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ABSTRACT. Within the limitations of the classical thin plate theory expressions are

obtained for the small deflections of a thin isotropic circular plate uniformly load-

ed over a c,ncentric ellipse and supported by four columns at the vertices of a

recta,g[e whose sides are parallel to the axes of the ellipse. Formulae are given for

the mo,aents and shears at the centre of the plate and on the edge. Limiting cases are

invest igated.
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|. INTRODUCTION.

The technological importance of thin elastic plates is sufficiently well estab-

lished to require no elaboration. Thin slabs of material are structures which are

widely used in engineering work and their transverse flexure has been extensively

studied by many authors both theoretically and experimentally when the boundary of the

slab is clamped, simply supported or free. Support of circular discs at a discrete

number of points is of interest to the designer of reflecting surfaces and receivers,

particularly when the surfaces are parts of astronomical and aeronautical

structures. The deflection surface of a thin circular plate subjected to a

symmetrical loading and supported by equally spaced point columns along the periphery

of the plate has been considered by Nadai [I] whose results are quoted by Timoshenko

and Woinowsky-Krieger [2]. When the boundary of the circular plate is free and the

plate is supported at interior points and acted upon by two types of normal loadings

distributed over an eccentric circular patch the solutions have been obtained by the

author [3,4], using the complex variable approach of Muskhelishvili, references to

previous work are given at the ends of these papers. Thin circular plates on multi-

point supports have also been discussed by Yu and Pan [5], Leissa and We[Is [6],

Kirte[n, Pel[, Woolley aad Davis [7] Kirstein and Wooley [8,9] Vaughn [I0]

Chantaramungkorn, Karasudhi and Lee ill] and Williams and Brinson [12]. There is good

a,reement between the theoretical results of [3] and the experimental results from the
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tests reported in [7]. ost of the results in [5-I0,12] are special cases of [B]. In
qarieq f papers [I-15] complex variable methods were applied to study th,, bending

of an ela,;tically restrained circular plate subject to uniform, linearly vac/ing and

parabolic loadings over . concentric ellipse. Frishbeir and Lucht [16] used the //L//

method ,f complex potentials to derive the solution for a clamped circular plate which

is transv_.rsely and uniformly loaded over the area of a polygon. In this paper,

expressions are obtained for the deflection at any point of a thin circular plate

which i ,niformly load,’.d over a concentric elliptic patch and supported by four equal

concentrated forces loc,ted at the corners of a rectangle whose sides are parallel to

the axes of the ellipse. Formulae are given for the boundary and central values of

the m,,ents and shears. The limiting cases in which the radius of the plate oo,
the eccentricity of the ellipse 0 or its minor axis 0 are investigated.

2. BASIC EQUATIONS AND BOUNDARY CONDITIONS.

Let C denote the boundary of a thin circular plate of centre 0 an radius c.

If 2h is the constant thickness of the plate, then its flexural rigidity D is

given by [2]

2D 2Eh3/3(I- (2.1)

where E is the modulus of elasticity and is Poisson’s ratio for the material

of the plate. The mid-plane of the plate is chosen as the plane Z 0 of a

rectangular Cartesian frame O(x,y,Z) and the notation used is that of [2]. According

to the classical small bending theory of thin plates the deflection w of the mid-
i0plane in the downward direction OZ at any point z x + iy re satisfies the

biharmonic equation

DV 4w p(z z), (2.2)

where

V2 61 2
+ 4

x2
Oy

2
2 2 2

+ +
2 2zz r2 r r

r 0
(2.3)

w z(z) + zi(i) + ,(z) + o(i) + W(z,z), (2.4)

where (z), (z) are functions of z which are regular in the region occupied by

the plate and W is a particular integral of (2.2). The moments and shears at any

point (r,v) of the mid-plane of the plate are give by [2]

-I 2
M -D(d

2 + r d + vr-2d
r

)w -D[vV 2
+ (l-v)d 2]w, (2.5a)

-2
d

2
M -D(vd 2 + r- d + r )w -D[V 2 + (v-l)d"]:;, (2.5b)

-I
M (l-o)Dr l(d-r )d’w (2.5c)
F

Qr -Dd("2w)’ Qo -Dr-ld’ (2w)’ (’2.6)

and p(z,z) is the normal load intensity at the point z. The general solution

of (2.2) may be written as
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where 0/.Jr, d’ 0/3’ In terms of tLe complex potentials .(z), (z) and

particular integral W(z,z) we have [3,p.730]

