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ABSTRACT. A satisfactory theory of the Global MagnetoFluidoStatic (GMYS) Fields,

where symmetric and non-symmetric configurations can be dealt with on the same foot-

ing, has not yet been developed. However the formulation of the Nowhere-Force-Free,

Local-Global MFS problem about a given smooth isobaric toroidal surface o (ac-

tually, a degenerate initial-value problem) can be weakened so as to include certain

generallzed solutions as formal power series in a "natural" transverse coordinate.

lt is reasonable to conjecture that these series converge, for sufficiently smooth

data on . in the same function space which their coefficients belong to (in es-
O’

sence, a complete linear space over the 2-torus).
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1. INTRODUCTION

Let be a bounded, open, connected region cR3 with sufficiently smooth boun-

dary fl. One looks for a field {B (Bx, By, Bz) P] endowed with first derivatives

in fl and there fulfilling

V x B x B VP O, ’ B 0, (1.11)

under the boundary condition (BC)

P[O O, (1.12)

with unit vector normal to 0, for instance pointing outwards.

A local solution {B,P} of eq. (1.11 will be termed as a HagnetoFluidoStatic

Field (MFSF), since B and P can be thought of as the magnetic induction and, respec-

tively, the pressure which exist in a conducting fluid in static equilibrium under

the Lorentz’s force. A MFSF fulfilling BC (I.I) for the given will be called

-Global MFS field (fl-GMFSF). Any {B,P] field with B m an harmonic vector (hence

P const) in is a fl-GMFSF which we shall term as "trivial". There are two obvious

equivalence relatlons over the -GMYSF set Sfl. The first one, say RI, is the equa-
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lity modulo a trivial field; the second one, R2, is the homogeneity relation {B,P]

{kB, k2P] for any (real) constant k. So, one could confine himself to consider the

quotient set S (S/R1)/R (or, if one likes, (S/Re)/R I) in place of S.
A special subset of S is that of the (non-trivial) -GMFSF’s with P const in, the so-called "Force-Free" (-G) fields. More particularly, there are force-free

fields for which V B B in with m a real constant (the field "abnormality")

in , or Trkal’s fields (after a paper [I] of V. Trkal dated back to 1919). Trkal’s

fields can be easily constructed by solving a linear, 2nd-kind Fredholm equation

(Lo Surdo [2]). Conversely, one could consider -GMFSF’s for which VP # 0 everywhere

in (possibly to be termed as "Nowhere Force-Free" fields).

Quite a natural, and still open, question (E) is that of determining the(non-

-trivial) elements of S (if any). In this concern, the seemingly reasonable request

{B,P CI() appears exceedingly strong, in the sense that, excluding trivial and

Trkal’s elements, S is then likely to be void for a generic " in fact, only axi-

and/or plane-symmetric CI() -GMFSF’s are presently known to exist (in particular

requiring a similarly symmetric ). So, one is led to allow a suitably enlarged so-

lution space, also taking into consideration a wider acceptation of the -GMFSF con-

cept. This should be done by a convenient weaker reformulation of eqs (1.1), pos-

sibly in the framework of more or less familiar ideas of modern non-linear functio-

nal analysis.

For instance, one could try to introduce some "test" Banach’s space over ,
-(), a suitable (solution) linear space over , L() CI() and a non-linear map-

ping : L() .-*() -v dual of-), such that, with X {B,P], .(X) 0 be

"representative enough" of the original equations. Unfortunately, a progra in the

sense sketched above (say, problem E*) appears a very difficult task. We note in

particular that, unlike the familiar case of the stationary Navier-Stokes (NS) sys-

tem without force, the lack of a corresponding elliptic term in eq. (1.11 (or, ra-

ther, in B-VB V(P+B2/2)) plays a deeply negative role in that it prevents the ap-

propriate a priori estimates to exploit a fixed point theorem. On the other hand, a

possible transition from that case to the present one (apart from the somewhat un-

usual BC 0 V (" + B2/2)I 0, with (p+B2/2) NS pressure), via singu-

lar-perturbation techniques, does not seem to have been ever attempted (see, among

other sources, Lions [3], p. 396).

A variational formulation of the problem of constructing -GMFSF’s under addi-

tional conditions to ensure uniqueness has been proposed (see e.g. Grad et al. [4],

Kruskal et al. [5]) and extensively investigated by direct numerical methods (also

with reference to a more general two-region configuration with P 0 in the second

region and free interface, (Bauer et al. [6])). The success of these computations,

which seems largely due to the rounding-off smoothing effects, can be reasonably

interpreted as an indication of the existence of "generalized" (in some sense) so-

lutions.

