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ABSTRACT. Within the limitations of the classical thin plate theory expressions are
obtained for the small deflections of a thin isotropic circular plate uniformly load-
ed over a concentric ellipse and supported by four columns at the vertices of a
tectangle whose sides are parallel to the axes of the ellipse. Formulae are given for
the moments and shears at the centre of the plate and on the edge. Limiting cases are

investigated.
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1. INTRODUCTION.

The technological importance of thin elastic plates is sufficiently well estab-
lished to require no elaboration. Thin slabs of material are structures which are
widely used in engineering work and their transverse flexure has been extensively
studied by many authors both theoretically and experimentally when the boundary of the
slab is clamped, simply supported or free. Support of circular discs at a discrete
number of points is of interest to the designer of reflecting surfaces and receivers,
particularly when the surfaces are parts of astronomical and aeronautical
structures. The deflection surface of a thin circular plate subjected to a
symmetrical loading and supported by equally spaced point columns along the periphery
of the plate has been considered by Nadai [1] whose results are quoted by Timoshenko
and Woinowsky-Krieger [2]. When the boundary of the circular plate is free and the
plate is supported at interior points and acted upon by two types of normal loadings
distributed over an eccentric circular patch the solutions have been obtained by the
author [3,4], using the complex variable approach of Muskhelishvili, references to
previous work are given at the ends of these papers. Thin circular plates on multi-
point supports have also been discussed by Yu and Pan [5], Leissa and Wells [6],
Kirstein, Pell, Woolley and Davis [7], Kirstein and Wooley [8,9], Vaughn [10],
Chantaramungkorn, Karasudhi and Lee [11] and Williams and Brinson [l12]. There is good

agreement between the theoretical results of [3] and the experimental results from the
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tests reported in [7]. Most of the results in [5~10,12) are special cases of [3]. 1In
1 saries Hf papers [13-15] complex variable methods were applied to study the beading
of an elastically restrained circular plate subject to uniform, linearly varying and
parabolic loadings over a concentric ellipse. Frishbeir and Lucht [16] used the //L//
method of complex potentials to derive the sclution for a clamped circular plate which
is transversely and uniformly loaded over the drea of a polygon. In this paper,
expressions are obtained for the deflection at any point of a thin circular plate
which is nniformly loaded over a concentric elliptic patch and supported by four equal
concentrated forces located at the corners of a rectangle whose sides are parallel to
the axes of the ellipse. Formulae are given for the boundary and central values of
the moments and shears. The limiting cases in which the radius of the plate *» =,

the eccentricity of the ellipse » O or its minor axis > 0 are iavestigated.

2. BASIC EQUATIONS AND BOUNDARY CONDITIONS.

Let C denote the boundary of a thin circular plate of centre O ana radius c.
If 2h is the constant thickness of the plate, then its flexural rigidity D 1is

given by [2]
D = 2ER3/3(1-v%) 2.1

where E 1is the modulus of elasticity and v 1is Poisson's ratio for the material

of the plate. The mid-plane of the plate is chosen as the plane Z = 0 of a
rectangular Cartesian frame O0(x,y,Z) and the notation used is that of [2]. According
to the classicai small bending theory of thin plates the deflection w of the mid-
plane in the downward direction OZ at any point 2z = x + iy = L'ei“J satisfies the

biharmonic equation

b/ = plz,2), 2.2)
where . 2y
S LA RN LN I S N
=St =% —_ =" F) 2 2 (2.3)
ax? oy’ 3zez et T T p%gp

and p(z,z) is the normal load intensity at the point z. The general solution

of (2.2) may be written as

wo= zi(z) + zu(z) + w(z) + w(z) + W(z,2), (2.4)

where . (2), w(z) are functions of =z which are regular in the region occupied by
the plate and W 1is a particular integral of (2.2). The moments and shears at any

point (r,9) of the mid-plane of the plate are giveu by [2]

Moo ped? + vr Tl v ur2a e = -plvi? + (1-v)dlu,  (2.5a)
moo= -p(ua? + rld + v 2w = by ¢ (ve1)atle,  (2.5D)
M= Q=0 (der Dd' (2.5¢)
Q. = -bd(w), g, = -or lar (v, (2.6)
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where o = o/ur, d' = 9/d: . In terms of tue complex potentials .(z), w(z) and

particular integral W(z,z) we have [3,p.730]

Mot M= -4(1+ )D[2Re &' + azw/azaZ], (2.7a)
T " 2 " " 2 -
M =M+ 2iM = =4(1-v)Dlza" + 27 (" + W) /], (2.7b)
r ) Ty
. " 3 2 - 2.8
Q = iQy = -8pz[ " + 9”W/9z"dz]/r , (2.8)

where accents denote differcntiation with respect to z .