51 + Mj -4(;+ )D[2Re ’ + 02W/z],
r

(2.7a)

2(,, W" r
2

bl M + 2iM =-4(l-v)D[z2" + z + )/ ], (2.7b)

z
2-SDz[ " + 03W/3 O]/r (’2.8)Qr-

where accents denote differentiation with respect to z

The condition- for the circ,lar edge C to be free are [2]

(O, (Vr) Qr [ S 0(Ir)r=c r=c
r=c

(2.9)

Substitution from (2.5a,c) and (2.6) in (2.9) leads to

[f (d d’)w] 0 [Fr(d d’)w] 0
r r=c r=c

(2.10)

whe re

f (d,d’) d
2 -1 -2d,2+ or d + vr (2.11a)

r

-ld2 -1 2 -3d,2F (d,d’) d
3 + r r-2d + (2-v)r dd’ + (-3)r (2.lib)

r

From (2.)a) and the first equation of (2.9) we see that

v($2w) (-l)(d2w) v[d’(V2w)] (-l)[d’d2w]
r=c r=c r=c r=c

Equation (2.5b) and the second equation of (2.6) then give

2
(M) l-__y__ D[d2w] (Qo) I-.__ _D [d,d2w] (2.12)

r=c r=c r=c u c r=c

from which we deduce that

(1 + ) c (Qv)r=c (d’Mo)r=c (2.13)

This relation and the second equation of (2.9) serve to determine the periphery
values of the shears in terms of the moment values.

3. STATEMENT OF THE PROBLEM.

The problem to be solved consists of determining the deflection surface of a
thin circular plate of centre 0 and radius c subjected to the following condi-
tions:

(1) The boundary C of the plate is free.
(2) The total normal load L Poab (3.14)

is uniformly distributed over the area of the ellipse

z/ 2/ 2x a b+ y 1(0 _< b a c) (3. lb)
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(3) The plate is supported by four eqval concentrated forces, each of magnitude

L/4, and located at tle points P(z% se ,% ;,2,3,4), where 0 s c,

I 2 ’ Y3 ’ Y4 -Y 0 y /2 The four points of support
2 2

a
2 2 2

lie in tIe loaded or unloaded region according as s cos y/ + s-sin y/b is less

or greater than I. For y 0 we have two supports at (is,0) while for /2

we have two supports at (0,_+s). See Figure I. Symmetry with respect to both axes

show tlmt it is sufficient to find the deflection w at any point z in the positive

quadrant. Deflections, moments and shears at the four points +/-z, +/- are the same.

4. METHOD AND SOLUTION.

Iet F denote the boundary of the ellipse (3..b) and let the indices and 2

ruler to the loaded region inside F and the unloaded region between F and C,

respectively. The particular integrals W and W
2

of (2.2) corresponding to the

uniform intensities of normal loading Pl P0 and P2 0 may be taken as

W (z,) pOz22/64D, W2(E,) 0. (/.l)

The continuity requirements for the deflections, slopes, moments and shears at any

point on F lead to

[w] 2 [Fw/Oz] 2 [2w/z]2 [$3w/z2]2 0

along F It was proved [13, p.105] that these transition conditions along are

satisfied by

96--- abf2
2 2 +f2) Z + 6z In (4.17)

[(z)] 2

where

=-6---- -+ z ab + +
f2]

In - (4.18)

Z (z2_f2), fg 2
b
2 2 2

b
2

a d a + (,. l)

Introducing (.io), ./; and .18) in (2.4)we get, using (3.14a)

where k 8D/L (.21)

if @ is the eccentric angle of any point z on F then

z a cos + ib sin , Z b cos + ia sin

and it is checked that the expression between the square brackets in (4.20) vanishes
2 2

along as it should. It is to be noted that Z (z -f is not uniform in

region while it is uniform in region 2. In fact, the two branches of Z inter-

change when z traces a closed path to, any of the two loci (if,0) of the ellipse.

