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ABSTRACT. After demonstrating the usual product theorems for weakly continuous functions,
strongly closed and extremely closed subsets are contrasted to support the conjecture

that a product of faintly continuous functions need not be faintly continuous. Strongly
closed sets are used to characterize Hausdorff spaces and Urysohn spaces, and with

these characterizations two results obtained by T. Noiri are obtained by function-

theoretic means rather than by point-set method.
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1. INTRODUCTION.

Takashi Noiri proved: 1) Every weakly continuous function into a hausdorff
space has a closed graph [1] and 2) Every weakly continuous injection into a Urysohn
space has a Hausdorff domain [2]. The first of these has been shown true assuming
only subweak continuity for the function whereas the second is not generally true for
subweakly continuous function [3]. We will obtain Noiri's results bv mapping methods
via strongly closed sets. But first productivity is discussed for weak continuity,
faint continuity and subweak continuity.
2, DEFINITIONS AND NOTATION.

By f : X > Y is meant an arbitrary function between arbitrary topological spaces.
If A £ X, the interior and closure of A are denoted Int A and Cl A respectively. The
topology for a space X may be written T(X). A subset B of a space Y is O-open if it
contains a closed neighborhood of each of its points. The collection of O-open sets in
Y form a subtopology for Y called the O-subtopology and denoted TO(Y). By YO is meant
the set Y equipped with the O-subtopology.

Note 1. For any space Y, Y = YO if and only if Y is regular. Complements of O-
open sets are called O-closed and have been studied in connection with H-closed spaces

[4]1, (5], [6]. Finally, for any space X, D(X) denotes the diagonal of X x X.
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Definition 1. (Levine [71). A function f : X > Y is weakly continuous if
£V € Ine £71(C1 V) for each V & T(V).

Definition 2. (Long and Herrington [8]). A function f : X + Y is faintly continuous
if f-l(V) e T(X) for each V ¢ TO(Y)'

Note 2. A function f : X > Y is faintly continuous if and only if f : X > Yq is
continuous [8].

Definition 3. (Rose [9]). A function f : X - Y is subweakly continuous if there
is an open basis B for T(Y) such that Cl f-l(v) < f—l(Cl V) for each V ¢ B,

To have a proper perspective of the above defined classes of functions, recall
that a function f : X > Y is almost continuous (in the sense of Singal and Singal [10]
if f—l(V) e T(X) for each V ¢ TS(Y), where TS(Y) is the semiregular subtopology of T(Y)
generated by the regular open sets in T(Y). Also a function f : X + Y is called
O-continuous [1] if for each x € X and V ¢ T(Y) with £(X) € V, there is a neighborhood
U of x with f(C1 U) ¢ C1 V. The following implication diagram is pieced together from
(11, (81, and [91.

Continuity > Almost Continuity (Singal) » O-continuity -

- Weak Continuity > Faint Continuity
~ Subweak Continuity
In this diagram no implication is reversible in general though for functions into
regular spaces, faint continuity implies continuity. Example 2 of [8] actually shows
that faint continuity does not imply subweak continuity and the example below will show
the impossibility of the reverse implication even if the range space is discrete (and
hence regular).

Example 1. Let X be a Tl’ non-T2 space, let Y be the set X with discrete topology
and let f : X > Y be the identity function. Then f is subweakly continuous using the
open basis of singleton subsets of Y but not faintly continuous since Y = Ye and f is
not continuous. For later reference, note that f is injective, Y is TZ%’ and
D(X) = (f x f)—l(D(Y)) is not closed in X x X.

The class of O-continuous tunctions is closed under composition but generally
classes of generalized-continuous functions are not closed under composition even when
one of the functions being composed is continuous. Noiri [12] gave an example of an
almost continuous (Singal) function f : X » Y and a continuous function g : Y + Z for
which g © f is not almost continuous (Singal). It is clear, however, that composition
of functions from these two classes in the reverse order does produce an almost contin-
uous (Singal) function. Also, compositions, f © g, of subweakly (faintly) continuous
functions are subweakly (faintly) continuous if g is continuous. The following example
shows that a composition of two weakly continuous (and hence subweakly continuous)
functions may fail to be subweakly continuous, and thus fail to be weakly continuous.

