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ABSTRACT. This paper establishes properties of a convolution type integral transform

whose kernel is a Macdonald type Bessel function of zero order. An inversion formula

is developed and the transform is applied to obtain the solution of some related in-

tegral equations.
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I. THE TRANSFORM AND THE FORMULA OF INVERSION.

This paper investigates properties of the integral transform defined by the

equation

F(x) f-oo f(t) Ko(Ix-t!)dt (1.1)

wher, > and Ko denotes the Macdonald type Bessel function of zero order. A

number of results concerning the above transform are obtained, including a formula

of inversion and a Parseval type equation, and the transform is applied to obtain the

solution of some associated integral equations one of which is of the Wiener-Hopf

type.

A formula of inversion for the transform (1.1) may be derived with the aid of

the equation
2

Ko(!ix-tl)Ko(IX-yl)dx 2- e (1.2)

This result may be established by applying a Parseval type theorem in the theory of

Fourier integrals. This is carried out in the final section of this paper which con-

tains a short list of transforms toether with an outline of some methods that can be

adopted for deriving them

The following theorem will be proved:

-xlTHEOREM. Let f(x) be continuous and suppose that f(x)e L(-oo, oo) then the in-

tegral transform defined by equation (1.1) possesses the inverse

f(x) _I (D2_ i)! F(t)Ko(,X-t )dr (I.3)

where D d/dx.
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To establish this result we consider the expression

I f(t)dt I_oo Ko(,X-t,)Ko(,X-y,)dx (1.4)

We first verify that this repeated integral is absolutely converRent. Since the

Bessel functions appearing in (1.4) are positive the modulus of the expression (1.4)

cannot exceed that of the integral

If(t)l dt Ko(lX-tl)Ko(lX-yl)dx - If(t) le dt (1.5)

after substituting the formula (1.2). The integral on the right hand side of (1.5)

is equal to the expression

2’ie-Y ,f(t), e dt + I; ,f(t). dt,
Y t

e
y e-t

2

This expression is finite since f(x)e-lXleL(-,). The order of integration appear-

ng in (1.4) may now be reversed. This yields the equation

I f(t)dt I K(’x-t’)K(’x-y’)dx Ioo K(’x-y’)dx 2 f(t)K (,x-t,)dt

so that, by (1.1) and (1.2),

2
f(t) e dt F(x)K (x-y)dx (1.6)

O

Now if is a positive constant and since f(x) is continuous it can be sho that

[622X f(y) 2- f(t)e dt (1.7)

To obtain this result the domain of integration is decomposed into the parts (-,y)

and (y,0 and the differentiation carried out. setting in (1.7) and appiy-

ing this resuit to equation (1.6) we obtain the desired formuia (1.3), after rede-

fining the variabIes.

For the remainder of this section it iII be supposed that the function f(x)

gether ith its derivatives of the first and second order are continuous and of modu-

lus less han C eclxl here C, c are constants and -1 c 1, C O. It iI1 then

foilow that the transform F(x) is O(eclx) as x is result y be deduced

from (I.1) by inserting the stated bound on f(x) together with the bound, obtained

in section 5 of the paper, that

(x) (/x)e-x

uhenever x O. The substitution of these bounds into (1.1) yields the inequaIity

t] (.8)

where C’ is a constant. On decomposing the domain of integration into the seEments
(-,x) and (x,) we find that
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l(x)lo _-< C’ e
cx e-Ct-It

Itl1/2dt + C’ e
-cx eCt-ltl .dt_

Since -I c the integrals appearing in the preceding inequality are convergent

and the first also exists as Ixl +, so that F(x) O(eclxl) as stated. It is clear

that expclx-t =< M exp(!c’t I) in any bounded domain of values of x, where M is a con-

stant, so that, by (1.8), the integral defining the transform F(x) is uniformly con-

vergent in any such domain.

Since it is assumed that the derivatives f’(x) and f"(x) satisfy the same types

of bounds as f(x) itself, then the integrals defining their transforms will also con-

verge uniformly so that differentiation through the integral sign is permissable.