Thus, the terms containin Z in (4.20) should appear in w
2

and not in w I. It

is also known that the singular part of the deflection w at any point P near a
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downward concentrated force F is

F
R
2

in RW
sln

where R is the distance between P aa the point of application of the force

Guided by tllese remarks and using (-.20), we assume that

kw
4 2

d
2 4

ab
r ( r

f
) r

ab +--g cos 2
2

6abf
(aF ab)cos 20 + + rcos 4u

2 2n
-S + x(A + C r )r cos 2n0

0
n n

z+Z ’d2z z2 r2zkw2 (r 2 + d2) in I-I Re \7 -59[) (2 ]j[2f2
+ Z

(4.23)

S + (A
n

+ C r )r2ncos 2ng

0 n

whe re
4

2
in R,s=.z Rx

tt2 2 2 2 2 2
r + s 2sr cos (0-y), R

2
r + s + 2st cos (0+)

2 2 2
R3 r + s + 2sr cos (’,-y), R r2 + s2 2sr cos (0+)

(4.24)

(4.25)

(4.26)

and A ,C (n 0, I,2,...) are real constants to be determined. It is now easily
n n

seen that the expressions (423) and (4.24) for w and w
2 satisfy the biharmonic

equation (Z.Z) corresponding to the load intensities Pl PO and P2 O, satisfy

the required transition conditions along F and exhibit the appropriate singular

(n 1,2 andbehaviour at the four points of support The unkown constants An
C (n 0, 2 ...) will now be determined from the boundary conditions (2.10). The
n
condition of zero deflection at any point of support serves to find AO. To achieve

this goal, all the terms in (4.24) will be explicitly expressed in terms of biharmo-

nic functions of r and of the types

n cos 2+/-n cosr- n6 and r nO
sln sin

Assuming that ,(z,f)= In (z + di;2-f2)) we have

( f2)- - ( f2)n ( )-1/2 _I (n) z
* (z f) (zZ-f 2)

z z
0

Igl (4.27a)

wlere, with the usual notation

_l_ n 2-2n /2n(n) (-1) \ n) (4.27b)

Integrating (4.27a), using (4.27b) and noting that (z,0) in(2z) we get
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Thus we have

In a+---z+Z In a+b2r 21 Z! kr
cos 2nO (r e f), (4.28a)

z+Z f ’! (2n( r 2n+lin a+b in + 2 Z0 n/\’/ sin(2n+l)0(r f). (4.28b)

Expanding (l-f2/z2) by the binomial theorem we find for [z[ f:

( )z
2 r2z( d

2 2 r 21 2
Re 2Tz + Z 6 r r + d cos 2’0

2f 7 f2 j 7
r (f/2r) 2n 2n+l 2 n+3 2

+ cos 40 + Z
bf

n+! [2-T-l r +
4(n+2)

d cos 2n0 (r f). ’4.29a)

Similarly, writing Z if (l-z2/f2) and expanding, we obtain the following

expression for the left side of (4.29a) when zl f

r (, ) 2n-I (2n2nr2n/[--[
2n-5

3f
d2_2f2 (r/2f)2n+l

sin Z + d
2

2(2n-3) sin(2n+l) (r f).

(4.29b)

Substitution from (4.28a,b) and (4.29a,b) in (4.24) gives

kw2
3d2 12 (2 )In16 2

r + r + d
2 2r r

2

(1/2 r
2 +I 2i d2r4

a+b f2
d cos 20 + -----6f4

cos 4u

-S + Z
(f/2r)2ncs 2nO (2nn) (2r d2)([ \2n-I n-2 + Z (A + C r2)r2ncos 2n8 (r "_; f)

0 n n

(4.30a)

r (r2 4 il (2 ) In Skw
2

+ b sin 0 + r + d
2 f

2n+l
+ 2

(r/2f)

4n2-1 (2nn) (2n2d_ r
2

)n+l
sin(2n+l)8 + Z(An+Cnr2)r2ncos 2n8 (r < f).

