
Internat. J. Math. & Math. Sci.
Vol. 9 No. 3 (1986) 605-616

605

THE SEMIGROUP OF NONEMPTY FINITE SUBSETS OF INTEGERS

REUBEN SPAKE

Department of Mathematics,
University of California

Davis, California 95616 U.S.A.

(Received December 16, 1985 and in revised form February 13, 1986)

ABSTRACT. Let Z be the additive group of integers and g the semigroup consisting

of all nonempty finite subsets of Z with respect to the operation defined by

A B {a+b a e A, b E B}, A, B e .
For X , define A

X to be the basis of <X-min(X)> and B
X

the basis of

<max(X)-X>. In the greatest semilattice decomposition of g, let (X) denote the

archimedean component containing X and define Go(X) [Y (X) min(Y) 0}. In

this paper we examine the structure of and determine its greatest semilattice

decomposition. In particular, we show that for X, Y (X) (Y) if and only

if AX Ay and B
X By. Furthermore, if X g is a non-singleton, then the

idempotent-free (X) is isomorphic to the direct product of the (idempotent-free)

power joined subsemigroup Go(X) and the group Z.
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I. INTRODUCTION.

Let Z be the group of integers and g the semigroup conslsting of all

nonempty flnite subsets of Z with respect to the operation defined by

A B {a+b a A, b e B}, A, B e .
The semigroup is clearly commutative and is a subsemigroup of the power semigroup

of the group of integers, (the semigroup of all nonempty subsets of Z). In this

paper we will determine the greatest semilattice decomposition of and describe

the structure of the archimedean components in this decomposition. As we will soon

see, there is a surprisingly simple necessary and sufficient condition for two

elements to be in the same component.

For X {x xn} where x < < x define rain(X) xn’
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max(X) x and gcd(X) to be the greatest (non-negative) common divisor of then’

integers x xn, (where gcd(O) O, gcd(X u {0}) gcd(X)). A singleton

element of 8 will be identified with the integer it contains. Let Z+ be the set

of positive integers and define [a,b] {x Z a < x < b} if a, b Z with

a < b. For U g 8, let <U> denote the semigroup generated by the set U, and for

m e Z+ define mU, m’U, and Z as follows:
m

mU U U, m*U {mu u e U}, and Z Z/<-m,m>.m
m

It will also be convenient to define -U {-u u U}.

In the greatest semilattice decomposition of 8, let (A) denote the

archimedean component containing A. As usual, define the partial order < on the

(lower) semilattice as: (A) < (B) if and only if nA B C for some C g 8

and n e Z+ (equivalently: X Y e (A) for some (all) X (A) and Y e (B)).

We refer the reader to Clifford and Preston [2] and Petrich [3] for more on the

greatest semilattice decomposition of a commutative semigroup. Observe that since 0

is the only idempotent and indeed the identity, (A) is idempotent-free if A is a

non-singleton, ((0) consists of all the singletons in 8 and in fact (0) Z).

Furthermore, if follows that the subgroups of 8 are of the form {{gx} x e Z},

where g is a non-negative integer. Finally, note that 8 is clearly countable,

but this of course does not imply that there are also infinitely many archimedean

components. However, as will soon be shown, there are in fact infinitely many

components.

2. GREATEST SEMILATTICE DECOMPOSITION.

For X e , define A
X to be the basis of <X-min(X)> and B

X
the basis of

<max(X)-X>. Note that A
X

B
X

{0} if and only if X is a singleton. Also

observe that A
X is a finite set with at most a elements, where a is the

least positive integer in A
X

(if A
X

{0}), and similarly for BX. Since

gcd(X-min(X)) gcd(X-max(X)), it follows that in general gcd(AX) gcd(Bx).
Given sets A and B, it is clearly not always possible to find an X such

that A
X

A and B
X

B. However, we do have a positive result. First we need the

following lemma.

LEMMA 2.1. Let S be a positive integer semigroup with respect to addition.

The following are equivalent.

(i) S contains m such that x > m implies x S.

(it) gcd(S) I.

(iii) If [ is the least element of S, then S contains
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c
O c_ such that c (mod ) fo___[r e [0,-I].