Somewhat fom an opposite standpoint, the following statement holds true, being

in turn a corollay of a powerful theorem of Arnold [7]. Assume {U,V} to be an

analytical solution to
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Vx(uxv) O, (1.2)

v.u v.v o (1.2z)

dx UxV, x a fixed point of , under the "no-in 2 with BC (1.12 on n fx o
o

where-force-tree" constraint UxV 0 in . Then it turns out that the surfaces n

onst (in ) are homeomorphic (Z) to the 2-torus T2. This also implies that Z

Z Te[O,1], i.e. that be a toroidal annulus foliated in toroidal (Z Tz) surfaces

between =n and < We shall denote as E
+

m M Km M the specialization of E (or,

rather, of E’r) to this case "f Tzx[0,1], ?P 0 in ", which is also mostly impor-

tant fof the physical applications.

2. LOCAL-GLOBAL NFSF’S

Qute a natural local version of E
+ Esay is that one obtains by looking for

possible "Local-Global" MFSF’s in a shell of sufficiently small measure about a

given, smooth toroidal surface .%, where P O (say). Although this more modest ob-

jective too gets nto considerable d,fficulties (as expected), its analysis turns

out of some help to enlighten the most critical aspects of the original problem.

Fxrst considering E from a classical point of view, we observe that it is cer-

tainly underdetermined if seen as an Initial Value (IV) problem, since the initial

B, say B is not prescribed. On the other hand, a surface P const (say,) is cha-
o

racteristic of order 2 for eqs (].II) implying a non-standard treatment of the IV

problem. In fact i) two (differential) constraints must be fulfilled by the initial

B on .. Assuming this compatible B to exist and to have been fixed, the IV pro-
o o o

blem splits into two subproblems" ii) the "interior" subproblem of finding out the

transverse (w.r.t. derivatives of two unknowns (such problem ii) turns out line-
o

ar), and ii) the "exterior" problem of solving a system of four coupled, non-linear

equations of the "evolution" type (with the transverse coordinate in place of time),

i.e. one equating the transverse derivatives of the four unknowns to certain (after

ii) has been solved) non-linear integral transforms of the unknowns themselves over

the characteristic surface. As a matter of fact the root of all troubles resides in

the linear problem ii), which is likely to have no classical solutions.

To be more specific" as for i), one finds that

7’xB O, (2.1)
o

with V’ being the surface-curl operator. Condition (2.1) can be satisfied in infi-

nitely many ways for a given . As for ii), one gets two coupled linear PDE’s of
o

type

BOa (a3BIB) +._aB azB +,.ff[B O. (2.2)

Here 8. O/O (i 1,2,3), (1,2) are (non-singular, smooth) coordinates all over

,’, and 3 is a transverse coordinate; say, the (sufficiently small) distance from
o

"o’ with sign, along the normal direction (to ’o ). : and S are a surface

2nd-rank tensor and respectively a surface vector, both computable in terms of the

"interior" functions B once has been fixed. (Standard notations of the tensr
o

calculus have been used, with greek indices ranging over (1,2)).
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The two remainlng equations glve 3B3, and respectlvely D3P in terms of inte-

rior functions and (as far as D3P is concerned) of 83Ba Should Eqs (2.2) in the

83B’s have classlcal solutions, one would end up (after replacement of the latter

into the expression for D3P) with a system of type

DaB .... (from eqs (2.2))

83B3 .... (2.3)

83P

with the dots denoting certain non-linear transforms of the B’s.
Being interested into a local solution, one could compute in a similar way the

corresponding higher-order $3-derivatives to get (formal) series in powers of $3. A

closer examination of problem ii) will show that such a (seemingly nail) resort ,s

far from being a matter of conven/ence.

Before going on, however, we find it worth illustrating a nearer alternative to

Eqs (2.1,2.2,2.3) based on the use of different unknowns. Let [ (Ft, F2) be so-

-called Euler potentials of U and respectively V (see p. 3) according to"

U Vn x V’F, (2.4)

V %7/I x 7’F2, (2.42)

(V’. surface gradient), and let {FoB be the 2x2 matrix of coefficients Fa
the increment of V along a cycle of class on the toroidal surface , (i.e. a

(simple) cycIe the Iong (say, 1) or short (6 2) way aI1 around,). Clearly,

such Vu are surface invariants. Then put-

(Z , Z2) Z [- F (2.5,)

Za fo dn det . (2.52)

it easily seen that det t 0 follows from UxV O. By definition, Z increases

by along a cycle of class (a) and is a periodic function with zero average along a

cycle of the other class. (Ultimately, (Z 1,Z2) are nothing but a convenient linear

transform to get "coordinate" cycles of the so-called "flat" coordinate system

on , corresponding to the completely ntegrable, non-singular vector system U,V

(see for instance [8], Ch. 9)). Then one can show that the (conjectured to exist)

smooth mapping x I+ (Z Z) T2 x [-Z s Z] with (-Zs Z) f-m’M)dm det
m’ m’

n < 0 < nM
ruled by the PD system

m

0(z,z)
0(x) 1, (2.61)

V x (TZ 3 x V’ZaF2c/detl) VZ3 x V’ZCVla/det/, (2.62)

(the second one representing the additional relationship VxV U) is one-to-one.