The conditions for the circular edge C to be free are [2]

) OM_ )
M =0 (V) s (Qr -5 ) =0. (2.9)

Substitution trom (2.5a,c) and (2.6) in (2.9) leads to

3 ' = : ' = 2.
[r_(d,dwl = 0, [F (d,a)w] _ =0, (2.10)
where
£.(d,d") = v o ld s vr 2ar? s (2.11a)
¥_(d,d") = R O Y S P LR (S F L (2.11b)

From (2.5a) and the first equation of (2.9) we see that
2 _ _ 2 ) - _ v 42
VO = e @) o, vl (W = (=D ldtdtw]

Equation (2.5b) and the second equation of (2.6) then give

1= 2 _1=v D .2
M) o= vldwl o, Q) o= - g M, (2.12)
from which we deduce that
P L -
(I +v) ¢ (Qu)r=c = (d Md)r=c . (2.13)

This relation and the second equation of (2.Y) serve to determine the periphery

values of the shears in terms of the moment values.

3. STATEMENT OF THE PROBLEM.

The problem to be solved consists of determining the deflection surface of a
thin circular plate of centre 0 and radius c subjected to the following condi-
tions:

(1) The boundary C of the plate is free.

(2) The total normal load L= ﬂpoab (3.14a)

is uniformly distributed over the area of the ellipse

Z, 2 y
x/a” + yz/bz = 1(0<b

'

azc). (3.14b)
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(3) The plate is supported by four equal concentrated forces, each of magnitude
1y

L/4, and located at the points P (z, = se A,A =1,2,3,4), where 0 < s < ¢,

2 (2

Y, =¥ s Y, =T =Y, Y, =Y =u, y, ==y, 0<y<n/2. The four points of support
: 2 s b 2 2,2 2.2 2

lie in the loaded or unloaded region according as s cos“y/a” + s”sin“y/b” 1is less

or greater than 1. For y = 0 we have two supports at (#¢s,0) while for y = n/2

we have two supports at (0,ts). See Figure 1. Symmetry with respect to both axes

show that it is sufficient to find the deflection w at any point 2z in the positive

quadrant. Deflections, moments and shears at the four points iz, +z are the same.

4. METHOD AND SOLUTION.

Let T denote the boundary of the ellipse (3..4b) and let the indices | and 2
refer to the loaded region inside I  and the unloaded region between T and C,

respectively. The particular integrals W, and W, of (2.2) corresponding to the

=P, and P, = 0 may be taken as

uniform intensities of normal loading P
- 2-2 -
wl(z,z) = pyzz /64D, Wz(z,z) = 0. (.15)

The continuity requirements for the deflections, slopes, moments and shears at any
point on [ lead to

2=

[WJ]

[aw/az]f = [azw/azailf = [a3w/az232]f =0 (4.19)

along I' . It was proved [13, p.105] that these transition conditions along I are

satisfied by

23 2
2. _L_{d%2> (. 2\ 247
[se(20]] 565 l . 2 \2 +f2} z+6z1n ¢ |, (4.17)

“ 3 2. / 2
[w(z)]z=- L l (gEE +—l—> -3 (l +é55) v d? JE% (é —E—> -3 22 }].

3 = 2
] 961D f4 4ab 2 ¢ [f 2 f2 2 a+b
(4.18)
where zZ = /(zz—fé), £4 = 2% - b2, dz = a2 + b2 . (+.19)
Introducing (+.i2), ( .1/; and (4.18) in (2.4) we get, using (3.l14a)
- 2 2 . 2
k[w]% = Re [(rz +; dZ) 1n EE% + % {é_% (53 - g) - (22 + £—§) } Z
a 2£° M 3
4 2 222 .
r z \ drz | (ab 1 4
——-—-+ab(,‘;+-——+ ——(—+—)z], ‘4.20)
3ab f2} 6abf2 3 fh 8ab
where k = 8nD/L . («.21)

[f ¢ 1is the eccentric angle of any point 2z on T then
z =acos ¢ + ib sin ¢, Z = b cos ¢ + ia sin ¢ ,

and it is checked that the expression between the square brackets in (4.20) vanishes

" . . . 2 . . .
along [' as it snould. It is to be noted that Z = ¥(z -fz) is not uniform in
region ! while it is uniform in region 2. In fact, the two branches of Z inter-
change when 2z traces a closed path ro:.. any of the two foci (#f,0) of the ellipse.

