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ABSTRACT. The main aim of the present paper is to prove the existence of
common fixed points for mappings which are not necessarily continuous. Our
results, which are primarly motivated by investigation of Husain and Sehgal
(Bull. Austral. Math. Soc. 13 (1975), 261-267), generalize the results of

Husain and Sehgal, Sehgal, Kannan, Reich, Hardy and Rogers, and others.
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1. INTRODUCTION.

In [1], Iseki gave some sufficient conditions for the existence of
common fixed points for a sequence of self-mappings of a complete metric
space. The results of [1] were extended further in Husain and Sehgal [2]
and Singh and Meade [3]. For a single mapping, Theorem 1 [2] was further
extended by Husain and Sehgal [4]; and for a pair of mappings, it was
extended by Kasahara [5]. The purpose of this paper is to obtain some
common fixed-point theorems for a family of mappings under conditions that
are considerably weaker than considered in [2]. The results herein improve
the results in [1], [2], [3], [5], (6], [7], [8], and several known results.
2. PRELIMINARIES AND BASIC DEFINITIONS.

Throughout this paper, let (X,d) be a complete metric space and let
R+ be the nonnegative reals. Let ¢y denote a family of mappings such that
each ¢ ev , p:(R+)5 +R', and # 1is upper semicontinuous and

nondecreasing in each coordinate variable. Also, let



90 D.E. ANDERSON, K.L. SINGH, AND J.H.M. WHITFIELD

Y(t) = f{t,t.alt,azt.t}. where Y is a function Y:R® +R*, where
aj +a;=2, aj € {0,1,2}. We will need the following:

LEMMA 2.1 [Lemma 1 (3)]. For any t >0, ¥Y(t) <t if and only if
%33 y™(t) = 0. The following is proved in [2]:

THEOREM 2.1. Let f,g be self-mappings of a complete metric space X.

Suppose there exists a g§ € ¥ such that for each x,y € X,

d(fx,gy) < #(d(x,£x),d(y,gy)d(x,gy),d(ys£fx),d(x,y)), (2.1)
where ¢ satisfies the condition: for any t > 0,
Fltitsa tiant,t) <t, a; e {0,1,2} with a; +a, = 2. (2.2)

Then, there exists a u € X such that
(a) fu = gu = u and
(b) u is the unique fixed point of each f and g.

REMARK 2.1. The condition g to be continuous was weakened by the
upper semicontinuity of # in [3].

The following example shows that if we replace (2.2) in Theorem 2.1 by

gl tot,tat) < t, (2.2)!
then the conclusion of Theorem 2.1 is no longer true.

EXAMPLE 2.1. Let X = {1,2,3,4}, d(1,2) = d(3,4) = 2, and
d(1,3) = d(1,4) = d(2,3) = d(2,4) = 1. Define f:X +X by fl = f4 = 2,
f2 = £3 = 1, and define g:X +X by gl = g3 =4, g2 = g4 = 3. Then,
d(fx,gy) < 1/2 max{d(x,fx),d(y,gy),d(x,gy),d(y,£fx),d(x,y)}. Taking
k = 3/4, we see that f,g satisfy Ciric's condition [9], but are without
fixed points.

REMARK 2.2. The above example answers in the negative a question
raised by Ciric [9].

The following example shows that the condition g(t,t,t.t,t) <t is
necessary for the existence of a fixed point.

EXAMPLE 2.2. Let X = [1,) with the usual metric. Define T:X + X
by T(x) = x + % and g(t,t,t,t,t) = t + %. Clearly, g 1is continuous
(and, hence, upper semicontinuous) and nondecreasing. Moreover, T
satisfies the condition d(Tx,Ty) < j(d(x.y).d(x.Tx).d(y.Ty).d(x.Ty),d(y.Tx)).
Let m = min{d(x,y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)}. Without loss of
generality, we may assume x < y 1in the contractive definition. If x and
y satisfy y 21 + %. then m = min{d(y,Tx),d(y,Ty)}, and
d(Tx,Ty) < g(m,m,m,m,m). If y <x +x, thenm = min{d(y,Tx),d(x,y)}, and
again d(Tx,Ty) < g(m,m,m,m,m). However, g(t,t,t,t,t) £t and T is
without a fixed point. It is clear from Example 2.1 that in order to ensure
the existence of a common fixed point for control function g of (2.2)', we
must impose some additional condition. One such possible condition is the

following:

DEFINITION 2.1. A pair {f,g} of mappings is asymptotically regular at
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X, if d(xn.xn+1) +0 as n * », where x, = f(xo). x, = g(xl). cees
Xone1 = EXgp)e Xopep = 8(xpp )

Other necessary conditions for ensuring the existence of common fixed points
for the pair of mappings f,g are given by Kasahara [5], Park [10], Park and
Rhoades [11], and Rhoades [12]. 1In all of these papers, the commutativity of
f and g 1is assumed.

3. MAIN RESULTS.

THEOREM 3.1. Let f and g be two self-mappings of a complete metric
space X. Suppose there exists a ¢ € ¥ such that for each x,y € X,
d(fx,gy) < g(d(x,fx),d(y,gy),d(x,gy)sd(y,£fx),d(x,y)), where for any t > 0,
§ satisfies (2.2)'. Suppose that the pair {f,g} is asymptotically
regular at X € X; then, there exists a u € X such that
(a) gu = fu = u and
(b) u 1is the unique fixed point of f and g.

PROOF. Define the sequence {x }, respectively, by x; = f(xg),
X, = g(xl). cees Xy = f(xzn). and X, ., = g(x2n+1). Let
d = d(x ,x ;). By the asymptotic regularity of the pair {f.g}, it
follows that

d, = d(xbx 1) >0 as n >, (3.1)

We show that {xn} is a Cauchy sequence. It is enough to show that
{x, } is a Cauchy sequence. Suppose, to the contrary, that {xzn} is
not a Cauchy sequence. Then, there is an € > 0 such that for each integer
2k, k € I+. there exist integers 2n(k) and 2m(k) with
2k < 2n(k) < 2m(k) such that

40 () **om()) >, € 3.2)

Let, for each positive integer 2k, k € I , 2m(k) be the least

integer exceeding 2n(k) satisfying (2.2); that is,

400 (k) *Xom(k)-2) S €, and 0 () oXpp()) > € G.3)
Then, for each integer 2k, k e I ,

€ < dxan()s®am(k)) = 4on (k) *om(k)-2) * dom@i)-2 * dzm(k) 1+ Therefore,
by (3.1) and (3.2), we obtain

d(xzn(k).xzm(k)) + € as k »x, (3.4)
It follows from the triangular inequality that
14000 2017~ 42000 om0 S domeiy-1
1460 )+ 1 2m(0)-1) 7 12010 ™ 2m(10)? ! * om()-1 ¥ donyc Hemoer BY
(3.4), as k + = , d(x2n(k)’x2m(k)~1) + € and d(x2n(k)+l'x2m(k)-1) + €.
Now, let p(2k) = d(x2n(k)’x2m(k))' q(2k) = d(x2n(k)'x2m(k)-1)’ and
r(2k) = d(x2n(k)+l’x2m(k)-l)' Then, p(2k) < d2n(k) + d(fx2n(k)'gx2m(k)-l)

< d2n(k) + ﬂ(dzn(k).dzm(k)_l.p(2k).r(2k).q(2k)). Since # 1is upper
semicontinuous, as k »+ «, it follows

€ < #(0,0,e,¢€5¢) < fle,e,65€,€) < €, a contradiction.
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Therefore, {xn} is a Cauchy sequence; and, hence, by
completeness, there exists u € X such that X, *u. We show that u 1is a
common fixed point of f and g. Now, since Xy, = g(xzn_l).
d(fusx, ) < g(d(usfu)ed, ;0d(usx, )od(x, ,.fu)sd(x, ,.u)). Taking the
limit as n + =, we obtain d(fu,u) S g(d(u,fu),0,0,d(u,fu),0) < d(u,fu), a
contradiction, unless u = fu. A similar argument applied to d(x2n+1.gu)
yields gu = u. To show the uniqueness, suppose there is a v # u for which
gv = v. Let r = d(u,v) > 0. Then, r = d(fu,gu) < g(0,0,r,r,r) <r, a
contradiction. Thus, u = v.