0
(4.30b)

It can be easily shown that for r s

22 2 s2 2 ( s )Ra in R (r + in r + s sr +21n r + cos (0-y)
2r

2 ;

+ g 1 /r2 s2) /s)n
2

n \n-Zi n-+l k cos n(-,},) (4.31a)

and

2 2 / r
2 s2) ()2nS (r2+s) in r + s + Y:

2
en \2n--’ 2n-+ cos 2ny cos 2n (r s). (4.31b)

For r s we interchange r and s in (4.31a,b)

Introducing (4.31b) in (4.30a) yields

kw
2

X L (r) cos 2n0
n

O

where r -> the greater of f and s

(4.32)

2 2n r-2nLO(r) AO’ + BO’ln r + Cr Ln(r) A’rn + B’n + C’rn 2+2n + D,r2-2n
n

A
0

A
0

s + - +In a+bfl BO d s CO C
0

+ in a+---

(n I),

(4.33)

(4.34)
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d
2

d
2

A C’ C A
2

+ (4.35)AI 2 2 A2 6f4
2f 3f

2n+2
d
2

A’ A (n 3) B’ s cos 2n (f/2) 2n (n I) (4.36)
n n n 2n(2n+l 4n(n+l (n+2) n

2n
(f/2)

2n
C’ C (n->2) D’ s cos 2n + (n I). (4 37)
n n n 2n(2n-I 2n(n+l (.’n-I)

Applying t,e differential operators (2.11) and (’2.12) to the functions in (4.32)

gives

f (d d’) tl.u(r)} o (<-i)C6- r B r(d,d’) tLo(r)} 0r

X, r2n-2 -2n-2+ (2n+l)B’rfr(d’d’) {Ln(r) cos env 2n (2n-l).
n n

(n) in (n)-/n]+ + (2n+-I) C’r + (2n-<+l) D r cos 2n0
n

2
0 Ar2n-2 -2n-2rF (d d’) iL (r) cos 2n0} -4n (2n-l) (2n+l) B’rr n n

+ (i + n)(2n--,)C’r2n (1 ’) Dr-2n]n n (2n++l) cos 2n0

(4.38)

(4.39)

(4.40)

where

o v, (3 + v)/( ) (4.4|)

Inserting (4.32) in the boundary conditions (2.0), using (4.38)-(4.40), equating
the coefficients of cos 2n0 (n 0, I,2,...) in the resulting identities to zero and

solving the obtained systems of linear equations we find

2 2) 2 2) a+bCu B(v 4u C
0

+ iS(v 4u + in --2-2n [{ 2+2A’ c 2 4n -1, u2ncos 2n +n ’2n u
2n(2n-l)J

(f/2c)2n (2nn) I4n2+<2-1 2n+|

2n+2 [. ----] n+2

C’ u2ncos 2n +
(f/2c)2n

n 2n 2n+l/ n+l

where

)](2) \n+2
(n- !),

(4.42a)

v2}] (n >1),

(4.42b)

(4.42c)

3 (l-v)/(l+v), u s/c v d/c (4.43)

lhen the values of A 1, A
2

and C are replaced by their values in terms of A I, A2
by means of (4.35) it is found that (4.23) and (4.30a) take the formsand C

( ) 4{ 2cos }a-b r
2

r
2 r (a-b 40kwi 2(a+b) cos 20 + + \-] gab S

2
+ A0

+ C
O

r + Y. (A’ + C’r2) r2ncos 2n0 (4 44)n n

3 2 2 ( 2 ) in - + Z (2:) 1) \2-i n-2) cos 2n0-Skw
2

d r + r + d
2 2r (f/2r) 2n (2r2

d
2

2 2) 2n+ A
0

+ C
O

r + (A’ C’ r r cos 2n0 (r f), (4 45)n II

where C
0

is given by (4.4Za) and A’ C’ are given by (4 42b c) For points ofn’ n
region 2 at which r < f the deflection w

2
is furnished by (4.30b). It is easily
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seen that such points exist only if f b, i.e., if the eccentricity of the

ellipse e 2/2. In any case, w
2

is given by (4.24). The constant A
0

can always

be determined from the condition that the deflection vanishes at any of the four

points of support. If all these points lie in the loaded region then (4.44) gives

A
0

ab + s
2 2 2 8s

2
2

sin in sin + cos In cos + In + (4u -v2)

