
Internat. J. Math. & Math. Sci.
Vol 9 No 2 (1986) 267-272

267

CERTAIN NEAR-RINGS ARE RINGS, II

HOWARD E. BELL

Department of Mathematics
Brock University

St. Catharines, Ontario, Canada L2S 3AI

(Received August 20, 1984)

ABSTRACT. We investigate distributively-generated near-rings R which satisfy one of

the following conditions: (i) for each x,y e R, there exist positive integers m, n

for which xy ymxn; (ii) for each x,y e R, there exists a positive integer n such

that xy (yx) n. Under appropriate additional hypotheses, we prove that R must be a

commutative ring.
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i. INTRODUCTION AND TERMINOLOGY.

Consider the following two properties, either of which is known to imply com-

mutativity for rings R [3, 4]:

(CI) For each x, y e R, there exist positive integers n n(x,y) and m m(x,y)

for which xy ymxn.
(C2) For each x, y R, there exists a positive integer n n(x,y) such that

xy (yx) n.
The main purpose of this note is to show that certain distributively-generated (d-g)

near-rings R with these properties must be rings. The work may be regarded as a con-

tinuation of that in [2], to which paper the reader is referred for basic definitions.

Throughout the paper, the symbols Z and Z+ will denote the integers and the posi-

tive integers respectively. The additive group of the ring R will be denoted by R+,
its derived subgroup by R’, and its center by $(R). The two-sided annihilator of the

subset S of R will be denoted by A(S), and the ideal generated by multiplicative com-

mutators by C(R). Such terms as center, central, commute,and commutator, unless speci-

fically stated to refer to addition, may be assumed to refer to multiplication. The

near-ring R will be called stron$1y-distributively-$enerated (s-d-g) if it contains a

set of distributive elements whose squares generate R+.
The principal results (Theorems 2 and 4) are the following:

(a) Any s-d-g near-ring with which satisfies (C I) is a commutative ring.

(b) Any d-g near-ring R which satisfies (C2) and has R2 R is a commutative ring.
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For the proofs, we shall require the classical theorem of Frhlich [5, p. 93]

which asserts that a d-g near-ring is distributive if and only if R2 is additively

commutative. Moreover, we shall assume the easy result that in any d-g near-ring R,

the derived subgroup R’ of R+ is an ideal.

2. A COMMUTATIVlTY RESULT FOR ARBITRARY d-g (CI)-NEAR-RINGS.
THEOREM I. Let R be any d-g near-ring satisfying (CI). Then both C(R) and R’ are

nil ideals. In particular, if R has no non-trivial nil ideals, then R is a commutative

ring.

The proof follows from two lemmas.

LEMMA I. If R is any d-g near-ring satisfying (CI), then R has each of the

following properties:

(a) If a, b R and ab O, then ba 0 axb for all x g R.

(b) All one-sided annihilators are two-sided and are ideals of R.

(c) Idempotent elements of R are central.

(d) The set N of nilpotent elements of R forms an ideal.

PROOF. Property (a) follows at once from (CI), and (b) follows easily from (a).

To establish (c), let e be an idempotent and x R. Then for some p, q I, xe ePxq

exq and hence exe exq xe; similarly, ex xre for some r i, so that exe xre
ex. Thus ex xe.

To establish (d), it will suffice to show that N forms an additive subgroup [2,

Lemma []; and this may be done by proving that for each a, b N and each positive in-

teger j, (a-b) is a finite sum E+/-pi, where each Pi is a finite product of elements

of R, of which at least belong to T {a,b}. To see that this is enough, note that

if an bm 0 and if n + m I, then each of the summands Pi will be zero by (a).