Thus, the terms containin, Z in (4.20) should appear in L) and not in W, It

is also known that the singular part of the deflection w at any point P near a
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downward concentrated force F is

2
.= = .22
Yiin = B1D R In R, (4

where R 1is the distance between P uud the point of application of the force.

Guided by these remarks and using (-.20), we assume that

4 2 d2 4 1 (ab 1 4
kw, = =— - ab (% +£7 cos 2u> - S L cos 20 + = (—- + ) r'cos 4u

1 sab i 6abf2 3 fh 8ab
s+ oA+ CrHr™ cos 2uw (4.23)
n n
0
K ‘(r2+'d2> In |22] 4 L ge {dz/zz 5) (22+‘ z)}z
= ! zzz 25 -z - Lz
2 a+b 3 g2 \fz 2 2
s+ ia +Crorilcos 2y, (4.24)
o 0 n
where
4 2
S$=41Z%Z R InR , (4.25)
A A
A=l
. R . .
Rf = r2 + s - 2sr cos (bB-y), R; = rz + s2 + 2sr cos (6+y) ,
(4.26)
R; = rZ + s” + 2sr cos (U-y), Rﬁ = r2 + 32 - 2sr cos (0+y) ,
and An,Cn(n = 0,1,2,...) are real constants to be determined. It is now easily

seen that the expressions (4.23) and (4.24) for w, and w, satisfy the biharmonic

equation (2.2) corresponding to tne load intensiti;s P, = ;0 and py = 0, satisfy
the required transition conditions along T and exhibit the appropriate singular

behaviour at che four points of support. The unkown constants An(n =1,2,...) and
Cn(n = 0,1,2,...) will now be determined from the boundary conditions (2.10). The

conuition of zero deflection at any point of support serves to find A To achieve

0

this goal, all the terms in (4.24) will be explicitly expressed in terms of biharmo-
nic functions of r and 6 of the types

_n cos _ r21n cos

sin sin

Assuming that ¢(z,f) =

I
—
=
—~
N
+
~
N
N
I
oy
()
~
N—
£}
o
=2
'Y
<
[

2—l 9 2\n
. oty (N LT by (LY (2
V' (z,f) = (2°-f%) «z(l 22/ —Zé(n 3 \[f|>| s (4.27a)
where, with the usual notation
-1 - y
() = (=" 272 (T) ) (4.27b)

Integrating (4.27a), using (4.27b) and noting that %(z,0) = 1ln(2z) we get

w , 2n
) - i L (2n) (£ |

w(z,£) = In(2z) - 5 o = = > f
,‘(z ) n( z) b3 ; n \I‘l} \22/ (IZI )