2(a+b)a-b( s2) cos s2ncos2 / cos 4y r (A’ / CnS2)/
n

(4.46)
r
2

For a single support at. the centre we have s O u 0, A
0

ab and S in r

If all the su,oort ,oints lie in the unloaded region, then either (4.45) or (4.30b)

can be used to determine A0 according as s f or s f. If s -> f we have

2 2 2
A
0

s [sin2 in[Z,s sin ) + cos in(4s cos y) + (4u
2
-v

d
2

( + 2s) + t(f/2s)2n (2:)(d2nnl)n- 2n-12s2 ) }In 2 (A’ + C’ s2_s 2n cos 2ny
4 n n

(4.47a)

but if s -< f then (4.30b) gives

2 sin2 2 In In 8 + 2
A
0

s in sin + cos y cos + _4u2
v

d24 In f s I 24)s+ b
2 (s/2f)2n+l (2:) ( s22d2a+b

sin y + 2 Z1 4n2-I n-i 2n-3]
sin(2n+l)y

2 2n
cZ (A + C s )s os 2n (4 47b)

n n

In any case, the deflection at the centre of the plate is

W
0

S S
8D 0

ab- in (4 48)

where the appropriate value of A
0

is taken.

5. BOUNDARY ANt) CENTRAL VALUES OF MOMENTS AND SHEARS

It can be easily shown that the deflections (4.23) and (424) may be written in

the forms

w 2Re [zj(z) + l(z)] + W!(z,z) (549)

wherc

w
2

2Re [z.2(z) + 2(z)] (550)

d
23 4
z 2n+

2k.Zl (z)
2 4

I Z In Z + Z C z (5.51a)
6abf 0 n

"ab ) z4 (1/4 z2) 4
2k00 l(z) I> + ab + + Z ZIn Z + Z A z2n (5.51b)

0 n

z+Z ( z22) 4 ’ 2n+l2k2(z) z in
a+b 3

2 + Z Z Z in Z + Z C z
0 n

d
2 ,2zZ [z2 5 z+Z’. 4

2n
\f2 2] + in -, + z ZIn Z + I A z2k2(z) 4 [3f2 0 n

(5.52a)

(5.52b)



THIN CIRCULAR PLATE LOADED OVER A ELLIPTIC PATH AND SUPPORTED ON COLUMNS 169

Z% z z% and the real constants An, C
n

have been determined in the previous

section. The moments and shears at any point of the plate can be obtained either by

substitution from (4.15), (5.Sla,b) and (5.52a,b) in (2.7a,b) and (2.8) or by introd-

ucing (4.44), (4.45), (4.30b) in (2.5a,b,c) and (2.6), noting that S is defined by

(4.25), (4.26) and its expansion is (4.31b) if r s and interchanging r,s in

(4.3b) if r -< s. After extensive algebraic manipulation, it is found that

(Mr)r=c=O as expected and

(+)L
v -u + E 2-2u +-- u2ncos 2ny cos 2n0(M)r=c 4

(f/2c)2n 2n+; 2 2n+<+;
cos 2n0 (5.53a)+

nn+ k n+2
v

[ ( 2-2 +-’u2nc.L. 2u os 2ny sin 2n0(Mr0)r=c

+ 2 /’2n’i (f/2c) 2n -! 2n+l 2
n] n+l

2
n n+2

v sin 2nO (5.53b)

L
(Qr)rc (2nu2-2n +- l)u2ncos 2n cos 2n

/n(/n 2n +
n(2n+l) 2}* n] n+l n*2

v cos 2nO (5.54a)

(Q)r=c 2 (2n + +1 -2nu2)u2ncos 2n sin 2nO

E k n n+; 2n + + n(2n+;)
v
2

n+2
sin 2n@ (5.54b)

It is easily seen that (5.53b), (5.54a) satisfy the second boundary condition in (2.9)

and (5.53a), (5.54b) satisfy (2.13)

All the infinite series appearing in this section and in section 4 are convergent

in the intervals mentioned and some of them will be summed in section 8.