PROOF. Clearly (i) implies (ii), since if m, m+1 e S, then gcd(S) I. Next

suppose gcd(S) and let B {b1,...,bn} be a basis with b < < bn. If

b I, then evidently (i i) follows. Thus assume b > I. This implies n >

n
and hence there exist Xl,... x such that . x b I. Choose Yi > 0 such that

n
iI

Yi --- xi (mod bI) for e [1,n]. Let cO b and for e [I, bi-I] define

n
c. I yjb

j:l J --- (mod bI); since, c
0

0Note that c e S. Furthermore, c

(mod bI) and for e [I, bl-1]:

n n
c i(j:1y x.j b.j j:IY (yj xj)bj)m (mod bI).

Therefore (ii) implies (iii). Finally, suppose (iii) holds. Let

m max {co c_ I} and x m. There exists an e [0, -I] such that

x m (mod ). Thus x c. k for some k e Z. However, since x > c. this

implies k > 0 and hence x e S. This completes the proof.

PROPOSITION 2.2. Let A {a a
n and B {b bm} b_e elements of

satisfying

(i) a b 0 a < < a b < < bn’ m’

(ii) gcd(A) gcd(B),

(iii) a <a ai_1 >, bj <b bj_l> fo___[r [2,n], j c [2,m].

Then there exists an r such that X A u (r-B) is an element of with

A
X

A and B
X

B.

PROOF. For the case where gcd(A) O, X {r} is an element with A
X

A

and B
X B, since necessarily A B {0}. Thus we assume ged(A) > O. Let A

and B be such that A g*A and B g*BI, where g gcd(A). Since gcd(AI)
gcd(BI) I, there exists a positive integer q such that s c <AI> and s c <BI>
for all s > q. Let p q max {max(A I), max(B I)}. Then p-a <BI> and

p-b c <AI> for all a A I, b c BI. Hence, if r gp, then r-a c <B> and

r-b c <A> for all a e A, b c B. Sznce r > max {an,bm} it follows that

X A u(r-B) <A> and max(X)-X B u(--A) <B>. By the definition of A and B,

e-idently A
X

A and B
X

B.
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The next result is the key theorem which gives a necessary and sufficient

condition for two elements of 8 to be in the same archimedean component.

THEOREM 2.3. Fo___r X, Y e 8, (l(X) (I(Y) if and onlx if Ax Ay and

B
X By.

PROOF. Suppose X, Y e 8 with A
X Ay and B

X By. Without loss of

generality, assume min(X) min(Y) 0 and max(X) max(Y). If gcd(AX) O,

then X and Y are singletons and thus (I(X) (I(Y). So assume gcd(Ax) > O. Let

U and V be such that X g*U and Y g’V, where g gcd(Ax). Note that

gcd(AU) I. Let a and b be the least positive integers in AU and BU,

respectively. Define A. {x e <Au> x m (mod a)} and B. {x e <Bu> x m j

(mod b)} for e [0 a-l], j e [0 b-l]. Also define ci --min(Ai) d

min(Bi), c max {c e [0, a-l]}, and d--max {di e [0, b-l]}. Choose m,

r Z+ such that

(i) max {c,d} max(U) < (m+1)min {a,b},

(ii) c. rU for all e [0, a-l],

(iii) do e r(max(U)-U) for all e [0, b-l].

Finally, let n m+r.

By the definition of n, evidently

a-1
u {x e A. x < c-a} u [c-a+1, ma]

i--O

and similarly

m a-1
u u {c ja} nU

j--o i--o

b-1
u {x e B. x < d-b} u [d-b+1, mb] n(max(U)-U).

i=O

Also, observe that c a sU and d b s(max(U)-U) for all s E Z/ (by

definition). Since c max(U) < (m+1)a and d max(U) < (m+1)b, it follows that

for all p > 0

and similarly

P
u [c-a+1 max(U), ma max(U)]

i=O

[c-a+1, ma p max(U)] (n+p)U
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Thus, for all q > n

In particular,

[d-b+1, mb p max(U)] (n+p)(max(U)-U).

[c-a+1, ma + (q-n) max(U)] u

[n max(U) mb, q max(U) + b-d-l] qU.

[c-a+1, ma n max(U)] u

[n max(U) mb, 2n max(U) b-d-l]

[c-a+1, 2n max(U) + b-d-l] 2nU.