Similarly, we obtain

@ | > 2n+1
v(z,£) = In(if) - 2i ¥ (“)(Z) (z] < £) .
0

2n+l n 2f

./
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Thus we have - / 2n
g 2Ly L) (L .
1n [27D 1n 30 5 f 3 \ n 5% cos 2n9 (r 2 f), (4.28a)
© 2n+l
[.Zin— L ! Zni 1 < f y
1n (a7 D! 1n Py + 2 é 5a77 \n \3F sin(2n+1)6(r < £). (4.28b)
.
Expanding (I-fzfzz)2 by the binomial theorem we find for |z| < f:
2 . 2 . ; 2
Gz (22 D5y (st , 03 2 Z_r_(1212 .
l 1 = "3 ) ) Z=qzd i r 3 3% *3 d” ) cos 29
£ £ f
2 4 @ 2n 4. .
| (£/2r) 2n 2n+l 2 n+3 2 »
+ o cos 49 + 5 i YT ( n) {Zn-l T+ m——— 4(n+2) cos 2n0 (r > f). 4.29a)
1
Similarly, writing Z = if (l-zz/fz)‘ and expanding, we obtain the following
expression for the left side of (4.29a) when lz| < £ :
+1 2
[z 2 _ T (x/2f) n ( 2ar -5 2]
3t \3 d -2f )51n 9 ? B P = 2(2n—3) sin(2n+1)6 (r < f).
(4.29b)
Substitution from (4.28a,b) and (4.29a,b) in (4.24) gives
2 2 . 2 4
S 1 2 (2,0 2) 2 (L 2, h g2 tos 2p s X
kw, =S¢ -5« (r +zd ) In 5~ 5 <3 rf 54 ) cos 20 + o cos 4u
@ 2n E /2 2 ©
e - (£/2r)" 'cos 2nu (2n 2r da- 2, 2n .
S + ? Go(ntl) n oo v + é (An + Cnr )r” cos 2n6 (r 2 f),
(4.30a)
r (2 S 201 2) 3
== 2 ] S
sz F \r *3 b ) sin 6 + (r + 3 d ) In Py S
® ey 2n+] 2 2 ©
+ 2z ££1££%———— (Zn) (_Zﬂ_ - l;-) sin(2n+1)6 + Z(A_+C rz)rzncos 2n8 (r < f).
) 4nl- n 2n-3  n+l o » n
(4.30b)
It can bhe easily shown that for r 2 s
2 2 2 2 52
Ry InR, = (r"+s”) Inr + s* = sr {1 +2ln r +— cos (6-y,)
X A 2r2 by
© 2 2 “n
1 / r S /s
* i n \n- n+l) \r) cos n(6-v,) (4.31a)
and
Wl/ 2 SZn
(r +s ) ln r + s + I = ) (—) cos 2ny cos 2n8 (r 2 s). (4.31b)
5 4n \2n +1/ \r
For r = s we interchange r and s in (4.31a,b) .

Introducing (4.31b) in (4.30a) yields

w

kw, = L L (r) cos 2n96 ,
2 n
0
where r = the greater of f and s ,
2 2n -2n
= At v ] = A' '
Lo(r) Ay * Boln r+ Cor, Ln(r) r™ + B'r
2 b3 2\ L2 2
' = - — (= = L '
AU A0 s+ % (4 +1n a+b/ N B0 A d s, C0

(4.32)
242 2-2
+c! no, D! Ta 1),
(6.33)
P S I (4.34)
0~ 27 "3 :
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d2 1 d2

A' =A - — ,Cl =C, - — , A=A, + — , (4.35)
1 1 Zt.z 1 1 3f2 2 2 6f4
2n+2 2 2n

~ Vv _S cos 2ny _ _d"(f/2) {Zn) > 1 4.36

A; - An(n 23), Bn 2n(2n+1) 4n(n+1) (n+2) \ n (n )s ( )
2n R A

- v _ _ S_cos Zny (£/2) (2"> > 4.37

C; h Cn(n =2), by = 2n(2n-1) * 2n(n+1) (in-1) n (n ). ( )

Applying tune differential operators (2.11) and (2.12) to the functions in (4.32)

gives
= Z1yer - 20 - ' =
£,(d,d") 11, ()} = a[(x ey - r BVJ, L(d,d") Ly} =0, (4.38)
) - P, TN
£.(d,d") {L_(r) cos ‘nu = 2no {(Zn—l)Aérzn z, (2n+1)B1e 2"
+ (1 + -l) (Zn+x=1) c'r2™ 4 (- -L) (2n=k+1) D'r'zn] cos 2no (4.39)
2n n \ 2n n ’
rF_(d,d') 1L _(r) cos 2n0} = —Anzo l(Zn-l) A,an—z - (2n+1) B'r-znn2
r n n n
e L) Gnemty 022 - (1= L) aresn) 0 e 2 cos 200 (4.40)
\ 7n) n 2n n ] ’
where
o=l =-v, «=@+v)/(0 -V . (4.41)

