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ABSTRACT. This paper presents some graph-theoretic questions from the viewioint of

the portion of category theory which has become common knowledge. In particular,

the reader is encouraged to consider whether there is only one natural category of

graphs and how theories of directed graphs and undirected graphs are related.
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i. INTRODUCTION

The use of category theory in graph theory is no longer novel (P. Hell [i]), and

methods of category theory have been made generally available to the ’Worklng

Mathematician". The main category theoretic topics that we need and the section

number of MacLane [2] in which they may be found are: adJoint functors (Chap. IV);

representable functors (Sect. 111.2); Kan extensions (Chap. IX); functor categories

(Sect. II.4); monads (Chap. Vl); and cartesian closed categories (Sect. IV.6).

Nevertheless, one can find examples in the literature of errors, imprecision, or

laborious constructions of special cases. As a result of reviewing some of this work

for Mathematical Reviews, we set ourselves the task of presenting a sound description

of some of the material which seemed most susceptible to these flaws.

In particular, we wish to answer the question in the title of the paper of

Harary and Read [3] with a firm "No’.", and elaborate on defects noted in the reviews

of Farzan and Waller [4] and Ribenboim [5] (see also Ribenboim [6]). The concepts

of "involutorial graph" and "hom-graph" are defined by Ribenboim without citing any

earlier work. This makes it difficult to assess their pedigree. We shall present
evidence that, as originally presented, these definitions were wrong since they did

not account for the category theoretical properties which have been recognized as

essential parts of the algebraic structure and cartesian closedness. The difficulty

with a study of a "category of graphs" is that graph theory was born as a branch of
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combinatorics which leans towards defining graphs in terms of adjacency properties

of a set of vertices, which restrict the available objects and ignores the relations

between them, while category theory emphasizes the structure preserving mappings

(morphisms) and gives its best results where one is able to construct objects

"freely determined by some properties".

Our first observation is that directed graphs are easier to describe than

undirected graphs. In Section 2, we construct categories which give satisfactory

descriptions of a category of directed graphs and which have simple categorical

descriptions (as functor categories). The construction of a category of undirected

graphs is discussed in Section 3.

Second, vertices and edges have traditionally been considered to be different

things, but Ribenboim treated vertices as being degenerate edges. In Section 2, we

study the relationship between the categories of directed graphs which model these

two definitions. In Section 4, we observe that the "Cartesian" structure has more

intuitively satisfying properties when the vertices are considered as degenerate

edges.

Section 3 is devoted to recapturing an undirected graph from one of its

canonically generated directed graphs. This process uses the theory of monads which

stems from the definition of "algebraic structure" in the context of category theory.

2. TWO POSSIBLE DEFINITIONS OF "DIRECTED GRAPH"

In order to describe a directed graph G, one first specifies a set V of

vertices and a set E of . Each edge is considered as starting at a vertex,

called its origin and going to another vertex, called its terminal. Actually, these

assignments define functions o (for origin) and t (for terminal) from E to V.

This definition allows oriented graphs to have multiple (el,e2 e E with

eI e2, o(eI) o(e2) and t(eI) t(e2)) and (e e E with o(e) t(e)).

Often, such graphs are excluded in combinatorlal graph theory problems.

This definition is equivalent to defining a directed graph as a functor from

the category A_p (see Figure i) to the category Ens, of sets.
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Figure 1. The category A

Clearly, G[0] corresponds to V and G[1] to E. Then, without loss of genera-
lily, the functions G(1):G[l] G[0] and G(60):GIll G[0] are the maps
and terminal, respectively.

If graphs are functors, then the appropriate definition of "graph morphism"
should be a natural transformation between these functors. Such a natural transfor-
mat ion

f:Gl’: G2:AP Ens

is given by a map of vertices f[O]:Gl[O] G2[O] and a map of edges

f[l]:Gl[l] G2[I] which "commute with" origin and terminal. Thus a category of
directed graphs can be modeled by the functor category [A_P,Ens].
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By contrast, considering vertices to be "degenerate edges" leads one to view

the category of graphs as the functor category [BP,Ens] (see Figure 2).
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Figure 2. The Category B

If H:B_p Ens, then H[0] represents the vertices of H and H[I], the

edges of H. The functions H(61):H[I] H[0] and H(0):H[I] HI0] are again

said to be origin and terminal, respectively. In addition, the identities

o0 i
id[0], i 0, I in _B insure that the function H(o0):H[0] H[I] is an

embedding of the set of vertices into the set of edges of H, mapping each vertex to

a loop based at that vertex. Thus, each vertex can be thought of as a "degenerate
edge".