It is clear that if u e qU with u < c-a and q > n, then

a-1
u e u {x e A. x < c-a}.

i=0

Likewise if u e qU with u > q max(U) b-d and q > n, then

Hence

b-1
u e u {q max(U) x x e B., x < d-b}.

i=O

a-1
2nU u {x e A. x < c-a} u [c-a+1, 2n max(U) b-d-l]

b-1
u u {2n max(U)-x x e B

i, x < d-b} 2nV.
i=0

Therefore, 2nX 2nY and (X) (Y).

Conversely, suppose (X) (Y). Then there exist S, T e S and

s, t e Z+ such that

s(X-min(X)) Y-min(Y)+S and

t(Y-min(Y)) X-min(X) T.

Since necessarily min(S) min(T) O, it follows that

Ayc__ Y-min(Y) S __c <Ax>

and similarly A
X <Ay>. Consequently, <Ax> <Ay> and hence by the definition of

A
X

and Ay we have A
X Ay. Similarly it is easy to show B

X By and his

completes the proof.

Perhaps a brief example will help illustrate the simplicity of the conditlon

given in Theorem 2.3. Let W {-10, -8, 22, 55, 57}, X {3, 5, 29, 68, 69}, and

Y {4, 6, 69, 85, 86}. Then
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W-min(W) {0, 2, 32, 65, 67}, max(W)-W {0, 2, 35, 65, 67},

X-min(X) {0, 2, 26, 65, 66}, max(X)-X {0, I, 40, 64, 66},

Y-min(Y) {0, 2, 65, 81, 82}, max(Y)-Y {0, I, 17, 80, 82}.

Hence, AW AX Ay {0, 2, 65}, BW {0, 2, 35}, and BX By {0,1}. Therefore

G(X) G(Y) and (W) (X). Actually, (X) < (W) by our next theorem.

Using Theorem 2.3 we can determine when two archlmedean components are related

with respect to the order on the semilattice.

THEOREM 2.4. Th___e followin ar__e equivalent.

(i) G(X) < (Y).

(ii) Ay c_ <Ax> and By _c <Bx>.
(iii) AX+Y AX and BX+Y BX.

PROOF. Suppose G(X) < G(Y). There exist U e and n e Z+ such that

Since min(U) 0,

n(X-min(X)) Y-min(Y) U.

Ayc__ Y-min(Y) + U __c <Ax>.

Similarly By <Bx>. Suppose next that assertion (ii) holds. Then

and thus

Y-min(Y) _c <Ay> c__ <Ax>

X + Y- min(X+Y) A
X u X

where X <Ax>. Hence AX+Y AX. Likewise BX+Y BX. Finally, if (iii) holds,

then by Theorem 2.3 X+Y G(X); that is, G(X) < (Y) and the proof is complete.

Observe that clearly Ay A
X and By B

X
is a sufficient condition for

(I(X) G(Y). However, it is not a necessary condition (see Spake [4]). Since Ay
and By are finite sets, it is relatively easy to determine when G(X) G(Y) via

Theorem 2.4 (ii). Also, as the trivial case of Theorem 2.4, we have

G(0) for all X e and hence (0,I) is an ideal of

Define Go(X) {Y e G(X) min(Y) 0} and note that Go(X) is a subsemigroup

of G(X). Moreover, since elements of G(X) can be uniquely expressed in the form

U a, where U e Go(X) and a e Z, evidently G(X) O(X) Z. Recalling the

proof of Theorem 2.3, apparently if X is a non-singleton, then G0(X) is power

joined. We therefore immediately have
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THEOREM 2.5. The idempotent-free archlmedean componen.t. O.(X), where X

non____-singleton, is isomorphic t__o th___e direc____t product of th__e Idempotent-free power

joined subs..emigroup (Io(X) and the group Z.

is a

We complete this section with a brief summary of the greatest semilattice

decomposition of 8. Let

W {((a an; b bm )) ai, bj e Z, 0 al <’’’<an’ 0 b1<...<bm,
gcd(aI, an) gcd(b1,...,bin )’

a <a ai_l > and bj <b bj_l>,
for e [2,n], j e [2,m]}.

Define a partial order < on W as follows:

((a an; b bm)) < ((c Cp; d dq)) if and only if

Cp > and {d dq} <b b >.{c <a a
n m

Also, define the map 8 W by (X) ((a1,...,an; b1,...,bm )) where

{a a
n

A
X

and {b bm} BX. Using our preceding results we have the

following theorem.

