THE SEMIGROUP OF NONEMPTY FINITE SUBSETS OF INTEGERS

REUBEN SPAKE

Department of Mathematics, University of California Davis, California 95616 U.S.A.

(Received December 16, 1985 and in revised form February 13, 1986)

ABSTRACT. Let Z be the additive group of integers and \mathbf{S} the semigroup consisting of all nonempty finite subsets of Z with respect to the operation defined by

$$A + B = \{a+b : a \in A, b \in B\}, A, B \in S$$
.

For $X \in \mathbf{g}$, define \mathbf{A}_X to be the basis of $\langle X-\min(X) \rangle$ and \mathbf{B}_X the basis of $\langle \max(X)-X \rangle$. In the greatest semilattice decomposition of \mathbf{g} , let $\mathcal{Q}(X)$ denote the archimedean component containing X and define $\mathcal{Q}_0(X) = \{Y \in \mathcal{Q}(X) : \min(Y) = 0\}$. In this paper we examine the structure of \mathbf{g} and determine its greatest semilattice decomposition. In particular, we show that for X, $Y \in \mathbf{g}$, $\mathcal{Q}(X) = \mathcal{Q}(Y)$ if and only if $\mathbf{A}_X = \mathbf{A}_Y$ and $\mathbf{B}_X = \mathbf{B}_Y$. Furthermore, if $X \in \mathbf{g}$ is a non-singleton, then the idempotent-free $\mathcal{Q}(X)$ is isomorphic to the direct product of the (idempotent-free) power joined subsemigroup $\mathcal{Q}_0(X)$ and the group Z.

KEY WORDS AND PHRASES. Greatest semilattice decomposition, archimedean component. 1980 AMS SUBJECT CLASSIFICATION CODE. 20M14, 10L10, 05A99.

1. INTRODUCTION.

Let Z be the group of integers and ${\bf 8}$ the semigroup consisting of all nonempty finite subsets of Z with respect to the operation defined by

 $A + B = \{a+b : a \in A, b \in B\}, A, B \in S$.

The semigroup \mathbf{S} is clearly commutative and is a subsemigroup of the power semigroup of the group of integers, (the semigroup of all nonempty subsets of Z). In this paper we will determine the greatest semilattice decomposition of \mathbf{S} and describe the structure of the archimedean components in this decomposition. As we will soon see, there is a surprisingly simple necessary and sufficient condition for two elements to be in the same component.

For $X = \{x_1, \dots, x_n\} \in \mathbf{g}$, where $x_1 < \dots < x_n$, define min(X) = x_1 ,

 $\max(X) = x_n$, and $\gcd(X)$ to be the greatest (non-negative) common divisor of the integers x_1, \ldots, x_n , (where $\gcd(0) = 0, \gcd(X \cup \{0\}) = \gcd(X)$). A singleton element of **g** will be identified with the integer it contains. Let Z_+ be the set of positive integers and define $[a,b] = \{x \in Z : a \leq x \leq b\}$ if $a, b \in Z$ with $a \leq b$. For $U \in \mathbf{g}$, let $\langle U \rangle$ denote the semigroup generated by the set U, and for $m \in Z_+$ define mU, m^*U , and Z_m as follows:

$$mU = U + \dots + U$$
, $m*U = \{mu : u \in U\}$, and $Z_m = Z/\langle -m, m \rangle$.

It will also be convenient to define $-U = \{-u : u \in U\}$.

