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ABSTRACT. ge extend the results o Cszszar (Z. Wahr. 5(1966) 279-295) to a

topological semigroup S. Let p be a measure defined on S. We consider the value

o a sup llm sup Hn(Kx-1). First. we show that the value of a is either
K n-e0 xS

compact

zero or one. I a 1. we show that there exists a sequence of elements (an) In

S such that pn converges vaguely to a probability measure where denotes
n

point mss. In psrtcular, we apply the results to inverse and matrix

semlgroups.

KEY UORDS AHD PHRASES. Topological semtgroup. Infinite convolutions.

PRIMARY CLASSIFICATIOH. 60F17

1. INTRODUCTION.

Cslszar [1] proved the following result concerning a regular probability

measure p on a locally compact, second countable, l-lausdorff group G: Either

sup --/Jn(Kx-1) O as n for al] compact sets K. where pn denotes the n-fold

convolution of p. or there exzsts a sequence o elements (an) such that pn 5a
n

converges vaguely to a probability measure where denotes point mass at a
a n
n

We will extend this result to probability measures defined on certain tlpes of

locally compact, second countable. Hausdorff semzgroups which satisfy condition

(c): If A and B are compact then so are AB
-1

and A-1B where

-1
AB (y: there exzsts z e B such that yz A).
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We will also conszder Wn(Kx-1) when p is defined on a semzgroup s of

m x m mtrlces. A matrix semigroup does not necessarilg satisfg condltion (c).
To each regular probability measure /# on a semigroup S we associate the

n, WE first showO sup IIm sup /# Kx-l). that O O or O 1. Ifvalue
K

cog)act
n

a
0

O then /# 6a O vaguely for any sequence of elements (an) In S. If
n

6 converges to a probbilit measurea
0

we f,nd (an) such that /#n a
n

2. PRELIMIHARY RESULTS.

In order to show the main results, we need the following tentma. We omit

proof s,nce t Is qute smtlar to an argument of Cslszar [1].
LE]L 1. Assume S satsf,es condition (c). Let /#1 be a probablit9 measure

-t
such that sup /#l(kx a for a cx)npact set K c S. Then there exists a compact

set 2 (d:endng on /#l) such that for an other prbiltN sure on S.

-1 -1
/#1 /#2 (KX -< a- (/2(1 -/J2(K2x )).

n
Def,ne an(K sup /# (Kx-1). Then if k n.

x

n /#k ly-1

Therefore {an(K)} is a nonincreas,ng sequence.

and aO sup a(K).
K

compact

THEOREN 1. If S satisfies condition (c) then either a
0

0 or a
0

PROOF. Suppose 0 cx
0

1. Then there exists an a such that

0 < a(l+a)/z a

sup pk(Zx-) a.

for some K
2

Define a(K) lim an(K

1.

a 1. For any compect set K there exists a k(K) such that

k n-kAppll,ng Le to /#1 W and 2 /# lields the fact that

/#n(Kx-1) a a/2(1 pn-k(Z2x-1 )).

pn-kIf n is suff,cientl large. K2x- a for all x since

n-k K2x-1sup /# a(Z2) _( a
0

a.

n(But then p Kx 0w.(z-a) (
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Therefore ((K) <_ (x(i+)12. Since K is arbitrarg we have a contradiction. We

conclude that (0 0 or (x
0

!.

QED

Beore proceed,rig we present an example. Let S [0.) w,th the usual

topolc. Define multiplication bg r-s max(r.s). Let K [O.n] be a ccct
subset of S. Then

Kx-I { 0 x n
and /jn(Kx-1 {O= n

x n
K x _< n W{K) x _< n.

Therefore I p has compact support then 0 I. Otherwise. 0 O.

3. MATRIX SEMIGROUPS

Let S be the set of all m x m matrlces wlth probabilltg measure defined on

S such that the support of p generates a subsemigroup S of S. We assume S has

the usual topology. Deflne G (X S X is nonsingular). Then O forms a

subgroup of S. We want to consider the subgroup O of O generated b the set

S O. We consider the case where O ls locall ct. Then O becomes a

topologlca! subgrOllp of S. If p(O) then we need onl appl Csiszar [1] to

sl: that a
0

O or aO 1. Therefore we assume O M(G) 1. Define a measure

" on O such that

H’(B) p(B F G)/p(G) or B = S.

Then (p’)2(B) ; p’(BX-1) p’(dX)
S

o P(Bx- o o)/p(o) ’(dx)

-1
Ho Bx

1/p(O) O p(BX-1 F O)/p(O) p(dx)

(p.)2(B) I/p(O)
2

#2((B F G)x

-I
O. Thereore

If x (G then (B O)x

(dx).

(p,)2(B) I/p(O)
2 p((B n

s
(dx)

(B n o)(o,

Therefore.

Bg an induction argument.