We proceed by induction on j, the case j being trivial. Suppose the result

holds for and write

(a-b) j+l (a-b) (a-b) (a-b)(E+/- pi E+/- (a-b)Pi,
where each Pi is a product having at least factors from T; and for each p Pi write

(a-b)p pk(a-b)m =(pka-pkb)(a-b)m-1. Ifm= i, we are finished; otherwise, express (a-b)
m-I

in the form +/-d where the ds are distributive. Since (a-b)p E+/-(pkads pkbds)s
and since each of the products pkads and pkbdshas at least + factors from T, the

inductive step, and hence the proof of (d), is complete.

In view of (d), the proof of Theorem will be complete once we establish the

following lemma.

LEMMA 2. Let R be a d-g near-ring satisfying (C I) and having no non-zero nilpotent

elements. Then R is a commutative ring.

PROOF. By Lemma 3 of [I], R is a subdirect product of homomorphic images having

no zero divisors" thus we assume that R has no zero divisors. Note that if R is multi-

plicatively commutative, hence distributive, then R2 is additively commutative; there-

fore, for all a, b g R

0 a2 + ab a 2 ab a(a+b-a-b) a + b a b,

so that R+ is abel+/-an. Observe also that if e is any non-zero idempotent, the fact that

e(x ex) (x xe)e 0 for all x e R shows that e must be a multiplicative identity

element.
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Assume, then, that R+ is not abelian; hence R is not commutative. Let a and b be

elements of R which do not commute; and let m, n, s, t be positive integers, at least

one of which is greater than I, for which ab bman anSbmr. If ns I, then a(b-bmt)= O,

and hence bmt-I is a non-zero idempotent. If ns > I, then a ans-labmt (abmt) v

(ans-l)w for appropriate positive integers v, w; and there exists an element c, which is

either a or an element of the form ya, such that ab abc. If follows that c is idem-

potent, and incidentally that c must have been of the form ya.

So far we have shown that any non-central element a of R either has a left inverse

or has the property that for any b not commuting with a, bk for some positive in-

teger k. Suppose the latter holds, let c be an element not commuting with a, and use

(CI) to obtain c for which ac ca. It is easily verified that ca does not commute

with a, so (ca) k for some integer k" and in this case also, a has a left inverse.

Now suppose that z is any non-zero central element, and that a is non-central.

Then az za is also non-central, so az has a left inverse, and therefore z has a left

inverse. Thus, R is a division near-ring; and since division near-rings have commutative

addition, we have contradicted our initial assumption concerning R. Hence, R+ is abelian

and R is a ring. Multiplicative commutativity follows from the result of [3].

3. COMMUTATIVITY OF s-d-g (CI)-NEAR-RINGS WITH I.

The major theorem of this section is the following:

THEOREM 2. If R is a strongly-distributively-generated near-ring with which has

property (CI), then R must be a commutative ring.

Of course, it suffices to prove the theorem under the additional assumption that

R is subdirectly irreducible (s-i). The lemmas which follow all treat the subdirectly

irreducible case.

LEMMA 3. Let R be a s-i d-g near-ring with I, in which all idempotents are central.

Then is the only non-zero idempotent.

PROOF. If e is any non-zero idempotent, the centrality of e enables us to show that

l-e is idempotent as well. Clearly Re = A(l-e); moreover, if x e A(l-e), the repre-

sentation x x(l-e) + xe shows that x xe e Re. Thus, Re A(l-e), and similarly

R(l-e) A(e). But it is easy to show that A(x) is an ideal for any central x, so Re

and R(l-e) are ideals, which obviously have trivial intersection. The subdirect irre-

ducibility of R therefore forces R(l-e) to be trivial, so that e I.

LEMMA 4. Let R be a s-i d-g (Cl)-near-ring with I. Then

(a) if x R, either x commutes with -I or there exists k Z+ such that xk I;

(b) for each x R, x2(-l) (-l)x2.
PROOF. (a) Suppose x(-l) # (-l)x, and chose k, j, m, n e Z+ such that

x(-1) (-l)kx xJn(-l) km. (3.I)

Assume first that jn > I. If km is odd, we have x xjn, which implies that xjn-I is a

non-zero idempotent, necessarily equal to If km is even, (3 I) yields -x x
jn hence

x -x
jn

x
jn-I xJn-IxJn x

2 (jn-l)
x(-l) and I.