Inserting (4.32) in the boundary conditions (2.10), using (4.33)-(4.40), equating
the coefficients of cos 2n® (n = 0,1,2,...) 1in the resulting identities to zero and

solving, the obtained systems of linear equations we find

| 2 2 | 1 2 2 +b
Chy =380 -, cp=35+ 3550 -4 +1n 93- , (4.42a)
2-2n - 2.2 2n 2,2
v o ¢ j.2 _ 4nT+ —ll 2n , (f/2c) (Zn) 4n"+c"-1 _ 2n+l 2
A T Toar [[” Zn(2o)j U €08 Y * 503 n) azan " Tz V[ (02D
. (4.42b)
-2n 2 2n 2
, _C _ 2nu 2n (f/2c) 2n\ (av” _
Cn = I [(I EE:T) u~ cos 2ny + = vy 1 (n21), (4.42c)
where
B = (1-v)/(1+v), u=s/c, v =d/c. (4.43)

V/hen the values of Al’ A, and C are replaced by their values in terms of A;, Az

2 1
and C; by means of (4.35) it is found that (4.23) and (4.30a) take the forms

kwl = E%iggj (J - fg;) r2cos 28 + ég% {l + % <§E%)2cos 40} - % ab - §
sayrC g @+ C;rz) £?Pcos 2n6 (4.44)
vy v C, s . !+ ¢! rh) r®os 2 (r - ), (4.45)

where ¢ is given by (4.42a) and Aé, C; are given by (4.42b,c). For points of

region z at which r < f the deflection W, is furnished by (4.30b). It is easily
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seen that such points exist only if f 2 b, 1i.e., if the eccentricity of the
ellipse 2 V2/2. In any case, w, is given by (4.24). The constant AO can always

be determined from the condition that the deilection vanishes at any of the four

points of support. If all these points lie in the loaded region then (4.44) gives
] 20,2 2 1 8s? 2_.2
A0 =3 ab + s [Sln Yy In sin y + cos”y ln cos y - 5% 1n T + § B(4u” =v7)
2 \ 2 \2
a-b s _ R _ s 1 (a-b _ '
* 3(avD) (EZB l) cos 2y - g— {1 * 3 (;:B) cos Ay}J X (ay + C s )s “cos 2ny.

(4.46)
For a single support at the centre we have s = 0, u =0, AO = Z ab and S = r'1ln r.

If all the suovort ooints lie in the unloaded region, then either (4.45) or (4.30b)

'

can be used to determine Ag according as s 2 f or s = f. If s 2 f we have

AO =5 iSanY In(%s sin y) + coszy In(4s cos y) + = G(4u -vz)]
& 2n 2 2
3, 2s . J(£/2s) 2ny (d” _ 2s _ ' v .2y .2n
(4 +b) *“ VantnD) <n) <n+2 2n—|) (A) * G s)s™ | cos 2y,
(4.47a)
but if s < f then (4.30b) gives
; 2
. 2 2 Sl 8 Ll sl o2
AO = l31n Y In sin y + cos"y ln cos vy 5 * 1n =t 8 B (4u v )]
2 © 2n+1 | 2 2
_d L E s {24 2) . ° (s/2f) n) (s _ 2d .
7 In Prriial- (s *3 b ) sin y + 2 & —— ( n) <n+l 2n—3) sin(2n+1)y
1 An -1
- i (A + C s2)s?cos 2ay . (4.47b)
l n n
In any case, the deflection at the centre of the plate is
SR P N R,
Yo = 3 \AO A ab - s"1n s) , (4.43)

where the appropriate value of A0 is taken.

5. BOUNDARY AND CENTRAL VALUES OF MOMENTS AND SHEARS.
It can be easily shown that the deflections (4.23) and (4.24) may be written in

the forms
w, = 2Re [20 (2) + v (2)] + W (2,2) , (5.49)
w, = 2Re [Zuz(z) +uy(2)] (5.50)
wherc
o a%s e Z . 2n+l
2knl(z)—- 5 " Py ZA 1n ZA + 1 Cz N (5.51a)
6abf ] o "
I fab . 1\ 4 R U N T
ka](z) = 3 ;—z + m) z = ab (z + ;—i) + " )i'. zy Z)\ln Z)\ + 3 Anz , (5.51b)
2 4 o
= z+Z _ 1 ( z 1 . o 2n+l
deliy(z) =z 10 =5 - 3 \2 + ?) z-7 ]z Z, lnz, + (L) c.z nrh (5.52a)
y 2 5 4 ®
. oy _ d [22& z 5 z+7 1 -
2k, =94 Jeze fz 2 2+ |1 . ; 2
v, (2) 41,2 (fz 2) + In atb, 3 T z) Zyln 2z, + f) Az n o (5.52b)
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Z, =z~ z and the real constants An’ Cn have been determined in the previous
section. The moments and shears at any point of the plate can be obtained either by
substitution from (4.15), (5.5la,b) and (5.52a,b) in (2.7a,b) and (2.8) or by introd-
ucing (4.44), (4.45), (4.30b) in (2.5a,b,c) and (2.6), noting that § is defined by
(4.25), (4.26) and its expansion is (4.31b) if r 2 s and interchanging r,s in
(4.31b) if r < s. After extensive algebraic manipulation, it is found that

