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ABSTRACT. A topology on the state set of an automaton is considered and it is shown

that under this topology, genetically closed subsets and primaries, in the sense of

Bavel [i] turn out to be precisely the regular closed subsets and minimal regular

closed subsets respectively. The concept of a compact automaton is introduced and it

is indicated that it can be viewed as a generalization of a finite automaton.

Included also is an observation showing that our topological considerations can help

recover some of the results of Drfler [2].
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i. INTRODUCTION.

Shukla and Srivastava [3] have indicated that it is possible to study certain

aspects of automata e.g., the connectivity and separation properties, by using topologi-

cal concepts and methods. They did this by introducing a topology on the state set of

an automaton in a natural way. In this note, we consider a topology dual to this and

show that a genetically closed set and hence a primary of an automaton have standard

topological analogs. We also introduce the concept of a compact automaton and show that

it can be viewed as a generalization of a finite automaton. Included also are a few

remarks concerning certain preservation properties of product automata.

For completeness we give the relevant definitions first. An X-automaton is a triple

A (Q,X,6) where Q is a set (set of states), X is a semigroup (the input a_habet) with

identity e, and 6: Q x x --> Q is a mapping (the transition map) satisfying for all

(q,x,y)eC X x X, 6(q,e) q and 6(q,xy) 6(6(q,x),y). B (Q’X,6’) is a subautoma-

ton of Aiff Q’Q and 6’ is 6 restricted to Q’ x x. (We shall use for its restriction

6’ when no ambiguity arises). For a subset R!Q, the set 6R {6(q,x) l(q,x)eR x X} is

the set of successors of R, oR {qQl(q,x)gR for some x X} is the set of sources of

R and R {qeRloq!R} is the core of R. (We write oq for o{q}). If A (Q,X,6) and
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B (P,X,) are X-automata then f is a homomorphism from A to B if f: Q P is a

function such that f((q,x)) y(fq,x) for all (q,xQxX.

If A (Q,X,) is an X-automaton, then a topology tA on A can be defined by

declaring a subset R of Q closed iff R o R(cf.[3]). It turns out that

THEOREM 1.1([3]). If B (Q’,X,) and A (Q,X,) are automata then

(a) B is a subautomaton of A iff Q’ is tA-open.

(b) B is a separated subautomaton of A iff Q’ is both tA-open and tA-closed.

(c) A is connected iff tA is connected (in topological sense).

(d) B is a block of A iff Q’ is a component of Q.

(e) A is retrievable iff tA is an R -topology.
o

(f) A is strongly connected iff tA is indiscrete.

Henceforth, in the absence of any other specifications, we shall assume Q to carry

the topology tA; this topology will be referred to as the ’state-set topology’.

All undefined concepts used here are either standard or can be found in Shukla and

Srivastava [3] and the references cited therein.

2. CORE OPERATOR.

The core operator, as a self-map on the set of subsets of Q, turns out to be an

interior operator in topological sense, i.e., the core operator satisfies

(a) Q Q;

(b) R ! R for all RQ;

(c) R R for all RQ;

(d) (RInR2) RInR2
for all RI, R2iQ.

Indeed, (a) and (b) are obvious. To see (c), let qeR. Observe that qgR means that

oqRwhich in turn means that for all qeQ such that (p,x) q (for some xeX), it is

the case that oP! R. So let rsQ be such that (r,y) p for some yeX. Then (r,yx) q

and so rsoq. Since qgR, rsR. Thus, R!R. But owing to (b), we also see that

R!R. Hence R R and (c) is true. Finally, to verify (d), let qe(R1nR2). Then

oqRIR2
whence (RIR2)RIR2 Conversely, if qeRlR2 thenoq R and oqR2. It

follows that (d) is also true.

The core, being an interior operator for Q, defines a topology on Q; a subset R!Q

is open with respect to this topology iff R R.

REMARK 2.1. (a) The above topology is saturated in the sense that any intersec-

tion of its open sets is open. To see this let {R. igI} be any collection of its

open sets. Then R
i Ri, for all ieI. It is enough to show that iI Ri! (i$I Ri)"

Let qeiiRi. Then qgRI, for all igI which means that oq!Ri, for all igI. Hence

oqiRi
showing that qe(iI Ri)" (b) The topology induced on Q by is dual to the

topology tA on Q and for this reason we shall denote it by tA Moreover, with respect

to the topology tA, R is the largest closed set contained in R for any R_Q. Also, the

successor operator is the closure operator for tA and o R is the smallest open set

containing R.

Throughout by Q we shall understand the topological space (Q, tA ).

3. REGULAR CLOSED SUBSETS.

A subset of a topological space is called regular closed iff it equals the closure

of its interior. In Bavel [i] a subset RKQis called genetic iff oR!R, genetic for

MiQ iff R is genetic and R M, genetically closed iff there exists a subset M!R such

that oM!M and M R, and primar iff R is a minimal genetically closed set.
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PROPOSITION 3.1. R!Q is genetically closed iff it is a regular closed subset of Q*.

PROOF. Suppose R is genetically closed. Then, as shown in Bavel [I], R R,

i.e., R is a regular closed subset of Q. Conversely, let R be a regularly closed

subset of Q. Then R R. From the definition of R it is clear that oR!R R
which shows that R is genetically closed.

COROLLARY 3.2. A primary of an automaton is precisely a minimal regular closed

subset of Q*.

