Internat. J. Math. & Math. Sci.
Vol. 7 No. 3 (1984) 619-620

ANOTHER NOTE ON ALMOST CONTINUOUS MAPPINGS AND BAIRE SPACES

JINGCHENG TONG

Department of Mathematics Wayne State University Detroit, Michigan 48202 U.S.A.

(Received July 2, 1982)

ABSTRACT. The following result is proved:

Let Y be a second countable, infinite topological space with an ascending chain of regular open sets. Then a topological space X is a Baire space if and only if every mapping $f: X \to Y$ is almost continuous on a dense subset of X.

It is another improvement of a theorem of Lin and Lin [2].

KEY WORDS AND PHRASES. Regular open set, almost continuous mapping, Baire space.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES. 54C10. 54F65.

1. INTRODUCTION.

In [1], the present author established a lemma by replacing Hausdorff space with R_0 -space with an ascending chain of open sets. In this paper, a lemma is established which has the same conclusion under independent conditions without any assumption on separation, and it is used to give another improvement to a theorem of Lin and Lin [2]. MAIN RESULT.

An open set U in a topological space is a regular open set [3, p. 92] if Int(\overline{U}) = U. Countably many regular open sets 0_1 , 0_2 , ..., 0_n , ... is called an ascending chain of regular open sets if $0_1 \subseteq 0_2 \subseteq \cdots \subseteq 0_n \subseteq \cdots$.

LEMMA 1. An infinite Hausdorff space has an ascending chain of regular open sets. PROOF. By [4, Prob. 14, p. 147], we have a countably infinite subspace $\{y_1,y_2,\ldots,y_n,\ldots\} \text{ and disjoint open sets } \mathbb{U}_1,\,\mathbb{U}_2,\,\ldots,\mathbb{U}_n,\ldots \text{ such that } y_n\in\mathbb{U}_n. \text{ Let } 0_n=\text{Int}(\,\mathbb{U}\,\,\mathbb{U}_1)\,\,(n=1,2,\ldots). \text{ Then from } [2,\,p.\,92] \text{ we know that } 0_n \text{ are regular open } 1=1 \text{ sets. It is easily seen that } y_n\in\mathbb{U}_n. \text{ Since } \mathbb{U}_1 \text{ are disjoint, } y_n\notin\overline{\mathbb{U}}_{n-k}$ $(k=1,2,\ldots,n-1); \text{ hence, } y_n\notin\mathbb{U}_{n-1}. \text{ Thus, } 0_{n-1}\notin\mathbb{U}_n \text{ where } \{0_n,\,n=1,2,\ldots\} \text{ is an ascending chain of regular open sets.}$

620 .I. TONG

The converse of Lemma 1 is not true.

EXAMPLE 1. Let $D = \{d_1, d_2, \ldots, d_n, \ldots\}$ be an infinite set of distinct points. a, b, c are distinct points not in D. Let $X = \{a,b,c\} \cup D$ with topology $\tau = \{N, \{a\} \cup N, \{a,b,c\} \cup N; N \text{ is a subset of } D\}$. Then $O_1 = \{d_1, d_2, \ldots, d_1\}$ (i = 1,2,...) is an ascending chain of regular open sets. X is not T_0 since neither D hor D c can be separated by open sets from the other. D is not D0 since D1 and D3 doe not belong to any D3.

In Example 1 of [1], X is the only regular open set. This shows that an R_0 -space with an ascending chain of open sets does not imply the existence of an ascending chain of regular open sets; thus, the two conditions are independent.

LEMMA 2. Let X be an infinite space with an ascending chain of regular open sets. Then X contains a countably infinite discrete subspace.

PROOF. Let 0_i (i = 1,2,...) be an ascending chain of regular open sets. Then $V_n = 0_{n+1}/\overline{0}_n$ is a nonempty open set, otherwise $0_{n+1}/\overline{0}_n = \emptyset$ implies $0_{n+1} < \overline{0}_n$; hence, $0_{n+1} = \operatorname{Int}(0_{n+1}) < \operatorname{Int}(\overline{0}_n) = 0_n$, contradicting $0_n \lneq 0_{n+1}$. Now we prove that $\{v_n\}$ are disjoint. If m > n, then $V_m = 0_{m+1}/\overline{0}_m$, $V_m \cap \overline{0}_m = \emptyset$, but $0_{n+1} \subseteq 0_m$; hence, $V_m \cap \overline{0}_{n+1} = \emptyset$, $V_n \subset 0_{n+1}/\overline{0}_n \subset 0_{n+1}$. Therefore, $V_m \cap V_n = \emptyset$, $\{V_n; n = 1, 2, \ldots\}$ are disjoint. Select a point $V_n \in V_n$ for $n = 1, 2, \ldots$; then, $S = \{y_n; n = 1, 2, \ldots\}$ is a countably infinite discrete subspace.

Now, Theorems 2 and 3 in [2] can be written as follows:

THEOREM 1. Let Y be an infinite space with an ascending chain of regular open sets. If X is a topological space such that every mapping $f: X \to Y$ is almost continuous on a dense subset of X, then X is a Baire space.

THEOREM 2. Let Y be a second countable infinite space with an ascending chain of regular open sets. Then a topological space X is a Baire space if and only if every mapping $f: X \longrightarrow Y$ is almost continuous on a dense subset of X.

REMARK 1. It is worth mentioning that, in Theorems 1 and 2, no separation property is required.

REFERENCES

- TONG, J. A note on almost continuous mappings and Baire spaces, (to appear in Inter. J. Math. and Math. Sci.).
- LIN, S-Y.T and LIN, Y-F. On almost continuous mappings and Baire spaces, <u>Canad.</u> <u>Math. Bull.</u> 21 (1978), 183-186.
- 3. DUGUNDJI, J. Topology, Allyn and Bacon, Boston, 1972.
- LONG, P.E. An Introduction to General Topology, Charles E. Merrill Publ. Co., Columbus, Ohio, 1971.