Since [AP,Ens] and [BP,Ens] are both examples of functor categories, we

are able to use general properties of functor categories to describe the fundamental

category-theoretic constructions within each category, and to relate these two

candidates for a category of directed graphs. The first principle which we use is

that limits and colimits (including the terminal object as a special case of a limit

and the initial object as a special case of a colimlt) are computed "pointwise".

For example, the null set is an initial object in Ens since there is a

unique (null) map of into every set. An initial object in [AP,Ens] or

[Bp,Ens] is a graph with no vertices, no edges, and all structural maps null.

The null graph is thus essential to a categorical approach.

Similarly, since a terminal object of ns is any one pointed set, the terminal
object of [A__P,Ens] must have one vertex and one edge which is a loop. In
[BP,ns], the unique edge of the terminal object T is degenerate. Thus T has
the property of representing the vertex set of a graph, i.e., H[O] and the hom-set
[B_p_ ,Ens] (T,H) are isomorphic as sets, for each graph H. In fact,
_[0]:[BP,Ens] ns and [BP,ns] (r,_):[BP,Ens] ns are functors which are
naturally equivalent.

Since a product in a category is a limit, products in [AP,ns] and [BP,Ens]
are also computed "pointwise". The product P GxG’ of A-graphs G and G’ has
vertices e[0] G[0]xg’[0] and edges PIll G[I]G’[I]. The origin and terminal
maps from P[I] to P[0] are constructed canonically from these maps in G and G’

EXAMPLE. Suppose G and G’ each have one edge connecting two distinct
vertices (e from a to b and e’ from a’ to b’, respectively). Then
P[0] {(a,a’),(a,b’),(b,a’),(b,b’)}; e[l] {(e,e’)}; P(61)(e,e’)= (a,a’);
and p(0)(e,e,) (b,b’) (see Figure 3).
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(a,b’) (b,b’)

(a,a’) (b,a’)

Figure 3. The A-graph GxG’

EXAMPLE. The product Q of B-graphs H and H’ has Q[0] H[0]H’[0] and

Q[I] H[I]H’[I] with Q(60), Q(61) and Q(o0) constructed from the corresponding

maps in H and H’. In particular, if H and H’ each have two vertices and one

nondegenerate edge, then the product graph Q has four vertices and nine edges,

four of which are degenerate (see Figure 4).

(a,b’) (b,b’)

(a,a’) (b,a’)

Figure 4. The B_-graph HH’

Since the same construction can product very different results in [Ap,Ens]
and [Bp,fns], it is desirable to be able to relate these t-o categories so that

constructions in one would be naturally "induced" in the other.

The inclusion u:A-- B of A as a subcategory of B induces a (forgetful)

functor

U:[BP,ns] [AP,ns].
For a B-graph H, the A-graph U(H) is just the restriction of H to the sub-

category Ap of B_p. In the A_-graph U(H), the degenerate edges H(o0)v, for

various vertices v e H[0], are no longer distinguished. The restriction of natural

transformations gives no difficulty, and it is easy to verify that

U:[BP,ns] [AP,ns] is actually a functor.

Because U:[BP,Ens] [AP,Ens] is defined by composition with the inclusion
op

u :Ap Bp, it induces more structure: U has both left and right adjoints which

are the Kan extensions L and R. These are described below.

For each A-graph G, L(G), the "B-graph freely generated by G", is obtained

by adding to G[l] a new degenerate edge , one for each vertex v e G[0], and

setting L(G)(O0)(v) . If f:G G’ is an A-morphism (i.e., a natural trans-

formation from the functor G to the functor G’), then L(f):L(G) L(G’) is

defined to agree with f when "restricted to G" and to satisfy

(e(f)[l])() (f[0])(v).

To see that L: [AP,ns] [BP,ns] is the left adjoint of

U:[Bp ns] [Ap Ens] one shows that there is a natural one-to-one correspondence
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(G,H):[BP,Ens](L(G),H) [AP,Ens](G,U(H))
for each A-graph G and each B-graph H.