1 =0 ted and
(l‘r)r=C as expected an

UL | (1 2 2\, o, 2 x+1) 2n
(Mv)r=c = [bK<4 v.-u )+ f (2 2u” + — ) u” cos 2ny cos 2nf
* (2n (f/Zc)2n 2n+l 2 2n+c+]
o () SLR (S P - B cos 2"9] ’ (5.532)
1
- 2[5 (ut2 e )P os 2uy sin |
(MrO)r=c = [Z \2u 2+5 / cos 2ny sin 2nf
vz (i? Sﬁl%%%—- (z - =t vz) sin 2neJ , (5.53b)
1
(Qr)r=c = ZJ;C ll (Znu2 -2n +x -I)uzncos 2ny cos 2nb
1
w - 2n - -
- (2n\(£/2¢) I _n(2n+1) 2| .
+ i ( n ) arl LZn K+l - —m=mt Y J cos ZnOJ , (5.54a)

L I3 _
r=c 2m<c I_f (2n+ « +1 =20u”)u’cos 2ny sin 206

. (Zn) G200

] n Y LG + K + ] -

~~
<
D
~
|

n(2n+1) 2]
J

Yy sin ZnGJ . (5.54b)

It is easily seen that (5.53b), (5.54a) satisfy the second boundary condition in (2.9)
and (5.53a), (5.54b) satisfy (2.13) .

All the infinite serics appearing in this section and in section 4 are convergent

in the intervals mentioned and some of them will be summed in section 8.

The following formulae are obtained for the moments and shears at the centre:

(M) - : . :
L = g‘ [(I+v) {B<u2 -1 vz) + 1 + 2 1ln Jéi} + (1=v) {cos 2y
N i 4 +b
(Me)
0 2 2
SR L (P 3-2uh) cos 2y v L - - 3)} cos 29} , (5.55a)
8kc
(-VL | asb _ u> 2 2 . 2 2 2 v
(Mrﬁ)u =3 {cos 2y - Py + 7% (k“+3-2u”)cos 2y + 8Kc2 (vi=x -3)J31n 26.
(5.55b)
(Qr)o = (Qe)o =0. (5.56)

6. INFINITE PLATE UNIFORMLY LOADED OVER AN ELLIPTIC PATCH AND SUPPORTED ON COLUMNS.

Letting ¢ >« 1in (4.44), (4.45) and (4.30b) leads to

_a-b /

atb) _ ) 2
In ==jr + 2(a+b) \! ~3ap) T cos 2

LN
2
2

L
"\
+ = il +§ 1 ) cos AUJ s (6.57)
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[

- (3 pid 2 -
sz = AU g (4 + 1n a+b) +r lnr S
© 2n 2 2
(f/2r) 2n 2r” _ d” o
* ? 4n(n+l) n) \Zn=1 ~ as3) cos b (r 2 ), (6.58a)
2
_ 1 £ £ (2 4 2 . r 1 2.1 2
sz = Ay (2 + 1ln ) 1n prea- (r + 3 b ) sin @ + ;3 (3 4y d ) cos 26
2 4 2n+] 2 2
d’r 2
- 5~ cos 4u - S + 2 Z —El—il———— ( n) (Eﬁgi - 5%7) sin (2n+1)6 (r < f),
6f 1 4 -l
n (6.58b)
where
A, = 1 ab + 52 Isinzy ln sin +cosz 1n sy- L 1 §§3
0% L my yimceosym 3t In v
;2 2 V2
a-b s _ , s 1 (a-b
+ _—2(a+b) (m l> cos 2y - m Jl' + 3 (;E) cos QY}J > (6,59)
if the supports lie in the loaded region;
2
2 2
A0 = s sin Yy ln(4s siny) + szcoszY 1n(4s cosy) - —— k% 1n :%% )
© 2n 2 2
(£/2s) " (2ny (d 2s
+ T Zn(nrD) n) a2 T 507 ¢os 2ny , (6.60a)
if the supports lie in the unloaded region and s 2> f ;
A0 = sZ {sinzy In siny+ coszy In cos y+ 1ln 92_ - 11 3%9
. Y 2 2 2 2 4
s 2 42 . s s d d
-3 (s + 3 b ) sin y - =5 (j; + fz) cos 2y + Z cos 4y
f 6f
2n+1 2 2
P (f/Zs) 2n s 2d”
+ 22 = L Pyl sin(2n+l)y , (6.60b)
1 4n" -1
if the supports lie in the unloaded region and s < f.
At the centre of the ellipse the moments (5.55a,b) reduce to
M) - N ]
0 _ L 251, oy [ - ah
(M,)o =7 [(l+v) {l + 2 1n prey + (1-v) Lcos 2y S35[ oS 204 , (6.61a)
- O-wL | _ ath
M. = 37 [cos 2 +bJ sin 20. (6.61b)