The following formulae are obtained for the moments and shears at the centre:

(Mr) 0

(0)0

(Mr0)

8-- (;+) S u v + + 2 In - -+ (-) cos 2y

.a-b +u 2 f2 2
a+--’ ( + 3- 2u2) cos 2y + (v2 3) cos 20 (5 55a)

8Kc
2

(l-) L a-b u
0 811

cos 2 + (<+3-2u)cos 2 + (v2-<2-3) sin 2.
8<c

(5.55b)

(Qr)O (Qo)o 0 (5.56)

6. INFINITE PLATE UNIFOILMLY LOADED OVER AN ELLIPTIC PATCH AND SUPPORTED ON COLUMNS.

kw

Letting c in (4.44), (4.45) and (4.30b) leads to

’I a+b 2 a-b
A
O

ab S k + in -- r +
2(a+b)

r__ a-b cos 40+
SaD \a+b/

r 2
ck 7 r os 20

(6.57)
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kw
2

A
0

+ + in + In r S

+ Z
4n(n+) 2n- n cos 2n0 (r f), (6.58a)

<1/2 ) 2 d2 f r (2 4 )sin 0 + ( r
2)2kw

2
A0 + + in r + in + r + b

2
+ d

2
cos 20

r (r/2f) 2n+l r
2

6f
4

4, S + 2 Z 2dZ
4n2_; 2n-3 7] sin (2n+;)O (r f),

(6.SSb)
where

2 in2y 2 8s2A
0 ab + s s in sin y +cos y in cos y- + in a+

< s
2

)
2

{ a_b2a-b s+ +b) - cos 2y- + k7 cos 4y (6.59)

if the supports lie in te loaded region;

2 2 2 2 d
2

3 + In 2sA
0

s sin y in(4s siny) + s cos y ln(4s cosy) k

+
4(n+;) {$ 2n-

cos 2ny (6.60a)

if the supports lie in the unloaded region and s e f

2 ;" 2 | + InA0 s Isin2y in sin + cos y in cos y+ in
8s2 d

2
a+b

f 2J - f

< ) 2 (s d) d2s4s 2 4 2 ss + b sin y 7 + cos 2y +----- cos 4y
6f 4

+ 2 Z
(f/2s)2n+l (2nn) ( s2 2d2 )4n2-I n’i 2n-3 sin(2n+l)y (6.60b)

if the supports lie in the unloaded region and s f.

At the centre of the ellipse the moments (5.55a,b) reduce to

(M)
r 0

(M),0
g- (l+v) + 2 in -j +/- (l-v) cos 2y - cos 20 (6.6|a)

(l-v)L a-b|(Mr0)O 8 cos 2y sin 20. (6.6b)

7. THIN CIRCULAR PLATE UNDER A VARIABLE LINE LOADING ALONG A DIAMETER AND SUPPORTED

ON COLUMNS.

When the minor axis of the loaded elliptic patch 0 we have the case of a

variable line loading extending along tL,e x-axis from x -a to x a. If b 0

and PO such [hat 2bP0 p! then the intensity of this line loading at a

2/a2distance x from the centre equals p| /(|-x ). Deflections, moments and shears

corresponding to this case can be dedcued from those for region 2 in sections 4, 5

by setting b O, d f a, L apl and noting that separate expressions are

orel, =ro,pvpqnt (,r,.O aqcord,ing as r is greater or less than a and

tn columns lie outside or inside the circle r a
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8. THIN CIRCULAR PLATE UNIFORMLY LOADED OVER A CONCENTRIC CIRCULAR PATCH AND

SUPPORTED ON COLUMNS.

Setting b a, f 0 in (4.44), (4.45) and (4.42a,b,c) we get

42{ 2 2# 2 r
kw A

0 a + + in a + [(t -2u r +- S
8a

2

2n
c+ X (A’ + C’r2)r os 2n0

n n

3 2 i 22}r2( )--kw
2

A
0

+ g a + in a + (t -2u + r
2 a2

in
r S
a

+ (A’n + C’nr2)r2ncs 2n0

where a/c and

(8.62)

(8.63)

2-2n 2n { 2

} -2nu2n (c u 2 4n2+ c 2nu
2

A’ u cos 2ny, C’ 2ny
n 2nK 2n (2n-1 n -] cos (8.64)

A
0 a + s sin2y in siny + cos y in cosy + in 4s-2 + B(2u2-t2)

a

(A’ + CLs2)s2ncos 2ny(s -< a)
n

2[ in
2 ]- za2 ( )A0 s sin2y siny + cos y in cosy + in(4s) + .B(2u2-t 2) -T + In

(A’ + C’s2)s2ncos 2ny(s a)
n n

The inflnite series in (8.62) and (8.b3) equals

(8.65a)