Therefore we obtain the equations

F’(x) (w f’(t)K (Ix-tl)dt (I .9)
o

F"(x) [oo f"(t)K (Ix-tl)dt (I.I0)
o

The transforms F(x), F’(x), F"(x) are each 0(eclXI) as Ixl-=o so that the integrals

Io F(t)K(’x-t’)dto / F"(t)K(,x-t,)dto

converge uniformly in any bounded domain of values of x. Therefore

dx
2 F(t)Ko (Ix-t )dr F"(t)Ko (Ix-t )dr

To verify results like this and like (1.9) and (1.10), the variable of integration is

temporariIy repIaced by (x-t). After the differentiation ith respect to x has been

carried out the originaI variabIe of integration can be restored. erefore for a

function f(x) which is such that f, f’, f" are continuous and are O(eclx) as x +,

where-1 c 1, the inversion formuIa (1.3) can be stated as the equation

2. A LATED INTEL TNSFOPI.

In this section the inversion formuIa aIready derived for the transform (1.1)

wiI1 be appIied to obtain a formuIa of inversion for the reiated transfo defined by

the equation

f(t)K (x-tl)dtFl(X) (.1)
0 o

in hich Fl(X) is supposed defined for x 0 onIy. If (2.1) is regarded as an inte-

grai equation, it is of the kind to which the iener-Hopf procedure, NobIe [1], couId

be applied but the method proposed here is more direct.

In order to appiy the formuia (1.3) it is necessary to obtain the vaIues of the

integraI occurring on the right hand side of equation (2.1) for negative vaIues of x.
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These values can be expressed in terms of the values of the same integral for posi-

tive values of x, that is, in terms of the given function Fl(X). This may be carried

out with the aid of the transform of the function t- e-t(t+x)-IH(t), where H(t) de-

notes the Heaviside unit function, which is calculated in section 5 of the paper,

where it appears as equation (5.7). On multiplying equation (5.7) by f(t) and inte-

grating it follows that

f(t)K (x+t)dt e-Xx f (t)dt
10 o

y (x+y)

e -y= (y)dy
x1/2e-X --7 (2.2)--y (x+y)

after changing the order of integration and substituting (2.1). This result applies

for x 0. It follows, if x is negative, that

[ f(t)K (Ix tl)dt e+x f e-YFI(Y)dY
x (2.3)

J0 o y1/2 (y-x)
The ,equations (2.1) and (2.3), when taken together, form an equation of the same type

as (1.1), provided we define f(t) 0 therein whenever t < O. On applying the inver-

sion formula (1.3) to (2.1) and (2.3) we find the solution of equation (2.1). This

procedure yields the formula

f(x) --1(D2- 1)
J0
I F (t)Ko(IX-tl)dt,,

I t 0 e-YFI (y)dy
(D2_ I) Itl e K (Ix-tl)dt (2.4)

-2- o y (y-t)

It can be verified, after performing some calculation, that the above solution agrees

with that obtained by Noble [2] using the Wiener-Hopf technique.

3. SOLUTION OF AN INTEGRAL EQUATION.

The transform defined by equation (I.I) was introduced to study certain integral

equations whose kernels involved the Bessel function K (Ix-tl). An equation of this
o

type is that given by the equation

f(t)cosh(x-t)K (Ix-tl)dt (3.1)gl (x)
o

where 0 and f(t)e-(l-E)ItlL(-,}. This equation is of the kind to which

the method of Fourier integrals can be applied, however since the Fourier transform

of the kernel is not of a simple form the following alternative method, which is

based on the identity (1.2) is suggested. We consider first the integral

I_ cosht sinh(x-t)mo(itl)Ko(IX-tl)dt (3.2)

On replacing the variable of integration by (x-t) we find the equation

I_ cosh(x-t)sinhtKo(Itl)Ko(]X-tl)dt (3.3)
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Upon taking the sum of (3.2) and (3.3) and simplifying the integrand we find that

21 sinh%x Ko(Itl)Ko(IX-tl)dt -- e sinhx (3.4)

by virtue of (1.2). Therefore

coshX(x-t)sinh%tKo(Itl)Ko(IX-tl)dt - e sinhx

After replacing t by (t-a) and setting b x+a we find the equation

-la-blcosh)(b-t)sinh)t(t-a)Ko (1 t-al)Ko(lt-bl)dt %- e sinhX(b-a) (3.6)

The equation (3.1) is now multiplied by sinh%(x-a)K (Ix-a I) and integrated with res-
o

pect to x. On changing the order of integration and using (3.6) we find that

g1(x)sinh(x-a)K (Ix-al)dxo - f(t)e sinh(t-a)dt__
-(l-h) It-al e- sgn(t-a)dt8

f(t) (i+) t-a
(3.7)

