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ABSTRACT. Let n > 1, m, t, s be any positive integers, and let R be an associa-
tive ring with identity. Suppose xt[xn,y] = [x,y™y® for all x, y in R. If,
further, R 1is n-torsion free, then R is commutativite. If n-torsion freeness of
kK is replaced by "m, n are relatively prime," then R is still commutative.
Moreover, example is given to show that the group theoretic analogue of this theorem
is not true in general. However, it is true when t=s=0 and m=n+l.
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1.  INTRODUCTION.

Throughout this note, R will be an associative ring with identity, Z the
center R, N the set of all nilpotent elements of R, and C(R) the commutator
ideal of R. We set [x,y] = xy-yx.

Our objective is to prove the following

THEOREM 1. Let n(> 1), m be positive integers and let t, s be any
non-negative integers. Let R be an associative ring with identity. Suppose
xt[xn,y] = [x,ym]yS for all x, y in R. If, further, R is n-torsion free, then
R is commutative.

In preparation for the proof of this theorem, we first establish the following
lemmas.

LEMMA 1. Let R be a ring with 1, k any positive integer, and let x, y be
in .

(i) If [x,[xy11 =0, then [x,y) = ke 20xyI.
(i1) 1f xXy = 0= (x+1)¥y, then y = 0.
(iii) If (m,n) =1 and [xn,y] = [xm,y] =0, for all x 1in R, then [x,y] = 0.

This Temma is very well-known.
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LEMMA 2. Under the hypotheses of the above theorem, every nilpotent element of
R s central.
PROOF. It is a triviality to prove that hypothesis

xt[xn,y] = [x,ym]yS for all x, y in R (1.1)
implies
t! n2 m2 s' .
x- [x' ,y]l = Ix,y" Jy> , for all x,y in R t'=snt+t, s'=2s (1.2)
Let x e N; then there exists a positive integer p, such that
ak e Z, for all k 2 p, p minimal. (1.3)

Suppose p > 1. In (1.1), replace x by 1t get
(@ HEP "y = [P hymys
which implies, in view of (1.3),
[aP1y"y® = o (1.4)
Now, in (1.1) replace x by 1+ap'1, to obtain
(1+aP 1)L (1+aP™ )" y] = [aP7hy™yS.
In view of (1.4), and the fact that 4P s invertible, the last equation implies
[(1+aPH)"y] = 0. (1.5)
Combining (1.5) and 1.3), we see that
0 = [(1+aP™1)",y] = [14naP"1y3 = nlaP7L,y0
Since R is n-torsion free, the last identity implies [ap'l,y] =0, forall y in
R, which contradicts the minimality of p. This contradiction shows that p = 1.
Therefore, N < Z.
Now, observe that by [1, Theorem 1], C(R) is a nil ideal, since x=e,, and

y=e, + ey, fail to satisfy (1.1). Hence in view of Lemma 2, we obtain
C(R) ¢ 2 (1.6)
PROOF OF THEOREM 1. In (1.1), replace x by 2x to get

2Ny = 2xay™yS.

Combining the last identity with (1.1), we obtain
+
2" Gy ™My = 20,y S (1.7)
In view of (1.6) and Lemma 1, (1.7) yields
2n+tmym+5'1[x y] = 2mym+s-1[x
(2" t-2)my™5 1 [x,y] = 0.
. _ ,on+t kq _ .. k-1 _
Then, if k = (2" "-2)m(1+s), [x,y ] = ky  “[x,y] = 0. Therefore,
K ez, forall xeR; k= (2" 2)m(1+s). (1.8)

Next, by (1.1) we obtain

»y]

m+S‘1[x y]

x'Ix"y] = my
Replace y by ym in the above equation to get
xt[xn,ym] - mym(m+s-1)[x’yrn:|
mxt[xn,y]ym'l - mym(m+s-1)[x,ym].
Combining the last identity with (1.1) and (1.6), we obtain
mx[x’ym]ym+s-l(1_y(m—1)(m+s-1)) - 0. (1.9)
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Multiply (1.9) by y(™1(Ms-1) 45 optain
mEx,y ™y Ly (-1 mrs=1) - 2(m-1)(mes-1))

Adding together (1.9) and (1.10), we see that
mx, ym1 n+s - l(l_yz(m-l)(M+s-1

) -
Continue this process k times (k being as in (1.8)) to obtain
m[x,ym]ym+s'l(1-yk(m'1)‘M+S'l)) (1.11)
It is well known that R is isomorphic to a subdirect sum of subdirectly
irreducible rings Ri (iey). Each Ri satisfies (1.2), (1.6), (1.8), and (1.11),

but Ri is not necessarily n-torsion free.

= 0. (1.10)

We consider the ring Ri (iey). Let S be the intersection of all non-zero
ideals of Ri‘ Then, it can be easily verified
Sd = 0, for all central zero divisors d (1.12)
If a s any zero divisor of R then
m[x,a™la m+s- 1(1 ak(m-l)(m+s 1))
Thus,

+5-
m[x,a™Ja™s"1 -

(1.13)
k(m-1)(m+s-1)

will be a central (see (1.8)) zero
k(m-l)(m+s-l)) -

For if m[x,am]amJ's'1 # 0, 1-a

divisor and by (1.12), 0 = S(l-a
(1.2) and (1.13), we see that

n2 m2 s'
x' ,a] = [x,a Ja = m[x,a

S, a contradiction. Combining

Xt|[ m]am(m-1)+s' = 0.