In the greatest semilattice decomposition of \mathbf{g} , let $\mathfrak{Q}(A)$ denote the archimedean component containing A. As usual, define the partial order \leq on the (lower) semilattice as: $\mathfrak{Q}(A) \leq \mathfrak{Q}(B)$ if and only if nA = B + C for some $C \in \mathbf{g}$ and $n \in \mathbb{Z}_+$ (equivalently: $X + Y \in \mathfrak{Q}(A)$ for some (all) $X \in \mathfrak{Q}(A)$ and $Y \in \mathfrak{Q}(B)$). We refer the reader to Clifford and Preston [2] and Petrich [3] for more on the greatest semilattice decomposition of a commutative semigroup. Observe that since 0 is the only idempotent and indeed the identity, $\mathfrak{Q}(A)$ is idempotent-free if A is a non-singleton, ($\mathfrak{Q}(0)$ consists of all the singletons in \mathbf{g} and in fact $\mathfrak{Q}(0) \cong \mathbb{Z}$). Furthermore, if follows that the subgroups of \mathbf{g} are of the form {{gx} : $x \in \mathbb{Z}$ }, where \mathbf{g} is a non-negative integer. Finally, note that \mathbf{s} is clearly countable, but this of course does not imply that there are also infinitely many archimedean components. However, as will soon be shown, there are in fact infinitely many components.

2. GREATEST SEMILATTICE DECOMPOSITION.

For X \in **g**, define A_{χ} to be the basis of $\langle X-\min(X) \rangle$ and B_{χ} the basis of $\langle \max(X)-X \rangle$. Note that $A_{\chi} = B_{\chi} = \{0\}$ if and only if X is a singleton. Also observe that A_{χ} is a finite set with at most a + 1 elements, where a is the least positive integer in A_{χ} (if $A_{\chi} \neq \{0\}$), and similarly for B_{χ} . Since $gcd(X-\min(X)) = gcd(X-\max(X))$, it follows that in general $gcd(A_{\chi}) = gcd(B_{\chi})$.

Given sets A and B, it is clearly not always possible to find an X such that $A_{\chi} = A$ and $B_{\chi} = B$. However, we do have a positive result. First we need the following lemma.

	LEMMA 2.1	•	Let	S	be	a	positi	ve	inte	ger	se	migroup	with	respect	to	addition.
The	following	are	equi	lval	.ent	•										
	(i)	S	cont	ain	s	m	such	tha	t x	> 1	m	implies	хε	s.		

- (ii) gcd(S) = 1.
- (iii) If & is the least element of S, then S contains

 $c_0, \dots, c_{l-1} \quad \underline{\text{such that}} \quad c_i \equiv i \pmod{l} \quad \underline{\text{for}} \quad i \in [0, l-1].$

PROOF. Clearly (i) implies (ii), since if m, m+1 ϵ S, then gcd(S) = 1. Next suppose gcd(S) = 1 and let $B = \{b_1, \dots, b_n\}$ be a basis with $b_1 < \dots < b_n$. If $b_1 = 1$, then evidently (iii) follows. Thus assume $b_1 > 1$. This implies n > 1and hence there exist x_1, \dots, x_n such that $\sum_{i=1}^n x_i b_i = 1$. Choose $y_i > 0$ such that $y_i \equiv x_i \pmod{b_1}$ for $i \in [1, n]$. Let $c_0 = b_1$ and for $i \in [1, b_1 - 1]$ define $c_i = i \sum_{j=1}^n y_j b_j$. Note that $c_i \in S$. Furthermore, $c_i \equiv i \pmod{b_1}$; since, $c_0 \equiv 0$ (mod b_1) and for $i \in [1, b_1 - 1]$:

$$c_{i} = i(\sum_{j=1}^{n} x_{j} b_{j} + \sum_{j=1}^{n} (y_{j} - x_{j})b_{j}) \equiv i \pmod{b_{1}}.$$

Therefore (ii) implies (iii). Finally, suppose (iii) holds. Let $m = \max \{c_0, \dots, c_{l-1}\}$ and $x \ge m$. There exists an i $\varepsilon [0, l-1]$ such that $x \equiv i \pmod{l}$. Thus $x = c_i + kl$ for some k εZ . However, since $x \ge c_i$ this implies $k \ge 0$ and hence $x \in S$. This completes the proof.

PROPOSITION 2.2. Let $A = \{a_1, \dots, a_n\}$ and $B = \{b_1, \dots, b_m\}$ be elements of **g** satisfying (i) $a_1 = b_1 = 0, a_1 < \dots < a_n, b_1 < \dots < b_m,$ (ii) gcd(A) = gcd(B),(iii) $a_i \notin \langle a_1, \dots, a_{i-1} \rangle, b_j \notin \langle b_1, \dots, b_{j-1} \rangle$ for $i \in [2,n], j \in [2,m].$ Then there exists an r such that $X = A \cup (r-B)$ is an element of **g** with

Then there exists an r such that $X = A \cup (r-B)$ is an element of **8** with $A_{\chi} = A$ and $B_{\chi} = B$.