7. THIN CIRCULAR PLATE UNDER A VARIABLE LINE LOADING ALONG A DIAMETER AND SUPPORTED

ON_COLUMNS.

When the minor axis of the loaded elliptic patch » 0 we have the case of a
variable line loading extending along tne x-axis from x = -a to x =a. If b >0
and Py > such that 2bp0 > P, then the intensity of this line loading at a
distance x from the centre equals P /(l—leaz). Deflections, moments and shears
corresponding to this case can be dedcued from those for region 2 in sections 4, 5
by setting b =0, d =f =a, L = inapl and noting that separate expressions are

COREURE L UOT W W al @ RAInT (-9 Lacaerding as | r | is greater or less than _a _and

tne columns lie outside or inside the circle r = a .
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8. THIN CIRCULAR PLATE UNIFORMLY LOADED OVER A CONCENTRIC CIRCULAR PATCH AND
SUPPORTED O~N COLUMNS.
Setting b =a, £ =0 in (4.44), (4.45) and (4.42a,b,c) we get
. 4
kw, = A - {az + j% + 1ln a + {Lﬁ(l:2—2u2)L rz +L- -5
1 0 1 J 2
8a
© ' 1.2, 2n . ,
+ 2 (A" + C'r")r" cos 2n6 (8.62)
| n n
_ 3.2, Lari2 o 23] 2 2 2 r_
ka—AU+8a +{1na+bd(t 2u)}r +(r4ia>1na S
+ 5 (&' + C'r2)r’fcos 2n6 R (8.63)
1 n n
where t = a/c and
2-2n 2n . 2 2 -2n 2n 2
v _ ¢ u 2 _4n"+x"-] v _ C u _ 2nu .
AL o {” In(In-T)) SO 2nY» C) Tac ~ \! 7 Zns1) COS 20v (8.64)
: . 2 , 2
AO = ,laz + 52 {sinzy 1n siny + coszY In cosy = § + In % + {B(Zuz-'tz) - i-z-]
3a
o , 2 20 .
-2 (An + Cns )s” cos 2ny(s < a) , (8.65a)
1
2 .2 . 2 2 2] _ a® (3 s
AO = s [sin Yy Iln siny + cos”y ln cosy + ln(4s) + {B(2u"-t )J -3 (Z + 1ln i)
” ] ' 2n . N
- . (An + Cns )s" cos 2ny(s 2 a) . (8.65b)
The infinite series in (8.62) and (8.63) equals
2. 2 2 Z 22
ro+s +(k-1)c” . . _ _ru
e tJo(t,, 4),) + JO(t,,sz)} e {J|(€,¢]) + J](E,‘PZ)}
) (»<Z--l)c2
- 1 xe ie/_l(i,fpl) + J_l(€,¢2)}+ s { J(€,¢l) + J(r:,cpz)} » (8.66)
where
2
5 = rs/c ST A A P A
w .2n
J(5,) =L M ==l n (0 + £ - 26%0s 29) (8.67a)
G \ <N
" ’chos 2n 1 I+£2+2£cosg . -1 2¢sing
Jl(';") =1.7T-2=rlcos<p 1n + 2 sin¢ tan ZJ_ 1,
1 © 1+£7-2¢&cos¢ 1-¢ (8.67b)
w -4D 2 _ . :
J_,(EN) -5 z_ci:Zn@ _ ll;‘{’[ cos o 1n 1+£2+2€cosg - 2 sino tan 1 2551:212] i
I ! 1+¢“-2£cos6 1-¢
© (8.67c)
bl ’chos 2ny ;20 f 6 In(l-)) i
J(5,9) =2 :—2-——-— = Re L l"—z = Re { - J e d)\l (¢ = ¢e 7). (8.68)
1 n I n J
0
The last function is the dilogarithm studied in the last three references of [7].
The deflection at the centre is given by
2 2 2 4s 52
kw, = s siny la siny+ cos'y ln cosy+ Iln — - } - -
0 a 2
8a
1 2 2 CZ(S
+ 3 B(2u”-t )J v (s = a) , (8.69a)
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kwO = §? sinzy In sin vy + coszy 1n cos vy + 1n 4 + %B(2u?-t2)
2 2
where - %— (% + In E) - Ezg (s 2 a) (8.69b)
2 2 2 4 4 2 i 1+a? 1
& = (k% + 2u° - 1)t ZJU(u 52Y) = In(l=u')t - 2u {Jl(u ,2Y) + -3 1n = =1
2u l=u J
sl )2 2w’ L, 2 2 2
- 2K Lr/_l(u »2Y) + 5 u'ln 3 + 5 (kT=1) {Ju",0) + J(u,2y)} . (8.70)
I-u
Setting Yy = m/4 we obtain
- 2 , 2