(w,)n(B) (B n G)//J(G)n.
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DeF;ne the following notation:

sup l=m sup (’)n(Kx-t)
KcO n xC-.G

sup lzm sup (/2’)n(Kx-1
KeG n xeS

sup lim [sup /jn(Kx-1)]//J(G)n.
Kc-G n xeS

n
Since

a 0 or a 1. However.g g

BI Csiszar’s result It For groups, either

llm[sup /#n(Kx-1) ]/p(G)
n

ThzS is only possible if lira sup Wn(Kx-1) 0 For any K c O. HenceForth. we

assume that K is a coct set cons]st,ng oF singular matr,ces. We w,ll also

-1
exclude the zero matrlx from our d,scusslon since 0 0 S reduces the problem to

a triviality and it s obvious that a
0

1. That is. we define

n
a
0

sup Im sup / (Kx).
KcS n xeS

xO

We glve an exanple. Suppose S consists oF matr,ces wth nonnective

entries such that For any X e S everl entrtj in X is contained ,n the set

where 6 1/m. Then

n+l
p (Zx-) / I P(K(Yn’’’Ylx)-I)/J(cIJI)’’’U(dIn)

-1
where K(Yn..-ytx) (zS:ZYn-..ytx K) and

yn-..yl x Wll wlm

wml Wnn

has mininl value mn-16n for all and j. Therefore forwhere Wlj

zij e K so that as n . zij 0 for allZ (Zij) e K(yn llX mn-ln
I. Hence for any ccct set K.

and (x
0

O.

lim /n(Kx-l) 0
n

By a similar argument, if everN entrN of X S is contained in

[0.l/m). then a
0

1.
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order to state a mre general result, it is necessary to define some

notation. Let z
k
be the dzagona! ldempotent matrzx of rank K. Let

"tln $ Then

_Wljn 0 0

Wjn

n-1
where j(1...-.m and

w represents the product of n real numbers. We need to conslder the
zjn

dlstrzbution of $ W where j (I 2 ..-.m ). Let F be the
n ,jn ,jn

J
d,str,butzon funct,on of the random variable W 1.2.--..m:

,in

j 1.2,....m n 1.2.... If we assume ndependence between the entr,es in

the matrices then we mag applg the Lzndberg-Feller Theorem [2] to the double

array {W,jn )3n for every

THEOREM Z. Suppose the {W
jn jn

cond,t ons for each

I. . Var(Wijn) for everl n.

defined above sat,sf the followng

2 E(W 0 for everg j.n.. g2 dF 0 where the is taken over the set Ig21 8 for eachntegralIf

6 0 as n then a
0

I.

PROOF: By the Lindberg-Feller Theorem. S converges in distrlbutlon to the
nl

standard normal for ever ,. Therefore for n and II sufflcently large.

P(JSn, <_ M) for all where e 0 as 11 . Therefore

/(x (xij): xj1-..Jnll KI, [-I.I,,]}

/(x: J xtjSni _< w for az.z J)

12 l" -< K for all j)(1 -e)
m

(x: xij

>_ ( )(K.).
Mote that k" nds onl on the ce o M and K and t on the cice o n.

Therefore as K
k

S we g al let incrse it s clr tt

sup im n( 1. QED0
It ,s clr that ndtons () and (2) be relaxed tt

Var(W M for M and for all k(w
jn jk

J
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We present an example, suppose the support of the measure

Sp x x2 x3 x4

0 0 0 0

0 0 0 0

0 0 0 0

x E R Then

x 0 0 0

0

0 0

Therefore we need onltj be concerned wth the probability dxstrxbuton of the

corner element. Suppose X.. ts a random variable such that
xJ

P(Xij I/2) P(Xij =-I/2) I/2 for all i. 9.

Then E(X 0 and Var(Xij I/4. Also for an9 n. E(XljX2j..-Xnj 0 and
J

..x
n

I/4. Definevar(Xtjx2j j

wj zxj. j

1j2 zx1jx2j’ j 1.2.3.4

Uljn 2XljX2j..-Xnj. j 1.2.-...4
n-1

Then var(Uljn) and

E(WIjn) O AlsO dFljn(g 0 if n s sufficientIN larcje. BN the

above theorem, aO
4. The Case Jhere a

0
I.

If

clear that for an sequence ..(an). p
n

8 converges vagueIN to the zero measure.
n

Therefore we concentrate on the case where aO i. Let S be a locally ct.

second countable. Hausclorff semgroup

LEMMA 2. If 0 and S is abetan then there exists a sequence {x such
n

that for any 0 a there exzsts a ct set K such that __un(KXn-I) a for

at! n.

PROOF: For I/2 there exists a K
2

such that sup @n(K2x-t I/2 for all

nn. Therefore there exists a sequence (Xn} such that (K2xn I/2 for all n.