PROOF. For the case where gcd(A) = 0, $X = \{r\}$ is an element with $A_X = A$ and $B_X = B$, since necessarily $A = B = \{0\}$. Thus we assume gcd(A) > 0. Let A_1 and B_1 be such that $A = g^*A_1$ and $B = g^*B_1$, where g = gcd(A). Since $gcd(A_1) = gcd(B_1) = 1$, there exists a positive integer q such that $s \in \langle A_1 \rangle$ and $s \in \langle B_1 \rangle$ for all $s \ge q$. Let $p = q + \max\{\max(A_1), \max(B_1)\}$. Then p-a $\epsilon \langle B_1 \rangle$ and p-b $\epsilon \langle A_1 \rangle$ for all $a \in A_1$, $b \in B_1$. Hence, if r = gp, then r-a $\epsilon \langle B \rangle$ and r-b $\epsilon \langle A \rangle$ for all $a \in A$, $b \in B$. Since $r > \max\{a_n, b_m\}$ it follows that $X = A u(r-B) \subset \langle A \rangle$ and $\max(X)-X = B u(r-A) \subset \langle B \rangle$. By the definition of A and B, evidently $A_X = A$ and $B_X = B$. The next result is the key theorem which gives a necessary and sufficient condition for two elements of ${\bf 8}$ to be in the same archimedean component.

THEOREM 2.3. For X, Y
$$\epsilon$$
 S, $\alpha(X) = \alpha(Y)$ if and only if $A_X = A_Y$ and $B_X = B_Y$.

PROOF. Suppose X, Y ϵ 8 with $A_{\chi} = A_{\gamma}$ and $B_{\chi} = B_{\gamma}$. Without loss of generality, assume min(X) = min(Y) = 0 and max(X) = max(Y). If $gcd(A_y) = 0$, then X and Y are singletons and thus Q(X) = Q(Y). So assume $gcd(A_{Y}) > 0$. Let U and V be such that $X = g^*U$ and $Y = g^*V$, where $g = gcd(A_y)$. Note that $gcd(A_{II}) = 1$. Let a and b be the least positive integers in A_{II} and B_{II} , respectively. Define $A_i = \{x \in \langle A_{11} \rangle : x \equiv i \pmod{a}\}$ and $B_i = \{x \in \langle B_{11} \rangle : x \equiv j \}$ (mod b)} for $i \in [0, a-1]$, $j \in [0, b-1]$. Also, define $c_i = min(A_i)$, $d_i =$ $\min(B_i)$, c = max {c_i : i ε [0, a-1]}, and d = max {d_i : i ε [0, b-1]}. Choose m, $r \in Z_{1}$ such that (i) $\max \{c,d\} + \max(U) < (m+1) \min \{a,b\},\$ c_iεrU for all iε[0, a-1], (ii) (iii) $d_i \in r(max(U)-U)$ for all $i \in [0, b-1]$. Finally, let n = m+r. By the definition of n, evidently a-1 $\cup \{x \in A_i : x < c-a\} \cup [c-a+1, ma]$ i=0 m a-1 ⊂ ∪ ∪ {c_i + ja} ⊂ nU j=0 i=0 and similarly b-1 ∪ {x ε B_i : x < d-b} ∪ [d-b+1, mb] ⊂ n(max(U)-U). i=0 Also, observe that $c - a \notin sU$ and $d - b \notin s(max(U)-U)$ for all $s \in Z_{+}$ (by definition). Since c + max(U) < (m+1)a and d + max(U) < (m+1)b, it follows that for all p > 0v [c-a+1 + i max(U), ma + i max(U)]
i=0 = $[c-a+1, ma + p max(U)] \subset (n+p)U$