This adjoint relationship may also be described in terms of the unit natural

transformation

D:Id ue:[AP,ns] [AP,ns]
or the counit natural transformation

:LU id:[BP,ns] [B__P,ns]
of the adjoint pair <L,U>. We now construct both natural transformations. The

construction, given above, for the B_-graph L(G) may be restricted to A=p to give

the A-graph UL(G). This construction yields G as a specific subgraph of UL(G)"

the collection of these inclusions G:G UL(G) is natural in G. In fact, this

collection is the unit natural transformation of the adjunction <L,U>. Similarly,

the counit :LU id is given by describing the B=-graph morphism eH:LU(H) H

for each B_-graph H. The graph LU(H) differs from H by the addition of new

degenerate edges for each vertex, the old ones having lost their distinction in

U(H). The B-graph epimorphism H is the identity on H LU(H) and maps each

new degenerate Q added by L to the original degenerate edge H(o0)(v) in H[I].
Next, the adjoint relationship <L,U> may be verified by demonstrating that the

following composites are identity natural transformations:

,qU U
U >ULU U

L aL

Lastly, note that neither gH nor

respectively, is a null graph.

The right adjoint

L -LUL >L

G can be an isomorphism unless H or G,

R:[AP,Ens] [BP,:ns]

is given as follows: for each A-graph G, R(G) is the B_-graph whose vertex set

R(G)[0] is the collection of all loops of G (i.e. edges e G[I] with

G(d I)(Z) G(0)()). The set of edges R(G)[I] is the collection of all triples

<Z0,e,l > of edges of G with 0’ Z1 loops and e an edge having origin the

vertex of 0 and terminal the vertex of I’ i.e. G(I)(0) G(60)(0) G(61)(e)
and G(I)(I) G(0)(1 G(0)(e). The origin and terminal of <0,e,l> are

0,ZI, respectively; i.e. (R(G))(dl)<0,e,l> 0 and (R(G))(d0)<O,e,l> i"
Lastly, the distinguished R(G)-loop at the R(G)-vertex is <,,>; i.e.

(R(G))(g0)() <,,>. The unit natural transformation

q:id "-RU:[BP,ns]_ [BZP,ns]_ consists of the _B---mrphlsms H:H RU(H).

Particularly, H carries a vertex v of the B=-graph H to the vertex of RU(H)

which is the degenerate loop H(o0)(v), i.e. NH(V) H(o0)(v); and H maps an

edge e of H with origin v and terminal w to the edge <H(g0)v,e,H(g0)w>,
i.e. qH(e) <H(g0l)e,e,H(g060)e>. Clearly, H:H RU(H) is the B__-monomorphism

which identifies H with the full subgraph of RU(H) generated by vertices

{H(o0)vlv e H[0]}.
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The counit e:UR’/Id:[AP,F-ns] [Ap,Ens] is analogously defined to be a

family of A-graph morphlsms eG:UR(G) G. The vertices of UR(G) are the loops

of G. The A_-morphlsm e
G maps such a loop to its vertex G(O)() G(I)()

and carries an edge <o,e,l> to the edge e; i.e. eG[O]() G(O)() and

G[I]<0,e,I> e. Thus e
G

"compresses" UR(G) onto the full _A-subgraph of G

generated by those vertices having loops.

Note that eG is an A-graph isomorphism if and only if at each vertex of G,

there is precisely one loop. Similarly, H is a B_-graph isomorphism exactly when

each loop of H is a degenerate loop H(o0)v. Therefore U and R induce an

isomorphism between the full subcategorles A of A_-graphs with exactly one loop

per vertex and 8 of B-graphs with only degenerate loops.

These ideas above illustrate the first part of the following theorem whose

second part we use later.

THEOREM 2 1 (Lambek and Rattray) Let S:X V:T be a pair of adjoint

functors with unit n:id -TS:X X and counit :ST *id:F V. Then T and

S induce an equivalence between Fix(TS,) {X obXlx:X TS(X)} and

Fix(ST,) { e ob,ly:ST(, )._2-y}. Moreover, the following statements are

equivalent

(i) the triple (TS,r,TS) on X_. is idempotent"

(ii) T is a natural isomorphism;

(iii) the cotriple (ST,e,ST) on is idempotent"

(iv) _S is a natural isomorphism"

(v) TS:X X factors through the subcategory Fix(TS,)"

(vi) ST:- F factors through the subcategory Fix(ST,g).

If these conditions hold, Fix(TS,) is a reflective subcategory of

_
with

reflector the factorization (v) and Fix(ST,g) is a coreflectlve subcategory of

F with coreflector the factorization (vi).

PROOF. See Lambek and Rattray [8], Theorem i.i.

In the example just discussed, S:X_- F__ is U:[BP,Ens] [AP,Ens] and

T:F- is the right adjoint R:[AP,Ens] [BP,Ens] The condition for

Fix(RU,N) [BP,Ens] to be reflective and Fix(UR,E) [Ap,Ens] to be

coreflective fail. Consider RG:RG RU(RG) where G is a graph with one vertex

v and two loops 0,%i at v. Then RG has two vertices {0,I}, each with two

loops

However, RU(RG) has four vertices, the four loops (2.1). Thus nRG fails to be an

isomorphism and condition (ii) above does not hold. In fact, FIx(RU,N) is not

coreflective since the inclusion does not preserve colimlts.