$mlarly. for each a I/2 there exists a K and a sequence (Xncx) such that

n -I
(KaXna a. $nce a I/2. the sets K2xn-I and KaXncx cannot be disjoint

-I -1
sO there must exzst w e {K2xn {Zxr ). Ths ples that
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-I -1 -1 -I 11x K w c K2xn Therefore K x c K2xna a Ka( ana Ka{Ka( n )] Suppose

-I -I -I
y E K x Then y Ka[Ka(K2xl)] so there exists z K (Kzxn such that

n a

yz Ka. Also z aK-(K2Xn-1)-1 implies there exists z’ K2Xn-1 such that

Ka and Z’Xn K
2.

Therefore (yz)(zz’)(Z’Xn) Ka2K2" Slnce S s abellan.zz"

yx
n

e (Ka2)-IK 2K
2
and y e ((K

2 -1Ka2K2Xn-Ia a ). By redeflning K to be

(Za2% 1Ka2K2. pn(KaXn-1,- a for all n.

QED

If $ ,s a group we can deflne u 6 p 6 where the x "s are
n -1 x nx n

n-1

deflned In lem%a 2. Then we can apply Cslszar [1] to
n n-k

u 6 H 6 Unfortutel 6 -1 sk Uk+l Uk+2 n -1 x x

nlng tn a semtgroup and the u "s st flned In other waN.n

Supse s edble n an abelan group O. Then b Le 2 there exists

a sen .(Xn such tt for an a there exists a K such tt --(KXn-1
We g ass tt H Is a sure deflned in G wzth srt ntained In S. en

Un 6
-1

p x is well fined in O ,f we let x
0

the ,ntlt elnt
x n
n

-1 -1
Of O. If we write (Kx )S and (Kx )O for the reactive sets fln in S and

then (Zx )S c (Zx )G. ever since the srt of s ntain in S.

pn((Kx-t)S pn((Kx-t)G). Therefore a
O

w,th resct to G. Let

n n pnk Uk u Then o(Zs) (Kxn for anN a. AI b l+I n

n
lnt of k s be a prbllt sure and Csiszar [] can alied %o his

nseguence. t is al clr tt an lmit lnt o k s ve

ntaned n S and therefore be nsder a sure on S.

Next nsder the case where $ s an abelan nverse sigro. S Is a

s,group of th,s Z prov,d or an x S there exists a unite x" S such

that xx’x x and x’xx’ x’. A tural orrlng n be Fn on the

itent elents of S: e F provided e Fe e. IF S ntains a minil

,tent e then we can flne u 6 p 6 with x e. Then
n x x e 0

n-1 n
n

Uo(K U Kae u u (Z U K e)a n a a

n Kj) )-I((Ka U (Xne

’>(Jn-) ;o a, n.

nTherefore all llmt po,nts of YR are probabl,ty measures.
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If $ contains a fin,re nunC>er of ldempotents, sag e 1.e2.-..,en then the

ele2.’’en is minimal in S. Therefore Csiszar [I] can be a[:)lied to ang
product

abellan nverse semlgroup with a fnlte number of dempotents.

Suppose nstead that S Is an inverse semigroup such that the set of

idempotents can be ordered in the following manner: f0 > f! f2 > That

is. suppose s is an w-semlgroup. Let x
0 f0 and consider the sequence {Xn)

detlned in lenm%a 4 Gven ang x ether
n

a. the idetent x x e x x e for all j n or
jj j nn n

b there exists some j > n such that e. e
j n

If there exlsts some n for which (a) is true then S has a m,nimal Idempotent. If

.x,2 such that e e if J nnot. there exists a subsequence x
0 Xil j n

-1
n n-X

Delne u 6 /J u
n x x. e.

n-1 n n
n u is a sequence of pr(X>ab, litg masures onTHEOREM 3. I gk Uk+l n

S sat lsfg,ng the hgpotheses of Cslszar [I] then there exists a sequence (Wn) in S

n
such that for each K. gi Ow converges vaguelg to a probabil,tg measure as

n

PROOF. Bg CsIszar [1] there exists a sequence o ,ntegers

n n
2

n such that

n
lm gk

J A
k
and lm k k

n
J

where the limits are defined with respect to the vague topolog9 and k
k

is a

probab, l,tg measure for all k . Also k is Idempotent and k k k
k

for

all K.

The support of ang idempotent probabltg measure Is con01etelg simple. Let

H denote the support of k. Since S s abelan. H is a group. Furthermore. k

is a Haar ,asure on H and H is a ct group

The remainder of the proof, dealing with the choice of a suitable sequence

{Wn}, Is gute slmlar to the argument in Cslszar [4] and will be cnItted.

QED

We define a x w where x Is defined In lemm 2 and w s deflned above.
n n n n n

If $ is embeddable or an inverse semgroup with a minimal ioempotent then

n nlim gO w lim a k
0
which is a probabiltg ,L=asure. In the other

n n n

two cases, the same argument can be applied to an infinite subsequence.
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