and similarly

```
[d-b+1, mb + p max(U)] \subset (n+p)(max(U)-U).
 Thus, for all q > n
                            [c-a+1, ma + (q-n) max(U)] U
                            [n \max(U) - mb, q \max(U) + b - d - 1] \subset qU.
 In particular,
                            [c-a+1, ma + n max(U)] \cup
                            [n \max(U) - mb, 2n \max(U) + b - d - 1]
                            = [c-a+1, 2n max(U) + b-d-1] \subset 2nU.
It is clear that if u \in qU with u < c-a and q > n, then
                            a^{-1}
u \in \bigcup \{x \in A_{i} : x < c^{-a}\}.
i=0
Likewise if u \in qU with u > q max(U) + b-d and q \ge n, then
                            b-1
u \in \bigcup_{i < -0} \{q \max(U) - x : x \in B_i, x < d-b\}.
Hence
                            a-1

2nU = \cup \{x \in A_i : x < c-a\} \cup [c-a+1, 2n \max(U) + b-d-1]

i=0
                                         U = \{2n \max(U) - x : x \in B_i, x < d - b\} = 2nV.
Therefore, 2nX = 2nY and \alpha(X) = \alpha(Y).
      Conversely, suppose \alpha(X) = \alpha(Y). Then there exist S, T \in S and
s, t \in Z_+ such that
                                    s(X-min(X)) = Y-min(Y)+S and
                                     t(Y-min(Y)) = X-min(X) + T.
Since necessarily min(S) = min(T) = 0, it follows that
                                      A_{Y} \subseteq Y - min(Y) + S \leq \langle A_{X} \rangle
and similarly A_{\chi} \subseteq \langle A_{\chi} \rangle. Consequently, \langle A_{\chi} \rangle = \langle A_{\chi} \rangle and hence by the definition of
A_{\chi} and A_{\gamma} we have A_{\chi} = A_{\gamma}. Similarly it is easy to show B_{\chi} = B_{\gamma} and this
```

completes the proof.

Perhaps a brief example will help illustrate the simplicity of the condition given in Theorem 2.3. Let $W = \{-10, -8, 22, 55, 57\}$, $X = \{3, 5, 29, 68, 69\}$, and $Y = \{4, 6, 69, 85, 86\}$. Then

R. SPAKE

$$W-\min(W) = \{0, 2, 32, 65, 67\}, \max(W)-W = \{0, 2, 35, 65, 67\}, X-\min(X) = \{0, 2, 26, 65, 66\}, \max(X)-X = \{0, 1, 40, 64, 66\}, Y-\min(Y) = \{0, 2, 65, 81, 82\}, \max(Y)-Y = \{0, 1, 17, 80, 82\}.$$

Hence, $A_W = A_X = A_Y = \{0, 2, 65\}, B_W = \{0, 2, 35\}$, and $B_X = B_Y = \{0, 1\}$. Therefore Q(X) = Q(Y) and $Q(W) \neq Q(X)$. Actually, $Q(X) \leq Q(W)$ by our next theorem.

Using Theorem 2.3 we can determine when two archimedean components are related with respect to the order on the semilattice.

THEOREM 2.4. The following are equivalent. (i) $a(x) \leq a(y)$. (ii) $A_{Y} \leq \langle A_{X} \rangle$ and $B_{Y} \leq \langle B_{X} \rangle$. (iii) $A_{X+Y} = A_{X}$ and $B_{X+Y} = B_{X}$.

PROOF. Suppose $\mathfrak{A}(X) \leq \mathfrak{A}(Y)$. There exist U $\in \mathbf{g}$ and n $\in \mathbb{Z}_+$ such that

$$n(X-min(X)) = Y-min(Y) + U.$$

Since min(U) = 0,

$$A_{Y} \stackrel{c}{=} Y - min(Y) + U \stackrel{c}{=} \langle A_{X} \rangle$$
.