Suppose we compose the adjunction S:X__.._F:T with an adjoint pair

-":N then Theorem 2.1 applies to the composite adjunction MS:XZ:NT.M: Y ___
In particular, if Z_ is a reflective subcategory of _F with idempotent cotriple

(MSTN,g,MSTN), then there is a reflective subcategory X_l of _, guaranteed by

Theorem 2.1 which is equivalent to a coreflective subcategory Z_l of Z_.
As an illustration, let F

1
be the full reflective subcategory of

generated by all A=-graphs which have at most one loop at each vertex. The left
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adjoint (usually called the reflector) M:[AP,Ens]_ FI of the inclusion

[A__P,Ens] maps each At-graph G to the quotient A-graph G
1 with theN FI- same

vertices as G, the same edges between distinct vertices, but having only one loop

at each vertex at which G has loops and having no new loops. Applying

UR:[AP,ns] [AP,ns] to a graph NG
1 with GI I’ yields the full subgraph

UR(GI) of NG
1

generated by the vertices of NG
1

at which there is a loop.

Note that UR(GI) is already in the subcategory I; hence the function

M:[AP,Ens] F I, has no further effect and MURN(GI) URN (GI)’ NGI Iterating

this construction yields the same graph, up to isomorphism. Thus condition (vi)

of Theorem 2.1 holds, and all the other equivalent properties (1)-(v) and the

conclusions of Theorem 2.1 follow. Particularly, the coreflective subcategory

of F I consisting of A-graphs with exactly one loop per vertex is equivalent to

the reflective subcategory A of B-graphs with only degenerate loops. Note that

Fix(UR,g) and A Fix(RU,q) for the original adjunctlon

[Ap Ens] :R. Thus it is possible for Fix(TS,q) to be a reflectiveU: [Bp ,Ens]
subcategory of X_ without the existence of a factorizatlon of TS:X_/ X through

Fix(TS,q) (i.e. condition (v) of Theorem 2.1 fails even though part of the conclu-

sion is still true).

A second important subcategory 2 of [A_P,Ens] is the full reflective

subcategory generated by the simple A_-graphs G with at most one edge from any

particular vertex to another. The reflector M:[Ap Ens] the left adJoint2’
of the full inclusion N:F2r-- [A__UP,Ens],-- maps each A__-graph G to the quotient

A_-graph G
2 having the same vertices as G, but with edges e and e’ identified

whenever G(l)e G(l)e and G(O)e G(O)e ’. Again, the cotriple on 2 is

easily seen to be idempotent. Using an argument similar to the one for I’ it

follows that there exists a reflective subcategory A
2

of [Bp,Ens] which is

equivalent to a coreflective subcategory 2 of

Theorem 2.1 thus establishes equivalences between subcategorles of [_A_P,Ens]
and [BP,Ens] which introduce the combinatorially useful concepts of "absence of

(unnecessary) loops" or "characterization of edges by their origin and terminal

vertices". The "combinatorially interesting graphs" are extracted in a natural way

from either of the functor categories [AP,ns] or [BP,Ens]. Thus either of the

two possible general definitions of "directed graph" leads to the same theory.

Along the way, though, we have found that the interplay of these generalizations

leads to deeper properties than one might have expected.

3. UND IRECTED GRAPHS

In combinatorial problems, a graph is simple considered to be one-dimensional

complex. Each graph U has a set V(U) of vertice.s, a set E(U) of edges, and

an incidence relation I(U) V(U) E(U) with each edge incident to at most two

vertices. Clearly, a directed A_-graph G can be given this structure, denoted by

P(G): the vertices are G[O]; the edges are G[I]; and the incidence relation is

the collection of pairs

{(G(60)e,e),(G(61)e,e)le e G[I]} G[O] x G[I].

A morphism f:UI U
2

of undirected graphs is given by a pair of functions,

V(f):V(UI) V(U2) and E(f):E(UI) E(U2),
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such that incidence is preserved; i.e.

(V(f) E(f)I(U I) I(U2)-

Any A__-graph morphism f:GI
G
2

"induces" such a pair

e(f) :e(GI) P(G2)

of functions between undirected graphs since commutes with origin and terminal.

Hence, this construction induces a functor

P’[AP,Ens] T

from the category of A_-graphs to the category T of undirected graphs.