This justifies reformulating our original PD system as"
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x V’F (2 71)VP TI 2

V x (VP x V’F2) VP x V’F1, (2.72)

by interchanging the roles of the independent and dependent variables; namely, we

stipulate of looking for x as a function of (Z,Za) rather than for (Z,Za) as a func-

tion of x (eqs (2.6)). Such an "inverse mapping" version of the problem has impor-

tant formal advatanges; namely, the independent domain becomes the canonical toric

annulus T2 x [-Zam’ Z], the unknown (x) is single-valued, and the magnetic lines

dxB 0 map onto straight lines of T2. The inverse PD system corresponding to sys-

tem (2.6) s easily found to be:

a (x) (2 81)a(z,za)

2 8[8 (Sajx 8x T2) TI
( (2.82)

(2.83)

Here the derivatives are taken w...rt (Z I, ,Z2 Z3), means antisymmetrization,

T F /det and o, are the usual two-index antisymmetric capacity and

density. (Note that T only depends on Zz).

Equation (2.8z) is a mere initial condition (add the 82 of eq. (2.82) for 2

to the 81 of eq. (2.82 for I), mirroring the fact that only two scalar equa-

tions are actually independent in eq. (2.72); its being fulfilled at Zs 0 is the

present version of problem i) (this should not be interpreted as an intrinsic con-

straint on0 of course). One sees at once that a possible solution x x (Z,Zs)o
would contain four arbitrary functions of one variable (the T (ZS)’s) a circum-

stance that was not as well explicit in the previous formulation.

3. DISCUSSION

To see how problems of type ii) and iii) emerge from eqs (2.8i, 2.82), we first

introduce g g3 8zx 8ox as auxiliary unknowns. Then ii) takes the form:

where

and

T2
a
8(g + b ga

a 2bib -2T n6,

c 2p -1/2 T2
a a aq daT2 pa ga T1

Here PaJB’ q are the first and second fundamental tensor of the surface Z3 const,

H6,a 8(p)6-86p/2 is the related Christoffel symbol of the 1st kind (()
symmetrizer) and p det (pa).

System (3.1) is symmetric hyperbolic with the straight-line images of the mag-
netic lines, counted twice, as characteristic lines; if one likes, it is ordinary

differential along these lines. It is intuitive that the general existence of a
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global, regular solution of (3.1) can be seriously questioned due to the topological

structure of both the independent domain (T2) and of the characteristic-line family

on t. Here we meet the crucial point which makes the GMFSF theory so hard. A more

specific, yet heuristic, discussion of the question runs as follows. First we

te-wrte system (3.1) in matrix form for the compactness’s sake:

a.g + bg ig c (3.1bis)

(a 6T2, 6 unit 2x2 matrix, etc). Assuming T22 0 ((T21)2+(T22) 2 > 0 in any

case), then one can show that, under mild restrictions, the section g(Z 1) along

Z 2 0 of a C soiutton of system (3.1bis) (if any) must satisfy the iinear finite-

-difference system"

g(Z I) )(Z I) g(Zl-P) op(zl). (3.2)

Here p T21/T22, and p (a 2x2 matrix) and Op (a 2-column) are integral transforms,

both along the segment [(ZI-p,0),(Z I,I)], of b and, respectively, of b and c, the

latter being linear in c. (Of course, the solution g would be then computed as sum

of two linear integral transform of g over [0,1] and, respectively, of c over the

strip [0,1] x [0,Z2]).
Curious as it may appear, no general existence theorem for system (3.2) and ar-

bitrarily gven real p, p, Op (and not even for a single equation of the same type)

seems to be presently known. A relatively simple argument in this concern, anyhow,

is as follows. Let us allow g(Z I) to be merely expandable as a trigonometrical se-

ries (which is much more permissive than be C I, of course). Then it turns out that,

however smooth and may be, the linear operator acting on g(Z I) is generally
P P

sngulac on a zero-measure, dense set R of critical values of p, and that the null

space associated to each of these values has dimension . In other words, a "small-