Similarly $B_y \subseteq \langle B_y \rangle$. Suppose next that assertion (ii) holds. Then

$$Y-min(Y) \leq \langle A_y \rangle \leq \langle A_y \rangle$$

and thus

$$X + Y - min(X+Y) = A_y \cup X_1$$

where $X_1 \subseteq \langle A_X \rangle$. Hence $A_{X+Y} = A_X$. Likewise $B_{X+Y} = B_X$. Finally, if (iii) holds, then by Theorem 2.3 X+Y $\in \Omega(X)$; that is, $\alpha(X) \leq \alpha(Y)$ and the proof is complete.

Observe that clearly $A_Y \subseteq A_X$ and $B_Y \subseteq B_X$ is a sufficient condition for $q(X) \leq q(Y)$. However, it is not a necessary condition (see Spake [4]). Since A_Y and B_Y are finite sets, it is relatively easy to determine when $q(X) \leq q(Y)$ via Theorem 2.4 (ii). Also, as the trivial case of Theorem 2.4, we have $q(0,1) \leq q(X) \leq q(0)$ for all $X \in g$ and hence q(0,1) is an ideal of g.

Define $a_0(X) = \{Y \in a(X) : \min(Y) = 0\}$ and note that $a_0(X)$ is a subsemigroup of a(X). Moreover, since elements of a(X) can be uniquely expressed in the form U + a, where U $\in a_0(X)$ and a $\in Z$, evidently $a(X) \cong a_0(X) \oplus Z$. Recalling the proof of Theorem 2.3, apparently if X is a non-singleton, then $a_0(X)$ is power joined. We therefore immediately have

THEOREM 2.5. The idempotent-free archimedean component $\alpha(X)$, where X is a non-singleton, is isomorphic to the direct product of the idempotent-free power joined subsemigroup $\alpha_0(X)$ and the group Z.

We complete this section with a brief summary of the greatest semilattice decomposition of $\,g.\,$ Let

$$W = \{((a_1, \dots, a_n; b_1, \dots, b_m)) : a_i, b_j \in Z, 0 = a_1 < \dots < a_n, 0 = b_1 < \dots < b_m, \\ gcd(a_1, \dots, a_n) = gcd(b_1, \dots, b_m), \\ a_i \notin < a_1, \dots, a_{i-1} > and b_j \notin < b_1, \dots, b_{j-1} > for i \in [2, n], j \in [2, m]\}.$$

Define a partial order \leq on W as follows:

$$\begin{array}{l} ((a_1,\ldots,a_n; b_1,\ldots,b_m)) \leq ((c_1,\ldots,c_p; d_1,\ldots,d_q)) \quad \text{if and only if} \\ \{c_1,\ldots,c_p\} \leq \langle a_1,\ldots,a_n \rangle \quad \text{and} \quad \{d_1,\ldots,d_q\} \leq \langle b_1,\ldots,b_m \rangle. \end{array}$$

Also, define the map ϕ : $\mathbf{g} \star W$ by $\phi(X) = ((a_1, \dots, a_n; b_1, \dots, b_m))$ where $\{a_1, \dots, a_n\} = A_X$ and $\{b_1, \dots, b_m\} = B_X$. Using our preceding results we have the following theorem.

THEOREM 2.6. The map Φ is the greatest semilattice homomorphism of **g**, with W being the greatest semilattice homomorphic image. Moreover, if $\Phi(X) = ((a_1, \dots, a_n; b_1, \dots, b_m))$ and $\Phi(Y) = ((c_1, \dots, c_p; d_1, \dots, d_q))$, then $\Phi(X) \leq \Phi(Y)$ if and only if $\{c_1, \dots, c_p\} \leq \langle a_1, \dots, a_n \rangle$ and $\{d_1, \dots, d_q\} \leq \langle b_1, \dots, b_m \rangle$.

We further define two congruences $\,\delta\,$ and $\,\zeta\,$ on $\,\boldsymbol{8}\,$ as follows:

 $X \delta Y$ if and only if X = Y + z for some $z \in Z$,

 $X \zeta Y$ if and only if $\Phi(X) = \Phi(Y)$ and min(X) = min(Y).