Example 2. Let X = {a, b} with T(X) = {@, X, {b}}, Y=2 = {a, b, c} with
T(Y) = {8, Y, {a, c}, {b, c}, {c}}, and T(2) = {9, z, {a}, {b}, {a, b}}. Also let
f:X>Yand g : Y > Z be the inclusion functions. Then f and g are weakly continuous

but g © f is not even subweakly continuous.
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The following result will be useful for investigating properties of products of
weakly continuous functions.

Lemma 1. If f : X > Y and g : Y > Z are weakly continuous and either f or g is
continuous, then g © f : X » Z is weakly continuous.

Proof: Suppose first that f : X > Y is continuous and g : Y > Z is weakly continuous.
For Ve 7(2), (5 ° ©71w) = £ ) € £ ane g7t (e v)) € me £ g e v) =
Int (g © f)—l(Cl V) so that g © f : X + Z is weakly continuous. Now suppose that
f : X > Y is weakly continuous and g : Y -~ Z is continuous. If V ¢ T(Z), (g © f)-l(V) =
(f_l(g—l(v)) < int L@ g_l(V)) < Int f—l(g-l(Cl V)) = Int (g © £~ "1 v), and hence
g ©f : X > Z is weakly continuous.

Corollary 1. If f : X > Y and g : Y » Z are weakly continuous functions then
1) g © f is (weakly) continuous if (Y)Z is regular.

Lemma 2. If g © f is weakly continuous and f is an open surjection then g is
weakly continuous,

Proof: If £ : X+ Y, g : Y~ Z, and if W ¢ Z is open then by the weak continuity
of g 0 f, f—l(g-l(W)) < Int f-l(g-l(Cl W)) = U. Since f is an open surjection, g-l(w) =
f(f—l(g_l(w))) cf (U) ¢ Int g-l(Cl W) so that g is weakly continuous.

Lemma 3. If f : X > Y and B is an open basis for the topology on Y, f is weakly
continuous if and only if £ < Int £71(c1 V) for each V ¢ B,

Proof: The necessity is clear. For the sufficiency, let W e T(Y). Then

W=1UV_ where each V_ ¢ B. So £l = v f‘l(va) < U Int £l V) S IntU

£7HC1 V) = e £7U CL V) < Ine £7(CL U V) = e £71(CL W).

3. PRODUCT THEOREMS.

In this section, the product theorems proven in [10], [12], and [13], for almost
continuous functions (in the sense of Singal and Singal) and in [14] for O-continuous
functions, will be shown to hold for weakly continuous functions. Also a stronger pro-
duct theorem will be proven for subweakly continuous functions than that found in [3].

Theorem 1. Let {fa : Xa > Ya ! € A} be a family of functions. Then Il fa
bis Xa > 1 Ya is weakly continuous if and only if each fa is weakly continuous.

Proof: For the sufficiency, suppose each fa is weakly continuous and let
V=1 Va cn Ya be a basic open set. That is, each V Ya is open and for all but

£ V) <1 Int £ -1
a a - a

Cc
finitely manv a, V=Y . Let f = I f_. Then £y = 1

e £t v,

(CLV) =Int T £ 5(C1 V) = Int £ 5(N €l V) = Int £75¢C1 1 V)

a a a a a
By Lemma 3, f = 1T fa is weakly continuous. For the necessity, suppose that f =T fa
is weakly continuous, Then for each a, fa o Pa = Qa O f is weakly continuous by Lemma 1,
where P_ : 1 X > X and Q_ : 1 Y~ Y are the projections. Since P_ is an open sur-

a a a a a a

jection, fa is weakly continuous by Lemma 2.

Theorem 2. The function f : X + I Ya is weakly continuous if and only if each
Pa O f is weakly continuous.

Proof: The necessity follows from Lemma 1 since the projection Pa i Ya > Ya is
continuous. For the sufficiency let Xa = X for each a and let d : X > II Xa be the
continuous diagonal map. Then I (Pa O f) is weakly continuous by Theorem 1 so that

f=[n (Pa © f)] o d is weakly continuous by Lemma 1.
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Corollary 2. Let {fa: X+ | a € A} be a family of functions. The function
f: X1 Y, defined by f(x) = {fa(x)}, is weakly continuous if and only if each fa is
weakly continuous.