THEOREM 2.6. The map is the greatest semilattice homomorphism of 8,

W being the greatest semilattice homomorphic image. Moreover, if

(X) ((a an; b1’’’’’bm) and (Y) ((c Cp; dl,..., qd )), then

(X) < (Y) if and only if {c Cp} <a a > and {d d
n I’ q

<b1,...,b >.
m

with

We further define two congruences 6 and on as follows:

X 6 Y if and only if X Y z for some z e Z,

X Y if and only if (X) (Y) and min(X) min(Y).

Observe that /6 is isomorphic to the subsemigroup of 8 consisting of X

satisfying min(X) 0 and is the semilattice W of o(A)’s. Also, / is

isomorphic to the direct product of W and Z. Next, recall the definition of

T is a homomorphism of S onto T (i 2) thenspined product: if gi Si
the spined product of S and S

2
with respect to gl and g2 is {(x,y): x e S I,

y e S2, g1(x) g2(y)} in which (x1’ Yl (x2’ Y2 (Xl x2’ Yl Y2 )"

Using our results we have
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THEOREM 2.7. The semiroup i__s isomorphic to the spined product o__[f ] and

with respect to M W and } W.

3. STRUCTURE OF THE COMPONENTS.

The structure of (0) is clear, since (0) Z. In this section we

investigate the structure of (X) when X is a non-singleton. We begin with a

general result from Theorem 2.3.

PROPOSITION 3.1. Fo____r X, Y e 8, Y e (X) if and only if

(i) Y-min(Y) A
X u X where X __c <Ax> and

max(Y)-Y B
X u X2, where X

2 <Bx>.

For X {x1,-..,xn} 8, where n > and x < < Xn, define id(X)--

x x. and fd(X) x x Notice that id(X) and fd(X) are the least
n n-1

positive integers in AX and BX, respectively. Recalling the proof of Theorem

2.3,0 we evidently have

THEOREM 3.2. Let X be a non-singleton and U be such that X-min(X) g’U,

where g gcd(Ax). Define A. {x e <Au> x m i (mod a)} and B {x <Bu>
x _-- j (mod b)} for [0, a-l], j e [0, b-l], where a id(U) and b fd(U).

Let c max {min(Ai) [0, a-l]} and d max {min(B i) [0, b-l]}. Then

Y e (I(X) if and only if there exist V 8 and no e Z+ such that Y-min(Y) g*V

and for all n > no

a-1
nV u {x e A. x < c-a} u [c-a+1, n max(V) b-d-l]

i=0

b-1
u u {n max(V) x x e B

i, x < d-b}.
i=0

Next we reproduce several definitlons and facts from Tamura [5] that we will

need in the following development. We direct the reader to [5] for a more complete

discussion of the notions which follow. Let T be an additively denoted commutative

idempotent-free archimedean semigroup. Define a congruence Pb on T, for fixed

b, as

x Pb y if and only if nb x mb y for some n, m g Z+.

Then T/b G
b

is a group called the structure group of T determined by the

standard element b. Also, define a compatible partial order < on T as follows:
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x < y if and only if x =nb y for some n e Z+.
b

Then T u T, equivalently T/Pb {T}, A e Gb, where each T is a lower
eG

b

semilattice with respect to <. In fact, for each Gb, T forms a discrete
b

tree without smallest element with respect to <, (a discrete tree, with respect to
b

<, is a lower semilattice such that for any c < d the set{x c < x < d} is a
b b b b

finite chain). Finally, we define a relation n on T as follows:

x y if and only if nb+ x =nb + y for some n Z+.

The relation is the smallest cancellatlve congruence on T.

We continue our development with the following theorem.

THEOREM 3.3. Let A e be a non-singleton with min(A) 0 and g gcd(A).

The structure group of {Io(A) determined by the standard element A is Z wherem’

m-1
where a {X {2 (A) max(X)/g mm max(A)/g. Moreover, (Io(A) u O 0

i=0

(mod m)} is a discrete tree without smallest element with respect to <.
A

Furthermore, the structure group of (A) determined by the standard element A is

ZSZ
m

PROOF. Let U, V e a0(A) and C, UI, V be such that A g’C, U g*U I,

and V g*Vl, where g gcd(A). For e [0, a-l], j [0, b-l], where

a id(C) and b fd(C), define Ai {x e <Ac> x m (mod a)} and

B.j {x <Bc> x E j (mod b)}. Also, let c max {min(Ai) [0, a-l]} and

d--max {min(B i) e [0, b-l]}.