Observe that \mathbf{g}/δ is isomorphic to the subsemigroup \mathbf{k} of \mathbf{g} consisting of X satisfying min(X) = 0 and \mathbf{k} is the semilattice W of $\mathcal{O}_0(A)$'s. Also, \mathbf{g}/ζ is isomorphic to the direct product \mathbf{k} of W and Z. Next, recall the definition of spined product: if $\mathbf{g}_1 : \mathbf{S}_1 + \mathbf{T}$ is a homomorphism of \mathbf{S}_1 onto T (i = 1, 2), then the spined product of \mathbf{S}_1 and \mathbf{S}_2 with respect to \mathbf{g}_1 and \mathbf{g}_2 is $\{(\mathbf{x}, \mathbf{y}): \mathbf{x} \in \mathbf{S}_1, \mathbf{y} \in \mathbf{S}_2, \mathbf{g}_1(\mathbf{x}) = \mathbf{g}_2(\mathbf{y})\}$ in which $(\mathbf{x}_1, \mathbf{y}_1) + (\mathbf{x}_2, \mathbf{y}_2) = (\mathbf{x}_1 + \mathbf{x}_2, \mathbf{y}_1 + \mathbf{y}_2)$.

Using our results we have

R. SPAKE

THEOREM 2.7. The semigroup **8** is isomorphic to the spined product of μ and χ with respect to $\mu + \psi$ and $\chi + \psi$.

3. STRUCTURE OF THE COMPONENTS.

The structure of q(0) is clear, since $q(0) \cong Z$. In this section we investigate the structure of q(X) when X is a non-singleton. We begin with a general result from Theorem 2.3.

PROPOSITION 3.1. For X, Y \in **8**, Y \in Q(X) if and only if (i) Y-min(Y) = $A_X \cup X_1$, where $X_1 \subseteq \langle A_X \rangle$; and (ii) max(Y)-Y = $B_X \cup X_2$, where $X_2 \subseteq \langle B_X \rangle$.

For $X = \{x_1, \ldots, x_n\} \in g$, where n > 1 and $x_1 < \ldots < x_n$, define $id(X) = x_2 - x_1$ and $fd(X) = x_n - x_{n-1}$. Notice that id(X) and fd(X) are the least positive integers in A_X and B_X , respectively. Recalling the proof of Theorem 2.3, we evidently have

THEOREM 3.2. Let X be a non-singleton and U be such that X-min(X) = g*U, where g = gcd(A_X). Define $A_i = \{x \in \langle A_U \rangle : x \equiv i \pmod{a}\}$ and $B_j = \{x \in \langle B_U \rangle : x \equiv j \pmod{a}\}$ for $i \in [0, a-1], j \in [0, b-1], where a = id(U)$ and b = fd(U). Let c = max {min(A_i) : $i \in [0, a-1]$ } and d = max {min(B_i) : $i \in [0, b-1]$ }. Then Y $\in C(X)$ if and only if there exist V \in **S** and $n_0 \in Z_+$ such that Y-min(Y) = g*V and for all $n \ge n_0$

$$nV = \bigcup_{i=0}^{a-1} \{x \in A_i : x < c-a\} \cup [c-a+1, n \max(V) + b-d-1] \\ i=0 \\ b-1 \\ \cup \bigcup_{i=0}^{b-1} \{n \max(V) - x : x \in B_i, x < d-b\}. \\ i=0$$

Next we reproduce several definitions and facts from Tamura [5] that we will need in the following development. We direct the reader to [5] for a more complete discussion of the notions which follow. Let T be an additively denoted commutative idempotent-free archimedean semigroup. Define a congruence $\rho_{\rm b}$ on T, for fixed b, as

 $x \rho_{b} y$ if and only if nb + x = mb + y for some n, m ϵZ_{+} .

Then $T/\rho_b = G_b$ is a group called the structure group of T determined by the standard element b. Also, define a compatible partial order < on T as follows:

x < y if and only if x = nb + y for some $n \in Z_+$.