On the other hand, if jn I, then (3.1) yields -x x(-l) x. Choose q, s e Z+
with (-l)x xS(-l) q. Since x(-l) x, this implies (-l)x xs with s I; and we con-

clude that x (-l)xs ((-l)x)xs-I x2s-I so that x2(s-l)
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(b) It follows from part (a) that zero divisors commute with -I, hence we may

assume x is not a zero divisor. Now if x(-1) xs for some s Z+, x commutes with

x(-l) and consequently x(-l) (-l)x; therefore, we may assume that x(-l) (-l)xs for

some s Z+. Thus, (-l)x(-l) xS; and commuting x with (-l)x(-l) gives x(-l)x(-l)
2

(-l)x(-l)x or (-x) (-l) (-x) (x). In this equality wemayreplace x by -x, since x commutes

x
2 2 2 2

with-I if and only if-xdoes" therefore (-l)x(-x) and (-l)x =x(-x) =-x x (-I).

LEMMA 5. Let R be a s-i d-g (Cl)-near-ring with I, and let D be the set of zero

divisors. Then

(a) D is an ideal and D+ is abelian;

(b) R’ C(R) A(D);

(c) if d e D and x does not commute with d, then there exists s Z+ such that

xd dxs.
PROOF. (a) Let S be the heart of R that is, the intersection of all non-zero

ideals; to show D is an ideal, we show that D A(S). Clearly A(S) D; conversely, if

d D, A(d) is a non-trivial ideal, hence S c A(d) and d g A(S). Therefore D A(S).

Note that by Lemma 4(a), all elements of D commute with -I; thus if d I, d 2
g D, we have

-d d 2 (-l)(d + d2) (d + d2)(-l) -d2 d I, so D+ is abelian.

.(b) If x,y g R and d g D, then dx and dy are in D; hence dx + dy dx dy 0

d(x + y x y), and R’ c A(D). By Frhlich’s theorem and the commutativity of rings

satisfying (CI), a d-g (Cl)-near-ring with is additively commutative if and only if it

is multiplicatively commutative; and applying this observation to R/C(R) and R/R’ gives

C(R) R’.

(c) By part (b) we have d(dy -yd) 0 that is, d2y dyd for all y e R;

moreover, since yd dy for some Yl R, we get yd2 dYld d2yl dyd as well. Thus,

for all d e D, all y e R and all integers i ) 2, we have diy ydi. Suppose that d e D

and x R are such that xd dmxs for some m I, and choose n, q such that dx xndq.

Then xd dmxs dm-l(dx)xS-I dm-lxndqxs-1 dm+q-lx n+s-l, and dx xndq xn-l(xd)dq-I
xn-ldmxsdq-I xn+S-ldm+q-l. Since m + q I, we thus have xd dx, so our proof

is finished.

LEMMA 6. Let R be s-i and d-g with I, and suppose R satisfies (CI). Then 2R’ O.

PROOF. By Theorem I, R’C D. By Lemma 4(a), all elements of R’ commute with -I;

in particular, for all x, y R, x + y x y + y x y + x x + y x x y + x

commutes with -I. Taking for x and y a pair r, s of distributive elements and simplify-

ing, we get the result that 2(r + s r s) O, from which it follows that 2R’ O.

LEMMA 7. For R a s-i d-g (Cl)-near-ring with I, A(2) _- (R). In particular, R’
c (R) and therefore, 2R c (R).