LEMMA 3.1. Mappings satisfying conditions of Theorem 2.1 are
asymptotically regular.

PROOF. Let x, € X. Define a sequence {xn} in X is follows: Let
X, = f(xo). X, = g(xl); and, inductively, for each n € I  (positive
integers), let Xpoel = f(xzn). Xon+2 = g(x2n+1). We claim that
d(xl.xz) < d(xo,xl). Suppose it isn't. Then, d(xo.xl) < d(xsx,). Let
r = d(xl.xz). Then, r = d(xl,xz) = d(fxo,gxl)
< ¢(d(x0,x1).d(xl.xz).d(xo.xz).d(xl.xl).d(xo.xl))
S #(d(xox,)0d(x)5%,)»2d(x 5% ,)50,d(x)5x,)) S #lr,r,2r,0,r) <1, a
contradiction. Therefore,
d(xox,) < gd(xgex))sd(xex))52d(xx))40,d(xex)) = v(d(xgex))).
Similarly, d(xz.x3) < Y(d(xl.xz)) S v (d(xo.xl)); and in general,
d(xn.xn+1) < yn(d(xo.xl)). Since %gg Yn(t) =0 for t >0 (Lemma 2.1), it

follows that %ﬁg d(xn.x ) =0; i.e., the pair {f,g} is asymptotically

n+l
regular.

COROLLARY 3.1. Let X be a complete metric space, and let f,g:X + X
be two mappings satisfying
d(fx,gy) < k max{d(x,y).d(x,fx),d(y,gy).d(x,gy),d(y,fx)} for all x,y € X
and for some k, 0 < k < 1., Suppose that the pair {f,g} is
asymptotically regular at+ go. Eben. f and g have a common fixed point.

PROOF. Define #:(R ) + R as follows:
Fltptoatat,tod = k max{tl.tz,t3,t4,t5}. Then, g € ¥ and g,f,g
satisfy the hypothesis of Theorem 3.1.

LEMMA 3.2. Let f be a self-mapping of a complete metric space X
satisfying (2.1) (with f = g) and (2.2)'. If
sup{d(xo.fnxo):n €w - {0}} <~ for some x; € X, then f is
asymptotically regular, where w (omega) is the set of all nonnegative
integers.

PROOF. Let § = sup{d(fxn.fxn+1)}. By hypothesis, ¢  is finite
for each n € w. Since 6 ., <6 for any n € w, {6} converges to

n’'new
0. Suppose it isn't; that is, & > 0.

some S 2 0. We claim that §

d(fx .fx ) < ¢(d(xn,xn+1),d(xn.fxn).d(xn+1,fxn+1).d(xn,fxn+l).d(xn+l.fxn))
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< /(an-l'an-l’an-l‘sn-l'Gn—l)' and, hence, we have

Gn < P8 108, 1204-1284-1284-1) for all n € w. Using upper
semicontinuity of g, it follows that & < g(38,68,8,3,8) <&, a
contradiction. Thus, %ig d(fxn.fxn+1) =0; i.e., f is asymptotically
regular.

REMARK 3.1. Using Lemmas 3.1 and 3.2, we get results of Husain and
Sehgal [2], Singh and Meade [3], and Husain and Sehgal [4], respectively, as
corollaries of our theorem 2.1.

REMARK 3.2. Special cases of mappings satisfying conditions (2.1) and
(2.2)' have been discussed by Rakotch [13], Boyd and Wong [14], Bianchini
[15], Kannan [16 and 6], Reich [7 and 8], Rus [17], Sehgal [18], Rhoades
[19], Chatterjea [20], Hardy and Rogers [21], Ciric [22 and 9], Massa [23],
Zamfirescu [24], and others. Theorem 3.1 is a generalization of
results of Massa, Ciric, Kannan, Reich, Rhoades, Bianchini, Hardy and Rogers,
Husain and Sehgal, Singh and Meade, Kurepa, Rakotch, Boyd and Wong, Rus,
Zamfirescu, and others.

The following example shows that a mapping satisfying condition (2.1)
and (2.2)' (f = g) need not satisfy any condition considered by the above
authors.