The category T is not easy to describe, since it depends on using, within

category theory, the notation of a set with at most two elements (to describe the

incidence relation I(U)). This difficulty illustrates a difference between the

combinatorial and categorical viewpoints in graph theory. The categorical approach

searches for general concepts which may be simply described and proceeds from there

to particular or special examples" while the combinatorial approach assumes that such

things as multiple edges or loops will be complicated. The "purity" of the categori-

cal approach aside, it appears necessary to make some arbitrary choices in order to

obtain a category to model T. However, we are able to avoid this difficulty by

external relationships (which we expect to exist) between [P,Ens] andusing

to help "internally" construct T.

The functor p.[oP,ns] T forgets orientation; hence it is reasonable to

investigate the possibility that P has a right adjoint

O:T [P,Ens].
Thus we search for objects OU in [P,Ens] such that they agree with our

"intuition" about the category T and such that there is a natural equivalence

(G,U):T(PG,U) /[A_P,ns] (G,OU). (3.i)

Every A_-graph G is determined by the sets G[O] and G[I] of vertices and

edges, respectively, and by the functions G( I) and G( O) of origin and terminal.

[P,Ens] is a functor category, the Yoneda Lemma guarantees that theseSince sets

and functions can be naturally described in terms of representable functors; in

particular,

G[i] [AP,ns] (A(_,[i]),G), i 0,i

and 3.2

G[ i] [AP,Ens] (A( ,s i) ,G) i 0,I.

The object (actually functor)

V -= A=(_, O] :Ap ns

which represents vertices has one vertex since A([O],[O]) consists only of the

identity, and no edges since A([I],[O]) is empty. The object

E A(_,[I]):Ap Ens

which represents edges similarly has two vertices and one edge joining them. The

morphisms (natural transformations)

S- A( ,61):A(,[0]) i A(,[i])
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and

A(_,6) __,T _= :_([o1)-,. ,(,[1)
from V to E select the origin and terminal vertices, respectively, of the unique

edge in m. The subcategory A’ of [AP,Ens] consisting of objects V and E

with morphlsms B and T is isomorphic to A.

For each graph U in T, we can determine the structure of OU by using both

(3.1) and (3.2). The set of vertices of OU is [AP,Ens](V,OU) which is naturally

isomorphic to T(PV,U):

(OU) [0] - [AP, ns] (A(_, [0] ). OU)

[_._op,=,,] (v,ou)

= T(PV,U).

Since graph V has one vertex and no edges, and P:[AP,ns] T is a forgetful

functor, PV is the graph in T with one vertex and no edges. A T-morphism

PV U is given by selecting a vertex of U to be the image of the unique vertex

of PV. Thus (OU)[O] is identified with the set of vertices of U.

Similarly, the edge set of OU is given by the set T(PE,U). The A==-morphism
T:V E induces a map T(PT,U):T(PE,U) T(PV,U). The undirected graph PE

has one edge and two vertices; thus T(PT,U) restricts a morphism with domain PE

to one of these vertices. If vertex v of U is incident to edge e, then there

is a T-morphism

f :PE/U

such that the unique edge of PE is mapped to e and such that the vertex of PE

designated by PT:PV PE is mapped to v.

We expect that this description above would determine the morphism f
e

uniquely. First, if e is a proper edge, then e has precisely one other vertex

incident with it; and f :PE U should have this vertex as the image of the
e

second vertex of PE. Second, if e is a loop, then there is only one vertex v

incident with e; and both vertices of PE must be mapped to v. Note that these

assignments establish a natural equivalence between

(OU)[I] T(PE,U) and I(U) V(U) x E(U).

In addition, the terminal map

(ou) (o) (ou) [1] (ou) [o]

is given by the natural projection of I(U) on V(U).

To complete the description of the directed graph OU, it is necessary to give

the origin map

(ou) (l) (ou) [1] (ou) [o].

The argument given above to justify the identification of T(PE,U) with I(U) is

a construction of (OU)(I); i.e.

(OU)(61)(v,e) Iv’; if (v’,e) I(U), v’ # v

[ v; otherwise

This construction uses the difficult to naturall[ describe notion "is incident with
either one or two vertices". The existence of the adjolnt relationship <P,O>
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demands that the construction of the origin be natural. Hence we will exploit the

simple functor category op Ens] of A-graphs use the assumed existence of an

adjoint pair <P,O>, and apply the general theory of monads to construct a category

of algebras F which will be a functor category model [yP,Ens] for T.