- [ s s 52 2 c§!’

kwo = s l $(3 In 2-1) + 1n - ;;5 + B(2uT-t )J + == (s < a), (8.71a)
) .

23 L2 2] at s s\ . c2s!
kg =877 In 2+ ds(utee )J- % {Z + In 3) +E=— (za), (8.71b)
where

. * 16n2+K2—l u‘Z ua
R Y P I ey
I Lien“(4n-1) "0
2
- L et -t ey {Kz -1+ (<z+3>u2} In (1+u?)
vt e man® + ja=h {uztan"uZ - i(l-uz)ln(]—uz)} . (8.72)

It is verified that (8.71a,b) agree with (3.14) and (3.6a) of [3], noting the
diiference in notation. There are misprints in equation (3.5a), p.738 of [3] and

cos a which appears twice in this equation must be replaced by cos sa .

Putting b =a, f =0 in (5.53a,b), (5.54a,b) and summing the infinite series

obtained we get tue closed formulae

1+v)L 2 " 22
M), = - 32752— [u - 1w £fu®) - LD (T
» p0=hHo-uhyar! . 1;')J . (8.73a)
Lol -l uzsin 2@1 -1 uzsin 202
Oy e 7 |5 (pan g v e ———= )
I-u”cos 2y [-u~cos Z¢2
sin 2¢ sin 2¢, |-
TN ( L, 2 )J
I, I, , (8.73b)
Q) = L e (-2 G, 1n? -l -1
r'r=c 4Tk C (U=u™{1 + u’ + g (Il M I2 )
2 4.2, -2 -
- (=ah (= I°Z)J ’ (8.74a)
L ) /sin ZQI sin 2¢2
(Qq)r=c T 4mke [(I+K)u \ I * I, )
S22 w Sin 29, sin 29901
+ Zu”(1-u”) (l-u") + -
\ 72 2 )l (8.74b)

I 2
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where
(8.75)

I =1 + 0% = 20° cos 2y (G = 1,2)

It is easily verified that (3.73a), (8.74b) satisfy (2.13) and (8.73b), (8.74a)

satisfy the second equation in (2.9)

Formulae (5.55a,b) and (5.56) for the moments at the centre reduce to

(), .
ro_ L ) s L 24l
(N@)U = [(l+v) Ll + 2 In a + 3 B(2u t )J
. 2 .
f(1=v) {1 + %z (K2 + 3 - 2u2)} cos 2y cos 29J . (8.76a)
- 2 N
(Mrv)O = Sli%lé [l + 3; (fz +3 - 2uA)J cos 2y sin 29 (8.76b)

it is checked that the formulae (8.73)-(8.76) are in agreement with

For y = n/4
which were derived by a

those obtained by applying equations (2.44)-(2.46) of [3],

dirfferent method.

FIG.1
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