Now it can be verified if f(t) is continuous that

D f(t)e dt f(t)e sgn(t-x)dt

where D d/dx. If this result be combined with that of equation (1.7) we obtain the

formula

f’ (x) -(D
2

X 2) f(t)e sgn(t-x)dt (3.9)

When this result is applied in succession to equation (3.7) with replaced in turn

by (I-h) and (I+%) we find, after redefining the variables, that

f’(x) I-[D2- (I-)2][D2- (I+) 2] I_ gl (t)sinh(t-x)Ko(It-xl)dt (3.10)

This equation determines the function f(x) up to an additive constant which could be

fixed by imposing the condition, obtained from (3.1) with x set equal to zero, that

gl(O) I_-= f(t)cosht K
o

The formula (3.6) can also be used to obtain the inversion formula for the equa-

tion

g2(x) I_ f(t)sinhX(x-t)Ko(IX-tl)dt (3.11)

The solution of this equation is given by the formula

f’(x) 1--[D2- (l-)2][D2- (i+4) 2

)2 o

If we replace by i in the above formulas we obtain the solutions of the equa-

tions (3.1), (3.11) in which the hyperbolic functions are replaced by trigonometric

functions. Thus if
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g3(x) I_oo f(t)cos(x-t)Ko(IX-tl)dt

then it is found from (3.10) after replacing by i and regrouping the factors in the

differential operator that

f’ (x) -- 2 + (D+I) 2+ (D-I) B3(t)sinX(t-x)K (It-xl)dt

4. CONVOLUTION INTEGRALS.

S[:ice the integral (I.i) is itself of the convolution type it is possible to

formulate convolution type theorems connecting the transforms of pairs of functions.

Let g(x) be continuous and O(eIxl) as Ixl-= where -I < then its transform G(x)

exists and is O(eIxl) as Ixl /. Therefore, if c + < O, we may form the integral

I [F"(x)-F(x)]G(x-y)dx [-o [F"(x)-F(x)]dx [i g(t)K(lx-y-t’)dt

I_=o g(t)f(y+t)dt (4.1)

after reversing the order of integration and appealing to the formula (1.11). Simi-

larly we find the equation

/_ [F"(x)-F(x)]G(y-x)dx I_ g(t)f(y-t)dt (4.2)

Alternatively we may consider the convolution integral

[_ F(x)g(x-y)dx [oo g(x-y)dx [== f(t)Ko(,X-tl)dt

]_ f(t)G(t-y)dt (4.3)

The above formulas may be used to express the transforms of products like tf(t),

tf’(t), tf"(t) in terms of the transform F(x). Thus if we apply formula (4.3) to the

function g(x) --e-lXlsgnx, which by the formula (5.5), possesses the transform given

by G(x) 2xK (Ixl) we obtain the equation
o

fl F(x)e-IX-Y’sgn(x-y)dx 2 f= f(t)(t-y)Ko(,t-yl)dt

=-2yF(y) + 2 I_= tf(t)Ko(It-yl)dt

after recalling the definition (I.I). It follows that the transform of the product

tf(t) is given by the equation

tf(t)Ko(lY-tl)dt--yF(y) + 2
F(x) e sgn(x-y)dx

If this relation be applied to the function f’(t) we find, since F’(y) is the trans-

form of f’(t), that
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tf’(t)Ko(lY-tl)dt yF’(y) + F’(x)e sgn(xly)dx

yF’(y) F(y) + g F(y-x)e dx

after an integration by parts.

Similariy we find on replacing f(t) by f’(t) in (4.5) that

I_ tf"(t)Ko(’Y-tl)dt YF"(Y) F’(Y) I_ F(y-x)e sgnx dx

(4.5)

(4.6)

after an integration by parts.