EXAMPLE 3.1. Let X = [0,%) with the usual metric. Define T:X + X
by T(x) = I_f_; and f:(R+) +R by g(tlatptgetyets) = I_f_:. where
t = max{tl.tz.t3.t4.t5}. Then, T satisfies our condition with 0 only
as a ii{ed point. Indeed, for amy x,y € X, d(Tx,Ty) s | [ y + xy
ST+ [x - yI S p(d(x,y)2d(x,Tx),d(y,Ty) »d(x,Ty),d(y,Tx)). However, T
does not satisfy any other condition. gIndeed, for y = 0 and any x € X,
wejhave d(Tx,To) = I_f_; <k max{O.Ix:_;.x.T_f_;.x}. For any x > 0,
TXT_Q < x, and T_f_; < x, we have I_f_; < kx; that is, 1 + x S k.

4, SEQUENCE OF MAPPINGS.

In this section, we prove common fixed-point theorems for a sequence
of mappings. These results include results of Husain and Sehgal [2], Iseki
[1], and others as a particular case.

THEOREM 4.1. Let g and a sequence {fn} be self-mappings of X such
that fn + g uniformly. Suppose for each n 2 1, fn has a fixed point
x, and g satisfies the condition: for all x,y € X,

d(gx,gy) < J(d(x,gx)sd(ysgy)sd(x,gy)sd(ysgx)sd(x,y)) (4.1)
for some ¢ ey satisfying (2.2)'. If xg is the fixed point of g and
sup d(x ,x3) <=, then x > x,.

PROOF. Note that x is a unique fixed point of g. Since
fnxn =x, and f +g uniformly, it follows that
d(fnxn.gxn) = d(xn.gxn) +0 as n+w, Let r = lim sup d(xn.xo). Then

since d(gxn.xo) < d(gxn.xn) + d(xn.xo). it follows by (4.1) that
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d(xpexg) S d(xpegxy) + d(gx.8%()

< d(xp,gx,) + y(d(xn.gxn),d(xo.gxo).d(xn.gxo).d(xo.gxn),d(xn.xo))

s d(xp,gxy) + g(d(xp,exp)e0,d(xp,x0)sd(xgex ) + d(x .gx )sd(x ,x)). This
implies that r < g(0,0,r,r,r) < r; hence, r =0 and, consequently,

x X

REMARK 4.1. A special case of Theorem 4.1 is Theorem 3 [2]. If in
Theorem 4.1 condition (4.1) is replaced by
d(gx,gy) < ald(x,gx) + d(y.gy)] + Bld(x,gy) + d(y,gx)] + vyd(x,y), where
«,8,Y are some nonnegative reals with 2a + 28 + Yy < 1, then it is easy to
show [1] that sup d(xn.xo) <*®, Thus, Theorem 4.1 also improves Theorem 2
in [1].

THEOREM 4.2. Let {f } be a sequence of self-mappings of X
satisfying the condition: there is a g € ¥ satisfying (2.2)' such that for
all x,y € X and n 21,

d(f x,f y) < f(d(x.fnx).d(y.fny).d(X.fny).d(y.fnx).d(x.y)) and each mapping
is asymptotically regular. Let X be the fixed points of fn (given by

Theorem 3.1), and let g:X + X such that fn +g. If x is any cluster

0
point of the sequence {xn}. then 8%y = Xj.
PROOF. Let x =+ Xg. Since f —+ g, d(fn.xo,gxo) -+ 0.

Furthermore, for each i 21, 1

d(xy »fy %) = a; < d(xn'.xo) + d(xo,gxo) + d(gxo.fn xo) > d(xo.gxo) and
d(xoffn.io) =B; < d(xo.éxo) + d(gxo,fn xo) > d(xo.gio). Thus, for each

i .

i21, d(xg.gxp) s dlxgsx ) + d(fn,xn £
< d(x()oxn') + f(O.Bl-Gl.d(x:,xo).d(:lin}xo)} + d(anO}gXO). Therefore, as

,XO) + d(fn.xo.gxo)

i+=, dlxggxg) S $(0.d(xysgxy)sd(xyrgxy)»0,0), which implies g%y = X,
REMARK 4.2. A special case of Theorem 4.2 is Theorem 4 [2].
REMARK 4.3. Various kinds of contractive-type mappings which are
special cases of our mappings may be found in [19].
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