Hence by Lemma 1,

' 2
2n+t 1[,( a]=xt [xn ,a]=

Replacing x by x+1 in the 1last identity and using Lemma 1, we obtain

n2[x,a] = 0, which yields [xnz,a] = nzxnz'l[x,a] = 0. Therefore,
"z,a] =0, for all x in Ri' and all zero divisors a of Ri' (1.14)
Next, let ¢ be any central element of R;. In (1.1), replace x by cx to
get
<MEEIXMyT = clxay™ly® = oextxMy)
("t y1 -
Apply once more Lemma 1 to obtain

n+t n+t-1[x

-C)x syl =
If we replace x by x+1, and apply Lemma 1, we finally get n(c"+t-c)[x,y] =
which implies

n(c

(c"+t-c)[x",y] =0, for all x,yERi, and any central element c of Ri‘ (1.15)

In particular,

(K yT = 0 for an X,yeR, . (1.16)
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2 2
Now, let yeRi. If Ly,xn ] =0, then clearly [yq-y,xn ] =0 for all pusi-
2
tive integers q. If [y,xn 1 #0, then [y,xn] # 0. For [x",y] = 0 implies

2
[y,x" 1 =0, a contradiction. Since [x",y] # 0, (1.16) implies that yk("+t)-yk

is a zero divisor. Therefore, yk("+t'1)+1-y is also a zero divisor. Hence, (1.14)

implies

[yp-y,xnz] =0 for all XsyeRy5 p = k{n+t-1)+1 (1.17)
Since each R, (iey) satisfies (1.17), the original ring R also satisfies
(1.17). But K is n-torsion free. Thus, combining (1.1/) and Lemma 1, we finally
obtain
[yP-y,x] = 0, for all X,yeR,
which implies commutativity of R by Herstein's theorem [3].

2. If we replace, in Theorem 1, hypothesis "R is n-torsion free" by the condition
“n and m are relatively prime," the ring R s still commutative.

THEOREM 2. Let n, m be relatively prime positive integers, and let t,s be
any non-negative integers. Suppose R is an associative ring with identity satisfy-
ing xt[xn,y] = x,y"ly> for all X,y in R. Then R is commutative.

PROOF. Here, without loss of generality, we assume that R s subdirectly
irreducible.

Let aeN. Following the same argument as in Theorem 1, we prove (see (1.5))
that n[ap°1,y] =0 for all yeR; similarly, we can prove that m(ap'l,y] =0 for
all yeR. Since (m,n) = 1, we obtain

C(R) < N< Z. (2.1)

Note that the proof of (1.8) also works in the present situation, so that there
exists k for which

xKeZ for all xeR. (2.2)

2
Furthermore, as in the proof of Theorem 1 we obtain [x" ,a]l = 0 for all xeR and

all zero divisors a (see (1.14)); similarly [xmz,a] = 0. Thus, the last part of
Lemma 1 yields
[x,a]l = 0 for all xeR and all zero divisors a. (2.3)
As we observed in the paragraph following (1.14), we have n(cn+t-c)[x,y] =0
for all x,yeR and all cel; and a variation of the argument yields
n+t-c)[x,y] =0 as well. Thus
(c"+t-c)[x,y] =0 for all x,yeR and all ceZ. (2.4)

Using (2.2) to substitute yk for c, we complete the proof by arguing as in the
yk(n+t-1)+1

m(c

previous proof that -yeZ for all yeR. Hence, R is commutative by

Herstein's theorem [3].



COMMUTATIVITY THEOREMS FOR RINGS AND GROUPS 517

3. A close look at the symmetric group S, with t=s=6, n=7 and m=1 shows that
53 satisfies the identity xt[x",y] = [x,y }ys, but, as it is well known, 53 is
not abelian. Hence, Theorem 2 is not true for groups in general. However, we prove
the following:
THEOREM 3. Let G be a multiplicate group, n an arbitrary positive integer,
and suppose [x",yl = [x,yn+1] for all x,y in G. Ther G is abelian.
PROOF: In hypothesis, replace x by xy to obtain
o)™y = D™ (3.1)
A direct calculation shows that [xy,yn+l] = [x,yn+1]. Combining this with hypothe-
sis and (3.1) we see that [(xy)".yl = [x".yI. Replace y by x'ly, in the last
equation to get
Ly"x7ly] = "l (3.2)
A direct calculation shows that [y",x'ly] = [x",x'l], and [y",x'ly] = x'l[x",y]x.
Thus (3.2) yields [y",x7'1 = x"[x",ylx, which yields

xy"x717 = DMydx =[x,y k.
Hence,
xyn+1x-1y-n-lx - xynx'ly'"x
and after cancellations yx'ly—1 = x'l, which implies xy = yx. Hence, G is
abelian.

4. We conclude with the following

REMARK. As a corollary to Theorem 1, with t=s=0 and m=n, we obtain the
tollowing result of Bell [2,Theorem 5]:

COROLLARY. Let R be a ring with 1 and n>1 a fixed positive integer. If
R is n-torsion free and R satisfies the identity xn_y-yxn = xy"—y"x, then R is
commutative.

Also, Theorem 1 generalizes a result of E. Psomopoulos, H. Tominaga, and
A. Yaqub [4, Theorem 2].
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