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ABSTRACT. An equation of the form y A(t)y f(t) is considered, where

Ay J(t+) w(t)., and the necessary and sufficient criteria for the exponential

growth of the solution of this equation is obtained.
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I. INTRODUCTION.

Let E be a complex Banach space. Denote by A(t) t >-o} a family of

linear bounded operators from E into itself. We assume that A(t) is periodic and

strongly continuous in t [o, ).

Let II II be the norm in E. Denote by E the set of all elements f(t) E

such that

sup II f(t)ll exp (-t) < (R).

2. RESULTS.

Let Ay ’(t+6)- y(t)
> 0 y(t) be a solution of the difference equation

Ay A(t) y f(t) t > a (2.1)

such that

y(t) 0 o t < (2.2)

where c) is the zero of E.

Let us assume that f E The solution of equation (2.1) can be written in the
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form

t-6 t-6
y(t) 6 S A(i) y(i) + 6 s f(i) (2.3)

=o =o

where t [n6], [a] denotes the greatest positive integer a and 6 is a

positive integer.

Without loss of generality we suppose that 6 I.

Putting t I, 2 n in (2.3), one obtains

n-1 j
y(t) z II (I + A(i)) f(j-l) + f(t-l)

j=l i=n-1

where is the unit operator. Let w be the period of A(t).

II B(i) B(n-l) B(n-2) B(j), j< n I
i=n-i

Substituting t [S w] into equation (2.4), we obtain

s o s-r w-1
y(t) s [ 11 [I + a(k)] 11 f (r-l)w+j-l) + f((r-l)w + w-I)} ]

r=l k=w-I j=l J

where

fl (w) a(w-l) A(w-2) A(1) f(w)

f2 (w+l) A(w-l) A(w-2) a(2) f({w+l)

k=w-

(2.4)

(2.5)

t t-rw w-
y(t) B w s f. ((r-1)w + j-l) + f((r-l)w+w-1)}.

r=l j=l

The last equation can be written in the fore

t

" t-rw w-1y z w (B-I) -I . fj((r-1)w+j-l) + f((r-l) w + w-l)} (2.6)y(t)
2i y r=l j=1

where Y is a contour which circumscribes all the specter of the operator B, [1].

It can be seen that if f E then (B- I) -1 f E for every y.

From equation (2.6) we obtain a necessary and sufficient criterion for the exponen-

tial growth of the solution with an index B. Let oB denote the specter of the

I
operator B. Assume that o OB Set o = In IoI.
The following theorem holds-

THEOREM. If f Era, then the solution y of equation (2.1) belongs to E B such

that
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B n, when n > no

B > n, when o
B o’ when n < no.

PROOF. To prove the sufficiency, we consider the following three, cases:

1(1) If n > lnlI then y(t) defined by (2.6) belongs to E.

(2) If n > Inl then from (2.6) we obtain

t
w-1

1II Yll -< D z exp ( In II (t-rw)) r
r=l j=l

+ II f((r-1)w + w-l) II}
t t

< D 1 exp (nt). + D2exp (t).(w-2)

< D’ exp(nt).t
(where D, D I, D2 and D’ are constants).

This means that y EB where B > n.

1(3) If < In II and llfll c exp (t), then from (2.6) we have

1IlYll Clexp
I(< Inll).and y E1

We now prove the necessity"

If Xo is an eigenvalue and x is an eigenvector for the operator B such that

Bx
0 XoX0

where xo is an element of Banach space such that llXoll I, by taking

f(t) exp (n t).x equation (2.6) witho

x becomesXl,-1 xo(B
o

t
w-1

y(t) I exp (& In llol (t-rw)) I fj((r-l)w+j-l) + f((r-l)w + w-I) }. (2.7)
r=l j=l

In lol, we haveMultiplying the last equation by exp (- ot), where o w

t
w w-1

y(t) exp (-n t) exp( iot
o exp (- wr) }1 fj((r-l)w+j-l) + f(r-l)w + w-I)}

r=l o j=l

where o arg

t

iet w
y(t) exp (- ot) exp T + w(1 n)-l) exp ((n no)Wr).x0r-1

t
w w-1iet+ exp T z exp (-oWr) fj((r-l)w+ j-I)
r-I j-I
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iotexp T + ( o
exp [’ o I

[ exp (s- So) t- 1] x
0

t
w w-1

+ exp T I: : exp (-oWr). fj((r-l)w+ j-l)
r=l j=1

Now for the last relation we have the following cases"

I) If > s then by using formula (2.8) we get

lim y(t) exp (-Sot)
t

This means that y Eso but y

2) If s then from (2.8)
o

y(t) exp (- Got) exp (w(1 )-I + iot) t
w" - 1) x

0

t
w w-1iBt+ exp T z 11 exp (-oWr) fj((r-l)w+ j-l).
r=1 j=1

Using the last equation we get

lim y(t) exp (-Sot)

This means that y E s but Y

3) If s so then from (2.8) we have y E but y E

This completes the proof.

(2.8)
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