 53|) exp (- — ) d €5 } ax
- 2¢T
1 © M L ix ﬁl
= lim [ [ e [ { Ll [ f£i(g) exp (——) d gy}
2 ¢ M - -M Lo -L 2cT
ix 53
exp ( - ) ax ] e(eT - |x2 - 531) d £qe (3.29)

2cT
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Hence, from the general theorem of Saitoh [4], we obtain

THEOREM 3.4.  For any fT € H2 pe W have the inverse formula for (1.6)

b

M L

F(g) = s-1im kx ¢ f {1.i.m. f fT(gl) exp (

Mo -M Lo -L

ixg
exp ( - ) ax

2cT

in the sense of the strong convergence in L2(—°° , ®).

k. THE INHOMOGENEOUS CASE.

We consider the inhomogeneous casej; that is,

) ulx,t) = - p(x,t)

with the conditions
u(x,0) = ut(x’t)ltLO = 0.

Then, for a suitable

t

u(x,t) =
2 0 -

First, for any fixed T > O and functions F satisfying

T ©

I

0 -

F(g,t)2 dg dt < =,

we consider the integral transform

T ©

I

0 -c0

fT(x) = F(g,t) o(c(T - t) - |x - g]) dg dt.

We form the reproducing kernel

T ©

Ks,1(x)5%p3T) = fo /

—-co

[ T ole,t) 8le(t -t ) - |x - &|) ag at.

ix El
) d &}
2cT 1
(3.30)
(b.1)
(4.2)

p, we obtain the integral expression of the solutions u(x,t)

(4.3)

(b.4)

(4.5)

o(c(T - t) - [x - g])ole(T - £) - |x, - €]) ag at
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]xl - x2|
2 2 £ et
e (1 - ) for |xl - x2| = 2c 0.6)
= { 2cT .
0 for ixl - le 2 2cT,
From (3.6), we have the expression
<
1 © (1 - |x| )2 for |x| =1
- = (4.7)
f e w2(€) € =1 , for |x]| z g,
27 -
where
= - i .18). (4.8)
w2(g) = j_w Wl(x) Wl(g x) dx, with (3.18)
We thus obtain the expression
Ky, p (xp%5T)
© X, & X2 13
1
=cT2j exp(-i—-—)exp(-i————-)wz(g)dg. (4.9)
- 2cT 2cT

Hence, we obtain, as in Theorem 3.2

THEOREM Lk.1. For any fixed T > 0, the images fT(x) by the integral transform
(4.5) for functions F satisfying (L.4) form the Hilbert space H3(T) composed of all

functions fT on (- w, o) with finite norms

2
2] 5 )
1 © L ixg 2 dg
= - f 1.i.m. f fT(x) exp ( — ) ax _ (4.10)
2 meT® ! oo -L 2eT wg(g)
and admitting the reproducing kernel K3 l(xl,xe;T).
’
Furthermore, we obtain the isometrical identity
T ©
15015 = [ [ FlEt)? & at (L.11)
THH_(T) > . .
3 0 -

As in Theorem 3.4, we obtain

THEOREM L4.2. For any fixed T > 0 and fT € H3(T), we obtain the inverse
formula for (4.5)
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F(g, t)
ixg
2 M 1 x(T - t) ( .
= s-1im { — sin ——— exp -
n T Moo f -M X o 2¢T
v Tt - (h.12)

(l.i.m. [ fT(gl) exp (— ) d&; } . .

I -L 2T W, (x)

y gr rm )4 ions
Next for an; fixed X, WE consider the inte al tr ansfo ( .3) for functio
3

p(g,t) satisfying

T 4.13
[ ] eew)®at < . (4.13)
O -0
We form the reproducing kernel
N ! | ) x(%s (0,80
;%) = o (clt, -t) - |x-¢ x(ts (0,8
K3, (810 tp3%) I I 1
% % t (4.1L)
o(c(t, - 8) - x - g]) x(ts (0,t,)) dg dt,
where 1 for 0 < % <t
A
t3(0,8)) = { - <~
«d 0 fort=0, t=t.
Then, we have
o2
. 2 2
Ky p(t5t,5%) = — min U6, t,° ) for t,5, 2 0. (4.15)

Note that K3’2(tl,t2;x) is the reproducing kernel for the Hilbert space H3(x)
composed of all functions f(t) such that f(t) are absolutely continuous on [0,®) and

£(0) = 0, and with finite norms

1 at =
{— [ ()% —— )} 2 ca | (4.16)
c 0 t
Since, the family
(olc(t - £) - |x - €]) x(t:(0,t)5 t € (0,) }

is not complete in L2((-w, »)x (0, »)), we obtain
THEOREM 4.3. For any fixed x, the images u(x,t) by the integral transform (4.3)

for functions p satisfying (4.13) form the Hilbert space H_(x) composed of all

3
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functions f£(t) on (0,») with finite norms (L4.16) and admitting the reproducing kernel
K3,2(tl,t2;x).

Furthermore, we obtain the isometrical identity

1 o du(x,t) > dt
5 ( )
c 0 3t t
c o -3
= min [ [ ele,0)? a at
0 -0
C o ©
x A2 .
1= f o (g,%) a at, (4.17)
2 0 -

where the minimum is taken over all p satisfying (4.3).
Further, we obtain, as in Theorem 2.2

THEOREM 4.4. For any u(x,t) e H3(x) satisfying

2
© 3 ulx,t) at
/ <, (4.18)
0 3 2 t
we obtain the inverse formula for (k4.3)
x -
P (E’t)
1 o 3 1 3u(x,t) at
=-— /. (— ) ele(t - t) - [x-¢]) (4.19)
c t 9t t 3t

2
The Green’s functions Ge(x,y;x', y’3t) and G3(x,y,z;x',y',z’;t) for R® = (x,y)

and R3 = (x,y,z) for the corresponding wave equations are given by

Ge(x,y;X',y’;t)

colct <[ (x-x9%+ (y-y02 )

- (4.20)
2w/ ? 2 - [(x - )2 + (y - y/)2 ]
and
G, (X,¥,23%X" ¥’ ,2% 3t )
3 (x - %)+ (y - )%z - 20)?
8(t - )
[}
= (k.21)

b [ (- x)2 % (y - )2 4 (2 - 27)°
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Hence, we note that the arguments of this paper in the one dimensional space do not

3

valid directly in the cases R2 and R~ for the sigularities of the Green’s functions

(4.20) and (L4.21).
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