As a first step, we give a description of the monad (or .triple) M <T,,U>

in [hp Ens] which results from the assumed existence of the adjunction <P O>

For each h-graph G, TG Of(G) is described using the above discussion. Hence,

rG[O] G[O] and TG[I] is given as the pushout

Zo
(G) " rG[l] (3 3)

G[I]’’I
where I(G) {e G[I] IC(O) (e) G(I) (e) }, the se__t o__f loops of G. The universal

properties of the pushout in ns are used to give a description of origin TG( I)
and terminal TG(O) to reflect the above construction of

T OP:[AP,Ens] [AP,Ens].
[hus TC(60)’IG[I] TG[O] is the composition of the identification

G[O]’G[O] - TG[O] with the function in

G(O)

(t)

while TG(I):TG[I] TG[O] is defined similarly by interchanging G( O) and

C(6 I) in (3.4).

The unit of the adjunction <P,O>,

:id "-r:[Ap,ns] [AP,Ens],

is given by

rG[O] ld:G[O] TG[O], and rG[1 -= Zo:G[1 TG[1]

of diagram (3.3), for each A_-graph G. Clearly, from the definition of TG( O)
and TG(I)’ G is an A-graph morphism natural in G.

The muitiplicat ion

T2"]a: -T:[AP,ns] [AP,Ens]
of the monad M is constructed from the counit :PO id:T- T of the adjoint
pair <P,O>. For each graph U, cu-PO(U) U is the identifying map on vertices,
V(U) Id:V(PO(U)) V(U). The set E(PO(U)) of edges of PO(U) is, from the
above discussion, just the incidence relation I(U)

_
V(U) E(U). A sketch of the

construction of the equivalence

(G,U) :T(PG,U)-- [AP,[ns] (G,OU)

leads to the function E(u):E(PO(U)) E(U) being the projection I(U) E(U).
The incidence relation I(PO(U)) in PO(U) can be given as a pushout with a map
to I(K):
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id

(u) I (Pou) ,i (u)

I (U)"
t
U

(3.5)

where
U

is a "twist" map which chooses the other element of I(U) over the same

edge in E(U). In the context of the monad M, the above constructions lead to the

pushout description (3.6) for the multiplication NG:T2G TG:

id
TG[I]--

T
2

.W’ G[I] / rG[l]

t

(3.6)

where t:TG[I] TG[I] is defined by

z I

Z(G) GIll.

G[l
z
0

(3.7)

Note that t:TG[I] TG[I] together with id:G[O] G[O] TG[O] on vertices

does not define an A-graph morphism, but G <Id’G[I]>:T2G TG is in [AP,Ens]._
The axioms for a monad (see MacLane [2], VI.I) are now easily verified; in

particular, the constructions are clearly "natural in G" G e [Ap Ens]
An alsebra for the monad M <T,,> is defined as an object X of the under-

lying category, which is [Ap,Ens] in this case, together with a morphism h:TX X

such that diagrams (3.8) commute:

Th nX
T2X TX X > TX

X
h

TX X X

h (3.8)

Since Nx[O] id:X[O] (TX[0] X[O]) and DX[I]:X[I TX[I] is the map

0
of (3.3), we construct h:TX X with hNX idx from the pushout (3.9):

ld

X[]
TX[I] X[l]

x[]/zl____
b

(3.9)

The requirement that h:TX X be an A-graph morphism forces the map b:X[l] X[I]
to reverse orientation (i.e., x(i)b X(6l-i) :X[l] X[O] i 0,i) Furthermore

the restriction b/Z(X) must be the "identity" inclusion (X) X[I]. The

commuting of the first diagram of (3.8) reduces, in this case, to the statement that
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b:X[l] X[I] has

b
2 Id:X[l] X[I]"

i.e., b is an involution.

Thus the concept of graph with involution arises naturally from the concept of

unoriented graph; in fact, it provides an algebraic realization of this concept. The

category T
I

of M-algebras always has a pair of adjolnt functors which induce the

monad M in the base category.

In addition, the Kleisli construction uses the monad M to describe a category

T
2

which is essentially the category of free algebras. The objects of T2 are the

same as those of [AP,Ens],_ but there are additional morphisms in T2. Any pair of

functions f <fo,fl>, fo:G[O] G’[O]:fiG[1] g’[l] which preserve incidence

(rather than origin and terminal) is a morphism of T2.
In general, the category of all algebras (in our case, TI) is a terminal object

in the category Adj(M) of adjoint pairs which induce the monad M, and the Kleisli

construction (in our case T2) is initial in Adj(M). The unique :T2 TI
functor of MacLane [2] (VI.5, Theorem 3) is both full and faithful. Furthermore,

every algebra in T
I is isomorphic to a free algebra in (T2)" hence, the two

categories are equivalent. Thus, T
I

and T
2

are, essentially, equally good models

of T, and they are canonically chosen from all categories inducing the monad M.