Then $T = \bigcup_{\lambda \in G_b} T_{\lambda}$, equivalently $T/\rho_b = \{T_{\lambda}\}$, $\lambda \in G_b$, where each T_{λ} is a lower semilattice with respect to $\langle \cdot \rangle$. In fact, for each $\lambda \in G_b$, T_{λ} forms a discrete tree without smallest element with respect to $\langle \cdot \rangle$ (a discrete tree, with respect to b $\langle \cdot \rangle$ is a lower semilattice such that for any c < d the set $\{x : c < x < d\}$ is a b b bfinite chain). Finally, we define a relation η on T as follows:

 $x \eta y$ if and only if nb + x = nb + y for some $n \in Z_+$.

The relation η is the smallest cancellative congruence on T. We continue our development with the following theorem.

THEOREM 3.3. Let $A \in \mathbf{g}$ be a non-singleton with $\min(A) = 0$ and g = gcd(A). The structure group of $a_0(A)$ determined by the standard element A is Z_m , where $m = \max(A)/g$. Moreover, $a_0(A) = \bigcup_{i=0}^{m-1} a_i$ where $a_i = \{X \in a_0(A) : \max(X)/g \equiv i \}$ (mod m)} is a discrete tree without smallest element with respect to A. Furthermore, the structure group of a(A) determined by the standard element A is $Z \in Z_m$.

PROOF. Let U, V $\in \alpha_0(A)$ and C, U₁, V₁ be such that A = g*C, U = g*U₁, and V = g*V₁, where g = gcd(A). For i $\in [0, a-1]$, j $\in [0, b-1]$, where a = id(C) and b = fd(C), define A_i = {x $\in \langle A_C \rangle$: x = i (mod a)} and B_j = {x $\in \langle B_C \rangle$: x = j (mod b)}. Also, let c = max {min(A_i) : i $\in [0, a-1]$ } and d = max {min(B_i) : i $\in [0, b-1]$ }.

Suppose $\max(U_1) \equiv \max(V_1) \pmod{m}$, where $m = \max(C)$. Without loss of generality, assume $\max(U_1) = \max(V_1) + km$ with $k \ge 0$. There exists $p \ge c+d + \max(U_1)$ such that

$$pC = \bigcup \{x \in A_i : x < c-a\} \cup [c-a+1, pm+b-d-1] \\ i=0 \\ b-1 \\ \cup \bigcup \{pm - x : x \in B_i, x < d-b\}. \\ i=0 \\ i=0 \end{cases}$$

Since $U_1 \in a_0(C)$, it follows that

$$U_{1} \stackrel{c}{=} \bigcup_{i=0}^{a-1} \{x \in A_{i} : x < c-a\} \cup [c-a+1, \max(U_{1}) + b-d-1] \\ \bigcup_{i=0}^{b-1} \bigcup_{i=0}^{b-1} \{\max(U_{1}) - x : x \in B_{i}, x < d-b\}, \\ i=0$$

and similarly for V_1 . Hence

$$U_{1} + pC = \bigcup_{i=0}^{a-1} \{x \in A_{i} : x < c-a\} \cup [c-a+1, pm + max(U_{1}) + b-d-1] \\ \cup_{i=0}^{b-1} \{pm + max(U_{1}) - x : x \in B_{i}, x < d-b\} \\ = \bigcup_{i=0}^{a-1} \{x \in A_{i} : x < c-a\} \cup [c-a+1, (p+k)m + max(V_{1}) + b-d-1] \\ \cup_{i=0}^{b-1} \{(p+k)m + max(V_{1}) - x : x \in B_{i}, x < d-b\} \\ = V_{1} + (p+k)C.$$

Consequently, U + pA = V + (p+k)A. Conversely, if U + rA = V + sA for some r, s εZ_{+} , then

$$max(U) + rgm = max(V) + sgm.$$

Since $g|\max(U)$ and $g|\max(V)$, evidently $\max(U)/g \equiv \max(V)/g \pmod{m}$. By Proposition 3.1, if $t \ge \max{\{\max(A_C) + d-b+1, \max(B_C) + c-a+1\}}$ and $t \in Z_+$, then $X = A_C \cup (t - B_C) \in a_0(C)$ with $\max(X) = t$. It follows that for each $i \in Z_m$, there exists $X \in a_0(A)$ with $\max(X)/g \equiv i \pmod{m}$. Therefore, the structure group of $a_0(A)$ determined by the standard element A is Z_m . Using the above, it is clear that for X, Y $\in a(A)$,

> X + rA = Y + sA for some, r, s $\in Z_+$ if and only if min(X) = min(Y) and $(max(X)-min(X))/g \equiv (max(Y)-min(Y))/g \pmod{m}$.