On subtracting (4.6), (4.4) it follows that

t[f"(t)-f(t)]K yF"(y)-yF(y)-F’(y)(ly-tl)dt
o

(4.7)

Since F’(y) is the transform of f’(t), the equation (4.7) is equivalent to the equa-

tion

[tf"(t) + f’(t) tf(t)]K (ly-tl)dt yF"(y) yF(y) (4.8)
o

5. DERIVATION OF SOME PARTICULAR TRANSFORMS.

In this section some methods are described by means of which the transforms of

some simple functions may be calculated. The first such method is to appeal to the

Parseval formula in the theory of Fourier integrals which states, Titchmarsh [3], that

f(t)g(-t)dt Fo(S)Go(s)ds (5.1)

where F G denote the Fourier transforms of f g. We first set (t) K soo’ o o
that

G (s) e (lx+tl)dt e
o o o

-isx
e

(l+s2)

by Watson [4], p. 388. On inserting this choice of g, G in (5.1) we find the equation
o

I_ f(t)K (,x-t,)dt I_ e-iSXFo(S)ds
o (l+s21

(5.2)

where

Fo(S) I_ e
ist

f (t)dt

To obtain the basic formula (1.2) we set f(t) K (Itl) in (5.2).
o

F (s) (l+s2) -1/2
we find that

o
e dsK(Itl)K(Ix-tl)dt

+ s
2

Since
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The integral on the right hand side of this equation is elementary and is equal to

e-Ixl therefore

Ko(Itl)Ko(IX-tl)dt 2 e (5.3)

The equation (1.2) follows from the preceding equation after making a simple change of

variable and redefining the constants.

Next we consider the function f(t) e Itl whose Fourier transform is the function

F (s) 2(i+s2) -I. The substitution of this pair into (5.2) yields the equation
O

e ItlK (Ix-tl)dt 21xl Kl(IX I) (5 4)
(l+s)

where we have used the formula, Watson [4], p. 172,

I UF I cs(sx)as)u
(l+s

which applies whenever Re(u)
2"

Further transforms may be constructed by using the fact that F’(x) is the trans-

form of f’(t). Thus from the pair appearing in (5.4) we obtain by differentiation the

transform

e-ltlK (Ix-tl)sgntdt 2xK (Ix[) (5 5)
O O

after using the formula (d/dx)(xK1(x)) -XKo(X).
The transform of the product tK (It I) is the integraI

O

J I_ tKo(Itl)Ko(IX-tl)dt
On replacing t by (x-t) we find that

J f_ (x-t)Ko

It follows after adding the two expressions for J that

J Ko(Itl)Ko(IX-tl)dt e

by (5 3) Therefore the transform of tK (Itl) is 1/4.2 -Ixlxe
o

Another method of calcuIating the transforms is to make use of the formula,

Lowndes [51,

x+t f e
-2u

duK (x-t I) e (5 6)

O

here u is the greater of (x,t).
o

e ilIustrate the use of the formuIa (5.6) to caIcuiate the transform of the

function f(t) t e N(t). e resuiting integrais are eIementary and we obtain the

formula - e-tK (Ix-tl)dt (/2) e
O
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valid for x 0.
t

The transform of the function f(t) t e- (t+z)- required in section 2 can

also be calculated from the formula (5.6). On appealing to the result
v

dt

___ ----10
we find that

-t
K[ e o([X-t[)dt

J0 t (t+z)

x

f -2u1/2e e du

(u-x) (u+z-)
z

K (x+z)
/- o

for x and z positive. If we use y as the variable of integration and redefine the

constants we obtain the equation used in section 2 in the form

e-YKo(It-y[)dy
x e-X (5.7)Ko(X+t)

y" (x+y)

The transforms of exponential, hyperbolic and trigonometric functions can be de-

duced from the Laplace transform result that

21-1/2cosh)‘t K (t)dt 1-)‘

o o 5

This formula applies for -I )‘ and is given in Oberhettinger [6], p. 151. It

follows that

e-)‘tK ([tl)dt (I-)‘2) -1/2
o

so that, after replacing t by x-t, we obtain the formula

e-)‘tK ([x-tl)dt e
o (1_),2)1/2

It follows from this result that

cosh)‘tK ([x-t[)dto

sinh)‘t K ([x-t[)dto

n cosh)‘x

s inh)‘x

(1-2)
Similarly from the Fourier transform formula

istKe (Itl)dt
o (l+s2)1/2

we deduce that

cos)‘tK ([x-t[)dt cos)‘x

o (i+)‘211/2

sin)‘t K (lx-t[)dto
s in)‘x
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It remains to obtain the bound K (x) (/2x) e
-x

utilised in section 1. This
O

bound follows from the fact that K (x) is, for fixed positive x and u O, an increas-
U

ing function of u Therefore K (x) K(x) (/2x) e
-x

after inserting the ex-
O

pression for K stated in Nagnus et al [7], p. 73.
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