Suppose max(UI) max(VI) (mod m), where m max(C). Without loss of

generality, assume max(UI) max(VI) km with k > 0. There exists

p > c+d max(U I) such that

a-1
pC ,J {x A. x < c-a} u [c-a+1, pm+b-d-1]

i=0

b-1
u u {pro x x B

i, x < d-b}.
i=0
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Since U e (10(C), it follows that

a-1
u {x e A. x < c-a} u [c-a+1, max(U I) b-d-l]

i--O

b-1
u u {max(UI) x x e Bi, x < d-b}

i--O

and similarly for V Hence

a-1
U pC u {x e A.I x < c-a} u [c-a+1, pm+ max(UI) b-d-l]

i=O

b-1
u u {pro + max(UI) x x e Bi, x < d-b}

i--O

a-1
u {x e A x < c-a} u [c-a+1, (p+k)m max(VI) + b-d-l]

i--O

b-1
u u {(p+k)m + max(VI) x x e B i, x < d-b}

i=O

--V (p+k)C.

Consequently, U pA V (p+k)A.

Conversely, if U rA V + sA for some r, s E Z+, then

max(U) + rgm--max(V) + sgm.

Since glmax(U) and glmax(V), evidently max(U)/g m max(V)/g (mod m). By

Proposition 3.1, if t max {max(AC) + d-b+1, max(BC) c-a+1} and t E Z+, then

X A
C

u (t BC) e G0(C) with max(X) to It follows that for each e Zm,
there exists X e @0(A) with max(X)/g m (mod m). Therefore, the structure group

of o(A) determined by the standard element A is Zm.
Using the above, it is clear that for X, Y e (A),

X rA Y sA for some, r, s e Z+ if and only if min(X) min(Y)

and (max(X)-min(X))/g -= (max(Y)-min(Y))/g (mod m).

This completes the proof.

We conclude this paper with two related propositions.
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PROPOSITION 3.4. Le__t X be a non-singleton. The homomorphism h Oo(X) Z+
defined b_y h(U) max(U) is the greatest cancellative homomorphism. That is, the

relation o__n o(X) defined b_y

U n V if and only if max(U) max(V)

is the smallest cancellative congruence. Furthermore, th__e relation o o__9_n (X)

defined by

U V if and only if min(U) min(V) and

max(U) max(V)

is the smallest cancellative congruence. The semigroups o(X)/ and (X)/o are
-semigroups.

PROPOSITION 3.5. Let X be a non-singleton and U be such that X-min(X)

g’U, where g gcd(AX). Fo___r e [0, a-l], j e [0, b-l], where a id(U) and

b fd(U), define ci --and dj to be the least integers in <Au> and <Bu>,
respectively, such that c. m (mod a) and d. m j (mod b). Let

c max {ci: e [0, a-l]}, d max {di: e [0, b-l]}, m max {max(Au), max(Bu)},
and p max {max(AU) + d-b+1, max(BU) + c-a+1}. Then the greatest cancellat[ve

homomorphic image of (,o(X) is isomorphic to the following positive integer

semigroup:

C= {r e [m, p-2] for all x e AU, y e BU, i__[f r-x --- j (mod b),

for some j e [0, b-l], then r > x+d. and

if r-y --- (mod a), for some e [0, a-l],

then r _> y c i}
u {r e Z r > p},

(where if [m, p-2] is not defined then C= {r e Z r > p}).

PROOF. First, observe that o(X) and (Io(U) have isomorphic greatest

cancellative homomorphic images, since (,o(X) (Io(U). Let V e o0(U) and

max(V). Since A
U c_ V and B

U c_ t V, it follows that t > max {max(Au),

max(Bu)}. Moreover, using Proposition 3.1, t x e <Bu> and t y e <Au> for all

AU, y e BU. Thus, by the definition of c. and d., t e C. Furthermore, if

C then evidently A
U

(r-BU) e (o(U). Consequently, the proof is complete by

Propositlon 3.4.
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