The category T
2

is perhaps closer to our original idea of unoriented graphs

but the category T
I has other advantages. Observe that A__-graphs with involution

can be naturally extended to a C_-graph (object in [c_P,Ens]) with C pictured

in Fig. 5.

[o]-.---.

T61 60 0 I 2T 6 T Id

Figure 5. The category C

The category of algebras T
I defined by the monad M is the full subcategory of

[cP,ns] of C__-graphs U satisfying {elU(r)e e} {elU(60)e U(61)e} i.e.,

the set of edges fixed by U(T) is precisely the set of all loops of U. It is

easy to show that T
I

is a reflective subcategory of [C_p,ns]. Construct the

reflector, the left adjoint to the inclusion of T I into [cP,Ens],_ by passing

from a given C_-graph U to a new C-graph UI, a quotient of U, having the same

vertices as U, having the same edges between distinct vertices of U, but having

U(r)e identified with e for each loop e (U).

Note that equivalence of categories is weaker than isomorphism. In particular,

the comparison :T2
T
I is not an isomorphism of categories, i.e., the object

map II:ITml TII is not one-to-one and onto. However, the notion of equiva-

lence appears to be more appropriate than isomorphism for modeling a theory.

Hence, there is only one "useful" model up to equivalence, but two different

approaches to that model.

We may also form a corresponding theory for B-graphs starting from an

orientation-forgetful functor

P’:[Bp Ens] T’
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T
I

The category of algebras for a monad M’ in [BP,Ens], with similar proper-

ties to the monad M in [AP,Ens], may be described by introducing an "involution".
These algebras approximate the "involutional graphs" of Ribenboim [5]. Of course,

if a graph admits more than one involution, each involution defines a different

algebra. (The original definition required only the existence of an involution in

the hope of defining a subcategory of [BP,Ens] but the involution was incorporated

into the algebraic structure in Ribenboim [6].) Curiously, the definition in

Ribenboim [5,6] also requires that

an edge fixed by involution be degenerate. (3.10)

The requirement (3.10) is incorporated naturally into the program developing

the monad M’ by having H(oO):H[O]- H[I] play the role of the inclusion

(G):’ G[I] of (3.3) in the definition of T’H[I]. With this change, T’H(o0) is

the common composition H[O] T’H[I] in the analog of (3.3); and

r’H(i):T’H[l] r’H[0], i 0,i, is given as in (3.4). Again, NH[I]:H[I] T’H[I]
is the analog of z

0
of (3.3), and H[l] :T’T’H[I] T’H[I] is constructed as in

(3.6) and (3.7). (Note that the mapping H’ in general, is not as isomorphism

(cf. Ribenboim [5], p. 159).)

The category T
I of all algebras for the monad M’ in [BP,Ens]_ is the

category [DP,ns], where D is depicted in Figure 6.

61

[o].__.w[ o
60

oOO 0I id oOT 0
T60 61 61 60

Figure 6. The category D

The corresponding Kleisli construction yields a category T
2

which is not

equivalent to TI; rather the free algebras in T
2 are characterized by (3.10).

Thus the original definition of involutorlal graph was designed to select a sub-

category of T
I equivalent to T

2. It is also curious that (3.10) defines a

subcategory of T
I [DJp_ ns] which is both reflective and coreflective

Also, consider the Kan extensions of the functors induced by the inclusions

B-D and A’’C. In particular, the forgetful functor U:[DP,ns] [BP,ns]
and its left adjoint (i.e., left-Kan extension) induce the monad M.

4. CATEGORIES OF GRAPHS ARE CARTESIAN CLOSED

A benefit of viewing a category of graphs as a functor category is that any

functor category [xP,Ens], for small X is cartesian closed (see Freyd [9], p. 8).

The proof of this result is constructive; i.e. an algorithm is provided for com-

puting the "internal-Hom functors. If Y, Z are objects in [Xp,ns], then

Hom(Y,Z) is also an object in [xP,Ens], whose evaluation at object p of X

is defined by:

Hom(Y,Z)(p) [xP,Ens] (X(_,p) x Y,Z). (4.1)
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Thus, for our examples, we give the representable functors

X(_,[i]):X2p ns

for i 0,I and X A, B, C or D. Figure depicts the directed graphs given

by these representable functors.