-dvzsor"-wise phenomenon occurs; the problem being fredholmian, this means that in-

finitely many constraints between and o must be fulfilled for almost all p’s for
P P

a trigonometrically expandable solution to exist (not to mention the convergence re-

quirement). In conclusion it seems quite unplausible that the existence of a clas-

sical solution all over a Z 3 interval about Z3 0 might follow from the peculiar

nature of a, b, c. One is thus forced to regard system (3.1) as a genuine PD sys-

tem, looking for generalized (in principle, distributional) solutions. This also

justifies a previous remark. Indeed, assuming system (3.1) to have been solved in

some appropriate sense at Z 3 O,

3x pflgx + p-lix x 2 (3.3)

wi[l turn out generally non-smooth there, due to the presence of the g s on the

RHS. In other words, one would get non-smooth neighbouring "isobaric" surfaces x

x (Z,Z3 const O) to Ist order in Z3. This implies that qneed not to be even

defined over surfaces close to Z 3 O. The working with a power series expansion

w.r.t. Z 3 avoids this basic difficulty, though it opens new, but presumably more ac-

cessible, questions. Of course one would (hopefully) end up with an asymptotic solu-

tion (Z 3 O) in this case, unless the related series can be proven to converge,

possibly in the same space whzch their coefficients belong to, for some non-zero Z3.
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Another way out of the same trouble would be the resorting to a possible approxl-

mate, but smooth, solution of eqs (3.1). (In passing, we note also that eq. (3.2),
with the g s eliminated via eqs (3.1), is the present vers:on of problem iii)).

With reference to the power series expansion approach, the hierarchy of Z3-de
rlVatlves of eqs (3.1) has the form"

and so on.

(g_c) io (g(O) c ))1 (3.1tero)

(83g + 83g 83c) (g(1) c(1))[ 0
0 0

(3.1ter

(gg + ...) io (g c(Z))l O, (3 lter)

Synmetric hyperbollc systems over T2 lake each of the above systems

Tn(3 iterm> 0) (or even over have been intensively studied, and it would be easy

to Indicate sufficient conditions for a solution in such and such function space

to exist. For instance considering solutions which belong to the Hilbert space. L2 (T2) x L (T), the weak version of system (3.1ter) would be (neglecting

the [o for the brevty’s sake)"

.f+) (m)(g(m) (c d) (m 0 2

wth -i+ being the formal ad3oint of , i+ -a8 + b+, b
+

adjoint of b, for
(m)’all test 2-columns CX(Tm) C(TZ). This obviously presupposes that the c s

all belong to h, which can be proved true for sufficiently smooth x (Z,O) and
(m)(say) analytical aa(Z3) at Z 3 0 (see [9]). Then a solution g exists if and only

if O(c ,) 0 for all ’s; in particular, for .c + bounded below. Another

interesting (sufficient) condition is when b+b
+

be definite (positive or negati-

ve) over Y2, i.e. when [I0]

Inf (h,h)/I Ihl 2 > 0 or Sup (h,h)/I Ihi 2 < O.
h2 hE3f2

This makes sense for sufficiently smooth , so that h e 2-->h 3f2. What remains

hard is the ascertaining whether some of the above conditions might be validated by

convenient initial data, without falling in the usual symmetries.

This problem will not be pursued here. However, a remark is in order in this re-

spect. Since C Q-GSF’s are known to exist in the symmetric configurations men-

tioned on p. 2, one expects that system (3.1) be classically solvable in those

cases. This has been proved in [9, App. 3]. Instead, the proof of the (plausible)

converse statement that the classical solvability over a Z-interval automatically

singles out one of the above symmetries does not seem an easy task.

4. CONCLUDING REMARKS

Coming to a close of this note, we attempt to summarize the whole of the above

considerations as follows. The existence problem of concern:
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I) does not allows a classical approach, so that a "weak" treatment, in a sense or

in another, is a need with no way out. Quoting from H. Grad [11], here "we are

presented with an unusual situation in PDE’s, where weak solutlons are not

adopted as a mathematical convenience, but at the insistence of the equations"

(the only word we do not agree with in the above is "unusual");

ii) seems to require unconventional ideas, even if tentatively tackled along modern

functionalistic lines;

iii) is still unexplored as a singular-perturbation problem, via standard elliptic-

-regu[arization techniques;

iv] is an Important and still open mathematical question, on whlch nothing really

decisive has been published so far.

v) s of strong relevance to magnetofluidostatic, and in particular, to the sta-

tlcs (or to the dynamics, as long as inertial and viscosity effects are ne-

glected in the momentum balance) of truly 3-dlmenslonal, closed-type fusion

vces (for instance, ohmcly heated Stellarators). ,
Lacking an effective, direct route to the solution of E we have turned on the

presumably more tractable, yet still significant, local-global problem (E+), showing

that the main difficulties are tied to the nversion of a linear, PD symmetric

hyperbolic (2x2) operator acting on a (linear) space of two~fold periodic 2-columns;

for instance, on .(T2). Should this problem be solved in a sense or in another, the

construction of a formal (or perhaps convergent, in the relevant topology) power

series solution, about the initial isobaric surface, would be quite conceivable.
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