(8.65b)

2 2 2 2
r +s +(K-l)c

2 2
ru

+j ({J0 (’’ *) + Jo(4’2 )) --7- {Jl ( 2

2(’ l)c
c

2
t,/_(,) + /_1(,2)}+ 8 J(’) + d(’2)}

)

(8.66)

where

, rs/c 91 0 y +2 0 + y

_2n
2n9 in (I + 4 22cos 2) (8.67a)COS

dO(, 2n

_2nlcos2n+12n __1dl(-,,) L 1+2+2cs + 2 sine tan4-- cos in
+42_

-i 2in
2cos i-

2
(8.67b)

ll _Zn211_1lg,
cos 2n9 l+g2+2gcos 2sing cos 9 in 2 sin tan-

_g2l+g2-2gcos
(8.67c)

(; )
cos 2n Re 2 Re
n n 0

The last function is the dilogaritnm studied in the last three references of [7].

kw

The deflection at the centre is given by

2 2y 2 4s s
2

s sin In sin y+ cos y In cos y+ in-
a

8a
2

2
-t2 c o

+ (u (s a) (8.69a)
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kw
0 s sin2y In sin + cos2y in cos y + In 4 + 8(2u2-t 2)

a 5 s c26where - ( + In ) (s > a) (8.69b)

2 4 4 i l+u
2

}6 (2 + 2u
2 I)( 2do(u ,2y) in(l-u )I 2u dl(U2,2Y) + ._L In

2u
2

-u
2

22 2_ 21 l+u2, 2 2,/_l(U ,2) + u a l_j + (K-I) td,u ,0) + d(u2,2)} (8.70)

Setting n/4 we obtain

Z s s c26kw
0

s n Z-l) + in + B(2u2-t 2) + ------ ( a),a
ta

3 2u2_ 2 1"5 s c26kw
0

s in Z I( - \ + in + (s a)

whe r e

2n

2

4-
u46’ i

16n2+K2-1 u
+

16n
2
(4n-

2
l-.

-u
4 {K2 2}I

(u4
0) + -1 + (K2+3)u in (l+u2)

(8.71a)

(8.71b)

2 2 4 tan-+ ( +2u2-1)In(l+u4) + (I-K u
2 2u (i-u2)ln(1-u (8.72)

It is verified that (8.71a,b) agree with (3.14) and (3.6a) of [3], noting the

difference in notation. There are misprints in equation (3.5a), p.738 of [3] and

cos a which appears twice in this equation must be replaced by cos s

Putting b a, f 0 in (5.53a,b), (5.54a,b) and surning the infinite series

obtained we get tt,e closed formulae

(l+v)L 2
t
2

(bl0)r=c 4n
u +( -u2) (+l)in(lll 2)

2 4 I -I
+ (l-u )(l-u )(I + 12 (8.73a)

2 2

(MrU)r=c- tan
2

+ tan
l-u cos 2+ l-u2cos 22122

-u
Z (sin 2i

+u (I
ii 12 (8.73b)

L 2)(1 + u4 lu2) -! :1(qr)r=c 1-+ (l-u + (I +

(Qo)r=c (l+<)u 2 {sin 21 sin 22,/

sin 2,? sin
+ ",,u2(-uZ)(_, ’) +-

2
12

(8.74b)



TttIN CIRCULAR PLATE LOA3ED OVER A ELLIPTIC PATH AND SUPPORTED ON COLUMNS 173

where

4
I + u 2u

2
cos ’2v: (j 1,2) (8.75)

It is easily verified that (8.73a), (.74b) satisfy (2.13) and (8.73b),(8.74a)

satisfy the second equation in (2.9)

Formulae (5.55a,b) and (5.56) for the moments at the centre reduce to

(8.76a)

(M (I-)L u 2 2
r-a 0 8r +- ( + 3- 2u cos 2 sin 20 (8.76b)

For T/4 it is checked that the formulae (8.73)-(8.76) are in agreement with

those obtained by applying equations (2.44)-(2.46) of [3], which were derived by a

different metiod.

b

a f

P
4

FIG.
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