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ABSTRACT. The following result is proved:

Let Y be a second countable, infinite topological space with an ascending chain
of regular open sets. Then a topological space X is a Baire space if and only if
every mapping f: X > Y is almost continuous on a dense subset of X.

It is another improvement of a theorem of Lin and Lin [2].
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1. INTRODUCTION.

In [1], the present author established a lemma by replacing Hausdorff space with
Ro-space with an ascending chain of open sets. In this paper, a lemma is established
which has the same conclusion under independent conditions without any assumption on
separation, and it is used to give another improvement to a theorem of Lin and Lin [2}
2. MAIN RESULT.

An open set U in a topological space is a regular open set [3, p. 92] if
Int(ﬁ) = U. Countably many regular open sets 01, 02, cees On, ... is called an
ascending chain of regular open sets if 01 S 02 G e $_On G eee .

LEMMA 1. An infinite Hausdorff space has an ascending chain of regular open sets.

PROOF. By [4, Prob. 14, p. 147], we have a countably infinite subspace

{yl,yz,...,yn,...} and disjoint open sets U, U,, ...,U ,... such that y, € U+ Let

1’
0 = Int(U Ui) (n =1,2,...). Then from [2, p. 92] we know that 0n are regular open

i=1 -
sets, It is easily seen that Yo € On' Since Ui are disjoint, Yo ¢ Un-k

(k = 1,2,...,n~1); hence, Y, ¢ on-l' Thus, 0 _; ; 0n where {On, n=1,2,...} is an

ascending chain of regular open sets.
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The converse of Lemma 1 is not true.

EXAMPLE 1. Let D = {dl, d ey dn’ ...} be an infinite set of distinct

2’

points. a, b, c are distinct points not in D. Let X = {a,b,c} u D with topology

v = {N, {a} u N, {a,b,c} U N; N is a subset of D}. Then 0, = {dl, Aoy eees di}

2°
(i =1,2,...) is an ascending chain of regular open sets. X is not T0 since neither

b nor ¢ can be separated by open sets from the other. X is not R0 since {a} = {a,b,c}
doe not belong to any {al "N.

In Example 1 of [1], X is the only regular open set. This shows that an Ro-space
with an ascending chain of open sets does not imply the existence of an ascending
chain of regular open sets; thus, the two conditions are independent.

LEMMA 2. Let X be an infinite space with an ascending chain of regular open sets.
Then X contains a countably infinite discrete subspace.

PROOF, Let 0i (i =1,2,...) be an ascending chain of regular open sets. Then
Vn = 0n+1/6n is a nonempty open set, otherwise 0n+l/6n = @ implies 0n+1 c 6n; hence,

= 0) = icti c
On+1 Int(0n+1) c Int(On) On’ contradicting 0n *’0n+1'

PR > = 0 0 = M
are disjoint. If m > n, then Vm 0m+l/0m’ Vm n 0m @, but 0n+l Q.Om, hence,

Therefore, vonv = 9, {Vn; n=1,2,...} are

Now we prove that {Vn}

vm n 6n+l =90, vn “ 0n+1/6n < 0n+l'
disjoint. Select a point yn € Vn forn=1,2,...; then, S = {yn; n = 1,2,...} is a
countably infinite discrete subspace.

Now, Theorems 2 and 3 in [2] can be written as follows:

THEOREM 1. Let Y be an infinite space with an ascending chain of regular open
sets. If X is a topological space such that every mapping f: X > Y is almost contin-
uous on a dense subset of X, then X is a Baire space.

THEOREM 2. Let Y be a second countable infinite space with an ascending chain of
regular open sets. Then a topological space X is a Baire space if and only if every
mapping f: X—+Y is almost continuous on a dense subset of X.

REMARK 1. It is worth mentioning that, in Theorems 1 and 2, no separation pro-

perty is required.
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