PROOF. If 2 D, R+ is abelian by Lemma 6; hence assume 2 e D. Let x A(2);

and by Lemma 5(c), choose k g Z+ such that (I + x)2 2(1 + x) k 2. Thus,

+ x + + x + I, which yields x + + x. If bk for some k Z+, we now

get b + x b x b(l + bk-lx bk-lx) 0. By Lemma 4(a), the only elements b

yet to be considered commute with -I; and since x commutes additively with b if and only

if it commutes additively with b + x, we may assume b + x commutes with -I also. Since

x D, x commutes with -I, and it follows at once that b + x x + b. Thus, A(2) c (R).
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That R’ c (R) is now clear from Lemma 6. Noting that 2R R2, we complete the

proof of the lemma by showing that x + x+y y + x + x for all x y g R. But since

y x -x + y+c for some c R’ and since R’ (R), we have x + x + y x x y

x + y + c x y x + y x y + c y + c y + c c + c 0, the last equality

following from Lemma 6.

PROOF OF THEOREM 2. We need only show that R+ is abelian, since the theorem then

follows from Frhlich’s theorem and the theorem of [3]. Let r, s be arbitrary distri-

butive elements of R. By Lemma 4(b), (r + s) 2 commutes with -I, which means that
2 2

-r 2 sr -rs s 2 -s rs sr r (3.2)

If we write rs c + sr, where c rs sr e (R), and recall that 2sr e (R), we can write

(3.2) as
2 2 2 2

-r s 2sr c -s r 2sr c.

It follows at once that r 2 + s 2 s 2 + r 2, and the fact that R is strongly-distributively-

generated implies that R+ is abelian.

I conjecture that Theorem 2 remains true if R is merely assumed to be d-g rather

than s-d-g, but a proof eludes me. However, all the machinery is in place to establish

two interesting cases of the conjecture.

THEOREM 3. Let R be a d-g near-ring with I, and suppose R satisfies one of the

following specialized versions of (CI):

(C 3) For each x, y R, there exists an integer n n(x, y) > for which xy yxn.
(C4) For each x, y R, either xy yx or there exist m, n Z+ with m 2,

such that xy ymxn.

Then R is a commutative ring.

PROOF. Again we may assume that R is subdirectly irreducible and (by Lemma 6)

that 2 D. Arguments similar to that of Lemma 5(c) show that zero divisors are central,

and commuting 2 with r + s for arbitrary distributive r, s now shows R+ is abelian.

4. COMMUTATIVITY OF d-g (C2)-NEAR-RINGS.

THEOREM 4. If R is any d-g near-ring satisfying (C2), then R is commutative.

Moreover, if R2 R, then R is a ring.

PROOF. Note first that idempotents are central, for if e is idempotent and x e R,

and if we choose n, m e Z+ such that ex (xe) n and xe (ex) m, right-multiplying the

first of these equalities by e and left-multiplying the second by e yields ex exe xe.

Now if R is any d-g (C2)-near-ring and a, b e R are such that ab # ha, there exist

m, n such that

ab (ba) n and ba (ab)m; (4.1)

it follows that

ab (ab) nm and ba (ba) rim, (4.2)

and hence that (ab) nm-1 and (ba) nm-1 are both idempotent. In fact, if (ab) t e is

idempotent, (4.1) shows that (ba) t (ab) mt e, hence (ab) nm-I and (ba) nm-I are equal
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to the same idempotent, say e

We treat first the case of R with i, and as usual consider the subdirectly

irreducible case. If we suppose R contains a pair of non-commuting elements a, b and

choose n, m as above, then Lemma 3 guarantees that (ab) nm-I (b) nm-I I, so that a

and b are both invertible. We choose q e Z+ such that (b-la)b (b(b-la)) q, which

reduces at once to ab baq. Thus, R is a commutative ring by Theorem 3.

We now drop the hypothesis that R has i. Again suppose ab # ba and let n, m and

e be as above. The near-ring elR is a d-g (C2)-near-ring having e as multiplicative

identity, hence is commutative. Therefore elaelb-elbela 0 el(ab ba); and since e

(ab) nm-I (ha) nm-l, an appeal to (4.2) yields the contradiction ab ba. Hence R

must be commutative; and if R2 R, Frhlich’s theorem shows that R is a ring.
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