Proof: For each a, Pa o f = fa'

Theorem 3. If fa : Xa > Ya is subweakly continuous for each a € A then f = I fa
is subweakly continuous.

Proof: Let Ba be an open basis for the topology on Ya for each a € A, Let
B = {I v, | V, = ¥, for all but finitely many a € A and V_ € B, otherwise}E. Then B is
an open_?asis for the piiduct topoloﬁ{ on T Ya anilfor each T Va_i B, C1 £ ~ (T Va) =
Ccl I fa (Va) =1cCl fa (Va) cn fa (c1 Va) = f “(I-Cl Va) =f (C1 1 Va) so that
f=1 fa is subweakly continuous.

Theorem 4. The function f : X > II Ya is subweakly continuous if each Pa o f is
subweakly continuous.

Proof: Let Xa = X for each a, and let d : X > I Xa be the continuous diagonal
map. Then I (Pa o f) is subweakly continuous by Theorem 3 so that f = [I (Pa o f)ljod
is subweakly continuous.

Corollary 3. ([31) 1f fa : X > Ya is subweakly continuous for each a € A then
f: X1 Y, defined by f(x) = {fa(x)}, is subweakly continuous.

Proof: For each a e A, Pa o f = fa’

4, STRONGLY CLOSED SETS.

The notion of a strongly closed subset of a product space will be introduced
generalizing the notions of a O-closed set [4] and of a strongly closed graph of a
function [15]. The notion of an extremely closed set will be introduced generalizing
the notion of an extremely closed graph of a function [8]., Using these notions, some
product-type Theorems will be obtained for faintly continuous functions.

Definition 4. Let {Ya | a € A} be a family of spaces. A subset E cmy, is
strongly closed with respect to B ¢ A (or with respect to the factor I Ya, a e B) if
for each y e (I Ya)—E, there is a basic open set I Va containing y such that if
wa = Cl Va for a ¢ B and Wa = Va otherwise, then (I wa) nE=@., IfE is strongly
closed with respect to B = A, E is said to be totally strongly closed.

Definition 5. Let {Ya l a € A} be a family of spaces. A subset E cn Ya is
extremely closed with respect to B ¢ A (or with respect to the factor T Ya, a e B) if
for each y ¢ (I Ya)-E there is a basic open set I Va containing y with Va 3 TO(Ya) for
each a ¢ A and such that (I Va) NE=@., If Eis extremely closed with respect to
B = A, E is said to be totally extremely closed.

Note 3. The family of complements of the strongly (extremely) closed sets with
respect to B € A is a subtopology of T(I Ya)’ the product topology. And extremely
closed with respect to B < A implies strongly closed with respect to B < A,

Note 4. The subtopology of complements of the totally strongly closed sets is
TO(H Ya) and T(H(Ya)e), the product topology with the O-topology on each factor space,
is the subtopology of complements of the totally extremely closed sets. Thus,
T(M(Y,)g) < Tl Y ).
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Note 5. Since HYa is regular if and only if each Ya is regular, TO(H Ya) = T(I Ya)
implies that TO(Ya) = T(Ya) for each a which in turn implies that T(I Ya) = T(H(Ya)e) =
TO(H Ya). The next example shows that in general, T(H(Ya)o) £~TO(H Ya)' By the above
remarks, this proper inclusion requires at least one non-regular Ya so that
TG(H Ya) ¢ (1 Ya).

Example 3. Let R be the set of real numbers, X = (0, 2) € R and Y = [(,2) ¢ R.

1
= > —
Let Hr Un 2 r (2n T

r (___l__ N S
2n + 2 " 2n + 1

subgenerated by the subbasic open sets {V ¢ X-{1} | V¢ T(R)} U {Hr UG | re™and

leGe T(R)} U (X-(Hr UG) | reNand 1 € Ge T(R)}. Let T(Y) have subbasic open
sets {V.cv-{1} | Ve T(R)} U {G_ U {0} | reN U{H UG |reNandleGeT(R)I.