X A C D

id[0x(,[0])

x(_,[])

B

id [0]

ld [.]
6i__ 6

Od[o]
to td[t]OoO

Figure 7. Representable functors

As an example of the use of formula (4.1), we construct Hom(Y,Z) in

[AP,Ens]. The set of vertices is given by

Hom(Y,Z)[O] [AP,Ens] (A(_,[O]) Y,Z).

But A(_,[O]) is a graph with one vertex and no edges. Since products are computed

"coordinatewise", A(_, [0] y has vertices Y[O] and n_9_o edges. Thus

Hom(Y,Z)[O] ns(Y[O],Z[O]).

The graph A(_,[I]) has one edge joining two vertices. Thus A(,[i]) Y has

the same number of edges as Y, but twice as many vertices. The structural maps

satisfy

6i(<id>,e) (<6i>,ie)
Thus Hom(Y,Z)[I] is identified with the set of all triples of functions

<r:Y[l] Ell], s:Y[O] Z[O], t:Y[O] Z[O]> for which diagrams (4.2) commute

r r
Y[I] Z[I] Y[I] >Z[l]

Y (61) $Z (61) y (60)z[60]st
Y[0] - Z[O] Y[O] Z[O]

The origin, Hom(Y,Z)(61), is given by

(4.2)

the terminal, Hom(Y,Z)(60), by

<r,s,t>-s

<r,s,t>--t.

EXAMPLE. If Y is discrete, i.e. Y[I] , then Hom(Y,Z) has all functions

Y[O] Z[O] as vertices and has a unique edge joining each pair of vertices.

In general, the set of edges joining points s,t Hom(Y,Z)[0] is given by

the set of functlo=s r:Y[l] Z[I] satisfying (4.2). Although this construction

satisfies the adJoint property (4.1), it seems to have little relation to graph

homorphisms.

Next, consider [BP,Ens]. From Figure 7, it is clear that B(,[0]) has one

vertex and one edge; so that
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_B(_,[O]) Y Y.

Thus, Hom(Y ,Z) [O] is the set of B_-graph morphisms:

Hom(Y,Z)[0] [BP,Ens](B(_,[0]) Y,Z)- [BP,Ens] (Y,Z).

Each "edge" of Hom(Y,Z)[I] is represented by a triple

<r:Y[l] Z[I]- s:Y Z; t’Y Z>, where s and t are B_-graph morphisms for

which (4.3) is commutative:

(4.3)

As before,

<r,s,t>-s

gives the origin of Hom(Y,Z) and

<r,s,t>-t

defines the terminal.

If s and t are given, then the set of edges of Hom(Y,Z) with origin s

and terminal t is indexed by those functions r:Y[l] Z[I] satisfying (4.3).

The definition of Horn graph in Ribenboim [5], p. 165, was in this spirit. However,

for no apparent reason, only the restriction of r to Y(0)y[0] entered into

that definition. In Ribenboim [6], p. ii0, a totally different definition was

given. Again, it was an explicit construction, and again there was no claim of

naturality. The idea was that the edges should be indexed by the functions

r:Y[l] Z[I] of our definition. The difficulty is that (4.3) determines only

s[0] and t[0], so that the vertices could only be the equivalence classes of

"graph homomorphlsms restricting to the same functions on vertices". By contrast,

our construction is no more cumbersome than these two attempts, but the underly

general principle is quite simple and guarantees the Horn will have the proper

adjoint relation to cartesian product.

Our internal Hom-functor has the usual properties of Hom in ns in particular,

there is a composition

o:Hom(Y,Z) Hom(W,Y) Hom(W,Z). (4.4)

The realizations of vertices in Hom(Y,Z)[0] as graph homomorphisms and of

Hom(Y,Z)[I] as triples <r,s,t> are compatible with the composition (4.4).

The composition (4.4) induces a natural monoid structure on Hom(W,W). If the

invertible elements of Hom(W,W) are selected, the resulting subgraph is a group
called Aut(W).

The various reflective subcategorles constructed in Section 2 and Section 3 in

the discussion of categories of graphs sould be cartesian closed. In fact, the

following proposition gives an easy computation of Hom in many cases.
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PROPOSITION. Suppose F is a cartesian closed category and I:F’ is a

full reflective inclusion with R:F F’ the reflector (i.e., <R,I> adjolnt

pair). Then R preserves products iff for all A F and B ’, Hom(A,B) is

in F’

PROOF. See Freyd [9; p. 13].

REMARK. The reflective subcategory AI of [P,Ens]_ constructed in Section

2 does not satisfy this property; however A
2 does.
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