This completes the proof.

We conclude this paper with two related propositions.

PROPOSITION 3.4. Let X be a non-singleton. The homomorphism $h : a_0(X) + Z_+$ defined by h(U) = max(U) is the greatest cancellative homomorphism. That is, the relation n on $a_0(X)$ defined by

 $U \eta V$ if and only if max(U) = max(V)

is the smallest cancellative congruence. Furthermore, the relation \circ on $\alpha(X)$ defined by

 $U \circ V$ <u>if and only if min(U) = min(V) and</u> max(U) = max(V)

is the smallest cancellative congruence. The semigroups $a_0(X)/n$ and a(X)/o are \mathfrak{R} -semigroups.

PROPOSITION 3.5. Let X be a non-singleton and U be such that X-min(X) = g*U, where $g = gcd(A_X)$. For i ε [0, a-1], j ε [0, b-1], where a = id(U) and b = fd(U), define c_i and d_j to be the least integers in $\langle A_U \rangle$ and $\langle B_U \rangle$, respectively, such that $c_i \equiv i \pmod{a}$ and $d_j \equiv j \pmod{b}$. Let $c = max \{c_i: i \in [0, a-1]\}, d = max \{d_i: i \in [0, b-1]\}, m = max \{max(A_U), max(B_U)\},$ and $p = max \{max(A_U) + d-b+1, max(B_U) + c-a+1\}$. Then the greatest cancellative homomorphic image of $a_0(X)$ is isomorphic to the following positive integer semigroup:

 $C = \{r \in [m, p-2] : \underline{for all} x \in A_U, y \in B_U, \underline{if} r-x \equiv j \pmod{b}, \\ \underline{for \ some} \ j \in [0, b-1], \underline{then} \ r \ge x+d_j \underline{and} \\ \underline{if} \ r-y \equiv i \pmod{a}, \underline{for \ some} \ i \in [0, a-1], \\ \underline{then} \ r \ge y + c_i \} \\ \cup \{r \in Z : r \ge p\},$

(where if [m, p-2] is not defined then $C = \{r \in Z : r \ge p\}$).

PROOF. First, observe that $a_0(X)$ and $a_0(U)$ have isomorphic greatest cancellative homomorphic images, since $a_0(X) \cong a_0(U)$. Let $V \in a_0(U)$ and $t = \max(V)$. Since $A_U \subseteq V$ and $B_U \subseteq t - V$, it follows that $t \ge \max\{\max(A_U), \max(B_U)\}$. Moreover, using Proposition 3.1, $t - x \in \langle B_U \rangle$ and $t - y \in \langle A_U \rangle$ for all $x \in A_U$, $y \in B_U$. Thus, by the definition of c_i and d_j , $t \in \mathbb{C}$. Furthermore, if $r \in \mathbb{C}$ then evidently $A_U \cup (r-B_U) \in a_0(U)$. Consequently, the proof is complete by Proposition 3.4.

R. SPAKE

REFERENCES

- 1. TAMURA, T. and SHAFER, J. Power Semigroups, Math. Japon. 12(1967) 25-32.
- 2. CLIFFORD, A. H. and PRESTON, G. B. <u>The Algebraic Theory of Semigroups</u>, Amer. Math. Soc., 1961.
- 3. PETRICH, M. Introduction to Semigroups, Merrill, 1973.
- 4. SPAKE, R. Idempotent-free Archimedean Components of the Power Semigroup of the Group of Integers 1, to appear in <u>Math. Japon. 31(May 1986)</u>.
- 5. TAMURA, T. Construction of Trees and Commutative Archimedean Semigroups, Math. Nachr. 36(1968) 255-287.