;lé for r e N= {1, 2, 3, ...} and let G_= U 2
«n r n

) for r ¢ N. Let T(R) be the usual topology and define I'(X) to be

If f : X > Y is the inclusion function, the graph of f, G(f) € X x vV, is totally
strongly closed but not totally extremely closed. For (1, 0) ¢ G(f) and if 1 ¢ U e T(X)
and if 0 ¢ V ¢ TG(Y) then U n V = @,

By Note 2, f_: Xa > Ya is faintly continuous for each a € A if and only if each

a
f : X - (Y.), is continuous which holds if and only if f = T f_ : T X_ - T (Y ). is
a a’o a a a’0o

czntinuous. But for a family of functions {fa : Xa > Ya | ae A}, f=1 fa is faintly
continuous if and only if f : 1 Xa > (I Ya)O is continuous. These remarks establish
the following.

Theorem 5. If I fa : I Xa - 1 Ya is faintly continuous then each fa : Xa > Ya is
faintly continuous.

Example 3 strongly suggests that the converse of Theorem 5 does not hold.

Theorem 6, If f : X > 1T Ya is faintly continuous then each Pa o f is faintly
continuous.

Proof: If f : X + (I Ya)o is continuous then f : X =+ I (Ya)O is continuous which
holds if and only if Pa of : X~ (Ya)O is continuous and this holds if and only if
Pa o f : X~ Ya is faintly continuous.

Corollary 4. If {fa XY, | a € A} is a family of functions and if £ : X > T Y,
defined by f(x) = {fa(x)}, is faintly continuous, then each fa is faintly continuous.

Proof: For each a ¢ A, fa = Pa o f.
5. APPLICATIONS.

Firstly, Hausdorff and Urysohn spaces, Y, are characterized in terms of the
diagonal set, D(Y) € Y x Y.

Proposition 1. A space Y is T, if and only if D(Y) is strongly closed with respect

2
to each factor.

Proof: 1If Y is T2 and (yl, yz) e (Y x Y)-D(Y) then Y1 =Y, and there are disjoint
open sets V1 and V2 containing vy and Y, respectively., Thus ClL V., nV, =@ =V, nClV

1 2 1
so that (Cl V, x VZ) nD{Y) =@ = (V1 x Cl Vz) n D(Y), showing that D(Y) is strongly

2

1
closed with respect to each factor of Y x Y. For the sufficiency, if D(Y) is strongly

closed, D(Y) is closed so that Y is T,.
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Proposition 2. A space Y is T2 if and only if D(Y) is totally strongly closed.

1
Proof: Suppose first that Y isﬁTz% and let (yl,yz) e (Y x Y)-D(Y). Then y; *y,
and there exist open sets V1 and V2 containing vq and ¥y respectively with

Cl Vl n Cl VZ = @. Thus (Cl V1 x Cl VZ) n D(Y) = @ showing that D(Y) is totally
strongly closed. Conversely, if D(Y) is totally strongly closed and Yi» Yo € Y
with Y1 %Y, then (yl, yz) ¢ D(Y) so that for some open sets Vl and V2 containing Y1
and y, respectively, (c1 v, x Cl v,) n D(Y) = . Thus C1 V, n CLV, = ® and Y is T,

e
Proposition 3. If Y is T3 then D(Y) is totally extremely closed.
Proof: If Y is T3 thus Y is regular and T, so that Y = Yo and D(Y) = D(YO) is
closed in Y x Y = YO X YO and hence totally extremely closed.
Since there are Hausdorff non-Urysohn spaces, Propositions 1 and 2 show that
strongly closed with respect to each a ¢ B does not imply strongly closed with respect
to B.
Theorem 7., 1If fa : Xa - Ya is weakly (faintly) continuous for a € B € A and
continuous for a € A-B and if E c I Ya is strongly (extremely) closed with respect to
B, then (I fa)_l(E) is closed.
Proof: Suppose first that E is extremely closed with respect to B £ A and that
fa is faintly continuous for a € B, and continuous otherwise. Then II fa : I Xa > 1 Za
is continuous where Za = (Ya)O for a ¢ B and Za = Ya otherwise. Further, E is closed
in I Za so that (T fa)-l(E) is closed., Now, suppose that fa is weakly continuous for
a € B and continuous otherwise and that E is strongly closed with respect to B. Then
if x = {xa} ¢ (1 fa)-l(E) then y = {fa(xa)} ¢ E. Thus there exists a basic open set
il Va containing leuch that Il wéln E = § where wa.i Cl V_ for a ¢ B‘ind wa = Va otherwise.
Hence x € 52 fa) (m Va) = g;fa (Va)) < 1 Int fa E?a) = Int T (fa (Yi)) =
Int (I fa) (n wa) c (I fa) (1 Wa) cI Xa - (n fa) (E). Thus (I fa) (E) is closed.