The above observation, aided by Theorem 4.1 of Bavel [I], yields the following:

THEOREM 3.3. If p e Q then the following statements are equivalent:

(a) p is a primary of A;

(b) p is a regular closed subset of Q*;

(c) {p} is not a nowhere dense subset of Q*;

(d) p is a minimal regular closed subset of Q*;

(e) p e p

REIRKS. (a) Since closures of open sets are regular closed, it is clear that if

R !Q, then oR, as noted in Bavel [i], is genetically closed. (b) It is known that a

finite union of regular closed sets stays regular closed. However, under the opera-

tion of intersection, this need not be true. Genetically closed sets, thus, do not

form closed sets of topology. It may however be noted that genetic sets which are

also closed subsets of Q* constitute a topology on Q for which they are precisely

all the closed sets.

4. COMPACT AUTOMATA.

We call an automaton A (Q,X,) compact (Compact automata were called ’quasi-

finite’ automata or ’finitely reachable’ automata in Shukla and Srivastava [3].) iff tA

is a compact topological space (we do not assume a compact space to be necessarily

Hausdorff). It was pointed out in Shukla and Srivastava [3] that Q is compact iff Q*

has a finite dense subset. This means that there is a finite subset D of states of Q

which every other state of Q can be reached.

Clearly, like finite automata, compact automata also have only a finite number of

blocks. In the remaining section we shall observe that finite automata and compact

automata are alike in a few more respects.

THEOREM 4.1. A primary of a compact automaton is necessarily a maximal singly

generated sub-automaton.

This follows from a result of Bavel ([i], Corollary 4.7) coupled with the fact that

compact automata are finitely generated. Thus structure-wise, there is no distinction

between the primaries of a finite automaton and of a compact automaton. This paves way

for formualting a few theorems on (infinite) compact automata which are analogs of

theorems on finite automata. As examples, we give the following two theorems [of Bave+/-

[4]].

THEOREM 4.2. (Primary Decomposition Theorem) Let PI’ P2 Pn be the set of

primaries of a compact automaton (A,X,6) then
n

(i) A i P.
1

u p(ii) for any i, 1in, A # i#j i
For the next theorem, we need a notation due to Bavel [4]. If A

i (Qi,X,6) and

Qj Q andAj ,X,6) are two subautomata of an automaton A (Q,X,6) and if fi: Qi

fj: Qj Q, two functions such that they agree on QiQj then fivfj is defined as
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follows:(fivfj)(x) equals fi(x) if xeQi and it equals fj(x) if xeQj.
THEOREM 4.3. (Homomorphism Decomposition Theorem). Let A be a compact automaton

and B any other automaton Let PI’ P2’ Pn be the primaries of A and f: A B be

a homomorphism. Then there exist homomorphisms f. P. B, l_-<i-<_n, such that f has a
n 1 1

v f Furthermore, this decomposition is unique.’decomposition’ f
i= i"

5. PRODUCTS OF AUTOMATA. Several definitions of products of automata are available

in the literature. We consider here the categorical product of automata (in the

category of automata and their homomorphisms) and observe that the state set topology

functor from the category of automata to that of topological spaces preserves products.

As a consequence certain observations made by Dorfler [2] are recovered.

The following definition of products of automata is easily extendible to any

arbitrary family of automata. Let A (QI,XI,61) and A
2 (Q2,X2,62) be two automata.

Then A x A
2 (QI x Q2’ Xl x x2’61 x 62), where X x X

2
is the direct product of monoids

X and X
2
and 61 x 62 is defined by (61x ) ((ql,q2), (Xl,X2)) (61(ql,Xl), 62(q2,x2))

for any (ql,q2) e Q1 x Q2’ and (Xl,X2) g X x X
2

is an automaton and will be called the

product of the automata A and A2. Of course this product is nothing but the usual

parallel composition or the direct product in the sense of Dorfler [2]. It is easy to

verify that it is also the categorical product.

THEOREM 5.1. Let A (QI’ Xl’ 61) and A
2 (Q2’ x2’ 62) be two automata and

A x A
2

their product. Then tA x tA
2

t (A x A2), where tA x tA
2

denotes the

Tychonoff product of the state set topologies tA and tA2.
PROOF. First let U be open in t(A x A2). Then (61 x 62 U U. Suppose

(ql,q2) g U. Consider 6ql x 6q2 which clearly is basic open in tA x tA2. If

(q,q2) 6ql x 6q2 then there exist XlX and x2gX2 such that 61(qi, x I) ql and

62(q2’ x2) q2" Since (61 x 62)U U, it follows that (61 x 62) ((q1’ q2 )’ (Xl’ x2))
(ql" q2’) U. Thus U contains a basic open set (viz, 6ql x 6q2) around its each point

(ql’ q2 and so must be open in tA x tA2. Conversely, let U be open in tA x tA
2

and

let (ql’ q2 U. Then there must exist sets U and U
2
open respectively in tA and

tA
2
with (ql’ q2 UI x UU. Since 61U U and 62U2

U2, it follows that (61 x 62
(ql’ q2 U whence (61 x 62)U U showing openness of U in t(A x A2).

It is known from topology that if T 1, T
2

are two simultaneously indiscrete,

connected, R or compact topologies then so is their Tychonoff product and also
o

conversely. Thus in view of Theorem 1.1, we have the following.

COROLLARY 5.2. Let P be any of the properties connectedness, strong connectedness,

retrievability or compactness of an automaton. Let A and A
2
be two 11tomata. Then

A x A
2
has the property P iff both A and A

2
have P.

The above observation in the case of P being connectedness or strong connectedness

was made by Drfler [2].
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