If, in Theorem 7, B = A, the second part of the proof is simpler since E is totally
strongly closed if and only if E is O-closed in which case (I fa)_l(E) is closed if

s fa is only faintly continuous but by Theorem 1, T fa is weakly continuous if each fa
is weakly continuous. In fact, one might question whether the weak continuity of fa
for a € B might be replaced with faint continuity. But recall the Example 3 indicates
the likelihood that in that case I fa may fail to be faintly continuous.

Corollary 4, [1] If Y is Hausdorff and f : X > Y is weakly continuous then f has
a closed graph, G(f) < X x Y.

Proof: Let i : Y > Y be the continuous identity function. If Y is TZ’ D(Y) cYxY
is strongly closed with respect to the first factor so that by Theorem 7, if f is weakly
continuous, G(f) = (f x i)-l(D(Y)) is closed.

Corollary 5. [2] If Y is Urysohn and f : ¥ > Y is a weakly continuous injection
then X is Hausdorff.

Proof: By Proposition 2, D(Y) is totally strongly closed if Y is Urysohn and by
Theorem 7, (f x f)_l(D(Y)) is closed if f is weakly continuous. If also f is injective,
(f x f)—l(D(Y)) = D(X) is closed so that X is Hausdorff. Baker [3] noted by Example 1
that Corollary 5 is not true if weak continuity is reduced to subweak continuity. In

particular, this shows that Theorem 7 does not hold with weak continuity replaced by
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subweak continuity. However, Baker [3] proved that Corollary 4 can be strengthened
by replacing weak continuity with subweak continuity. This is subweakly continuous
functions into Hausdorff spaces have closed graphs, Apparently, Theorem 7 cannot be
used to obtain Baker's improved version of Corollary 4, so that results obtained
through Theorem 7 may not be 'sharp" or "optimum'. Some consequences of the improved
version of Corollary 4 follow.

Proposition 4, If X is compact, Y is Hausdorff and f : X > Y is subweakly con-
tinuous (and bijective) then f is closed (and open).

Proof: Let X be compact, Y be Hausdorff and f : X > Y be subweakly continuous.
Then closed subsets of X are compact and have closed images under f since the graph of
f is closed. If f also preserves complements, f is also open.

Proposition 5., If Y is Hausdorff and f : X >+ Y is a subweakly continuous bijection
then ¢! is c-continuous [16] (i.e. f(V) is open if X-V is closed and compact).

Proof: Long and Hendrix [17] showed that every closed graph function is c-contin-
uous., If f is bijective with a closed graph then the graph of f—l is closed. Proposi-
tion 5 improves a result of [17] by replacing almost continuity (in the sense of Singal
and Singal) with subweak continuity.

Proposition 6. [3] If Y is Hausdorff and f : X >~ Y is a subweakly continuous
inection then X is Tl.

Proof: In the graph of f, G(f) =< X x Y, is closed and f is injective then for
each x ¢ X, {x} = f—l(f(x)) is closed since {f(x)} is compact.

Since subweakly continuous functions into Hausdorff spaces have closed graphs,
they are c-continuous. (Inverse images of open complements of compact sets are open.)
Thus Proposition 6 follows from the result of Long and Hendrix [17] that c-continuous
injections into a T1 space must have a T1 domain.

Proposition 7. 1If f : X > X has a closed graph, G(f), then F = {x ¢ X | £(x) =x},
the set of fixed points for f, is closed.

Proof: Let x € Cl F and let {xa} be a nmet in F with x_ > x. Then {(xa, xa)} is
a net in G(f) and (xa, xa) + (x, x). Thus x ¢ F if G(f) is closed.

Corollary 6. [3] If A is a subweakly continuous retract of a Hausdorff space then
A is closed.

Proof: A retract is the set of fixed points for the retraction.

Corollary 7. 1If A is a c-continuous retract of a locally compact Hausdorff space,
then A is closed.

Proof: From [17], c-continuous functions into locally compact Hausdorff spaces

have closed graphs,
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